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Supplementary Text

Text S1.1 — Parameters of the Chikungunya transmission model

The parameters of the model of Chikungunya virus transmission are listed in Table S1.1,
along with the assumed parameter values. For the temperature-dependent parameter

values, a functional form is provided (based on the temperature, T).
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Table S1.1. Parameters of the Ae. albopictus ecological model and the Chikungunya transmission model

(systems of equations (3) and (6) in the main text). Graphical representations of parameters that are

temperature-dependent are shown in Poletti et al. [1]. Relevant references from which the assumed values and

functional forms were obtained are shown in the final column.

Parameter Interpretation Value Units Reference
Average number of eggs per
Mg adult female oviposition 60 i [1-3]
1
d,(T) Development rate from egg o days~1 [1-3]
to larva 6.9 — 4-e_(T)
Development rate from larva 1
d, (T days—?! 1-3
1) to pupa 0.12T2 — 6.6T + 98 Y [-s]
Development rate from pupa 1 _
dp(T days—?! 1-3
p(1) to adult 0.027T% — 1.7T + 27.7 Y 13l
Rate of egg deposition for 1 -1
() female adults 0.046T2 — 2.77T + 453 days [-s]
6
mg(T) Egg mortality rate 506 — 5066~ (275) days™! [1-3]
my,(T) Larval mortality rate 0.029 + 858e™ 434 days™1! [1-3]
mp(T) Pupal mortality rate 0.021 + 37eT368 days™! [1-3]
my(T) Adult vector mortality rate 0.031 4 95820e7-504 days™1! [1-3]
k Adult vector biting rate 0.09 days™! [1,2]
Probability of vector infection
By from a single blood meal from 0.77 - [2]
an infectious host
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Probability of host infection

Bu from a single blood meal from 0.70 - [2]
an infectious vector

Wy Extrinsic incubation period 2.5 days [2]

T Time until host recovery 4.5 days [2]

a Overcrowding term 44.5 (2014), 32.6 (2015) - [2]

Text $1.2 - Supplementary details about the algorithms used for outbreak simulations

Algorithm 1 — Seasonal stochastic SIR model

Two possible events can occur in the stochastic SIR model. These events, and the rates at

which they occur, are shown in Table S1.2.

Table S1.2. Possible events in the stochastic SIR model.

removed

Event Rate
A randomly chosen susceptible individual B@®)S()I(t)
becomes infected N
A randomly chosen infected individual is
Y y(@©I()

A single realisation of the stochastic SIR model can be simulated using the following

algorithm:

1. Setthe initial time t and the values of S(t), I(t) and R(t).

2. Steps 2-3 should be repeated while the outbreak is still ongoing (i.e. I(t) > 0) or

until the user chooses to stop the simulation. Calculate the time of the next event,

t + 7, using the expression

f TR (s)S(s)I(s)
. N

where 17 is a random number sampled from a uniform distribution on (0,1).

+ y(s)I(s)ds = —In(ry),
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3. Determine whether the next event is an infection event or a removal event. To do

this, sample a second random number (r,) from a uniform distribution on (0,1). If

B(t+)S)I(t)/N
Bt +1)S@I)/N +y(t+ D))

<

then the next event is an infection event; set S(t +7) = S(t) — 1, I(t + 1) = I(t) +
1,and R(t + 7) = R(t). If instead the inequality above is not satisfied, then the next
event is a removal event; set S(t +7) = S(t), I(t + 1) =I(t) — 1,and R(t + 1) =

R(t) + 1. Update the current time, t.

Algorithm 2 — Seasonal stochastic Chikungunya transmission model

As described in the main text, to simulate the Chikungunya transmission model, we begin by
solving the deterministic ecological model (system of equations (3) in the main text)
numerically. Following the approach of Guzzetta et al. [2,4], the ecological model is
initialised on 1% April of the respective years with 10,000 eggs and no individuals in any
other compartment. We then fit equation (5) in the main text to the output from system of

equations (3) to obtain a time series describing the number of adult female vectors each day,

Ny (t).

We then proceed by simulating the epidemiological component of the system (the
analogous stochastic model to system of equations (6) in the main text). Within each day,
transmission parameter values are assumed to remain constant. Seven different types of

event can occur in the simulations within each day (Table S1.3).

Table S1.3. Possible events within each day in the stochastic Chikungunya transmission model.

Event Rate
A randomly chosen susceptible vector dies my, (T(t))Sy
A randomly chosen susceptible vector i Svly
becomes exposed By N
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A randomly chosen exposed vector dies my, (T (t))Ey,
A randomly chosen exposed vector becomes iE
infectious wy ¥
A randomly chosen infectious vector dies my (T ()1,
A randomly chosen susceptible host i Syly
becomes infectious Bu N
A randomly chosen infectious host is 1 |
removed T H

The stochastic host-vector model is then simulated using the following steps:

1. Set the initial time t, and the values of S, (t), Ey, (t), Iy (t), Sy (t), Iy (t) and Ry (t).

3.

Sy (t) is set to be Ny, (t) (from the deterministic ecological model), S (t) is set to be
the number of people living within the simulation area, and I (t) is set to be one
(this is the initial infection). All other compartments are initialised with zero
individuals.

Steps 2-3 should be repeated while the outbreak is still ongoing (i.e. Ey, + I, + Iy >
0) or until the user chooses to stop the simulation. Propose the next event time, t +
T, using the expression

Inry
o0ty

T =
where 8(t) = my, (T(£))Sy (&) + kfy LEEE 4 m, (T(£)Ey (6) + (D) +

my (T ()1, (t) + kBy % + %IH(t) and ry is a random number sampled from a

uniform distribution on (0,1).

Then, do one of the following, depending on the proposed next event time (t + 7):
e If this proposed time t + 7 is not in the same day as time t (i.e. if [t + 7] — |t] >
0), then do not perform any event and instead update the time to be the end of the
original day (i.e. update t to [t]). Update the vector population size according to the

deterministic ecological model (i.e. Ny, (t)). Let a(t) = N, (t) — Sy, (t) — E, (t) —
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I,(t).I1f a(t) > 0, then add a(t) individuals to Sy, (t). If a(t) < 0, then remove

—a (t) individuals from Sy, (t), E, (t) or I,(t) (with each vector to remove chosen
uniformly at random from those compartments).

e If instead the proposed time t + T is in the same day as t (i.e. if |t + | — [t] = 0),
do not update the vector population size. Determine the type of the event occurring
at time t + 7 (since transmission parameters are assumed to be constant within each
day, this is equivalent to deploying the Gillespie direct method within each day). To

do this, define 6;(t) to be the sum of the first i terms of 8(t), so that 6,(t) =
_ Sy(OIa ()
my (T(©))Sy (1), 0,(¢) = my (T())Sy (t) + kBy ——, »andsoon. Then, sample a

second number (73) from a uniform distribution on (0,1), and perform one of the

following events.

01(t)
o)’

-fry < then the next event is the death of a susceptible vector; set

Sy(t+1)=S,(t) -1, E,(t+1) =E,(t), Iyt + 1) =1,(t), Syt +1) =
Su), Iy(t + 1) = I4(t), and Ry (t + ) = Ry (t).

61(t) 6,(t)
o0 2<%

- If instead, then the next event is a susceptible vector

becoming exposed; S, (t +17) =S, (t) - 1,E,(t+1)=E,(t)+ 1, [,(t + 1) =

0,(t) 05(t)
a(t) <2< o)’

- If instead, then the next event is the death of an exposed

vector; Sy(t + 1) =Sy (t), E,(t +1) = E,(t) — 1, I, (t + 1) = I, (1),
Syt +1) =Su(t), Iyt + 1) = I4(t),and Ry (t + ) = Ry(t).

05(t) 0,(t)
a(t) <2< o)’

- If instead, then the next event is the transition of an exposed

vector into an infectious vector; set S, (t + ) = Sy (t), Ey(t + 1) = Ey(t) — 1,
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Iy(t+1)=LL@)+1, Syt +1)=S4t), [yt +1) =1I4(t),and Ry(t +7) =

Ry (t).

64(t) 65(t)
80 =2 <5

- If instead, then the next event is the death of an infectious

vector; set S, (t + 1) = Sy (t), Ey(t + 1) = Ey(t), I, (t + ) = I,,(t) — 1,
Syt +1) =Su(t), Iyt + 1) = I4(t),and Ry(t + ) = Ry(t).

05(t) 06 (t)
a(t) <2< o)’

- If instead, then the next event is the infection of a susceptible

host; set S, (t + 1) = Sy (t), E,(t + 1) = E, (t), Iy (t + 1) = I, (), Syt + 1) =
Sy()—1,I4(t+1)=14(t)+1,and R, (t + T) = Ry (t).

. 6 ) . .
- If instead, % <1, < 1, then the next event is the removal of an infectious

host; set S, (t + 1) = Sy (t), E,(t + 1) = E, (¢t), Iy (t + 1) = [, (), Syt + 1) =
Su), Iyt +1)=14(t) —1,and Ry (t + 1) = Ry(t) + 1.

Then update the current time, t (i.e. set t to be t + 7).

Text S1.3 — Derivation of the CER for the host-vector model

We derive the CER for the host-vector model, considering a scenario in which a single
infectious host enters the population at time t = ¢t,. To do this, we denote the probability of
a major outbreak failing to occur starting from i infectious hosts, j exposed vectors and k

infectious vectors in the population at time t = t, by q;j (to).

We begin by assuming that there is one infectious host and no exposed or infectious vectors
in the population in order to write down an equation for the temporal evolution of g;o. We
then consider the possible events in the next At months (i.e. the time interval [¢t,, t, + At]),

where At represents a very short time period so that at most a single event is possible. In
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that time period, the probability that a vector is infected (i.e. transitions from the

Syl
VH At: the
N

susceptible compartment to the exposed compartment) is approximately k[,
probability that the infectious host recovers is approximately%At; and the probability that

Syly
N

no event occurs is approximately 1 — kS, At — %At. Applying the law of total

probability gives

G100(ty) = Prob(vector infection event occurs in [t, t, + At])
X Prob(no major outbreak | vector infection event occurs in [y, t, + At])
+ Prob(host recovery event occurs in [t,, t, + At])
X Prob(no major outbreak | host recovery event occurs in [t,, t, + At])
+ Prob(no event occurs in [t,, t, + At])

X Prob(no major outbreak | no event occurs in [t,, t, + At])

Syl 1
= kpy TAtCIno(to + At) + ;AtCIooo(to + At)

Syly A

1
N t - ;At) quO(tO + At).

+<1 — kBy

Making the assumption that infection lineages are independent (so that g;1,(t, + At) =
quO(tO + At)quO(tO + At)), and nohng that qooo(to + At) = 1, SV = NV and IH = 1 at the
beginning of the outbreak, then rearranging this expression and taking the limit At - 0

gives

dasooto) __, , N Ly (g, e L
%00 = —kpy Wv%oo(to)qmo(to) T + (kﬂv WV * ;) G100(to).

Denoting the probability of a major outbreak starting from i infectious hosts, j exposed
vectors and k infectious vectors in the population at time t = t, by p;ji (t) = 1 — g4k (£o)

and substituting this into the above equation gives the first equation in system of equations
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(9) in the main text. An analogous approach (this time for gy1¢ and qggy; i-e. starting from
either a single exposed vector or from a single infectious vector) is used to derive the

remaining two equations in system of equations (9) in the main text.

Supplementary Figures

A B
[} 20 ]
1.01 o1
. 18 (9]
W, 511
t6d §
0.8 F15 8 € ]
‘ 103 ; 10
132
L1238 S 97
e« 0.6 i1 €
= t10c B 8
ko g x
0.4 e £ 2
7 2 o 71
5 2 i
0.2 .»4 - g 6
L3 LI%
F2 54
0.0 T T = T .1 T T T T T T
0 3 6 9 12 0 20 40 60 80 100
Time of introduction (months) Initial number of infectious cases

Figure S1.1. Dependence of the TER on the initial number of infected individuals, for the stochastic SIR model
with seasonal transmission. A. The TER for different initial numbers of infectious individuals (obtained by
solving systems of equations (11) in the main text numerically). B. The duration of the year for which the TER
exceeds z = 0.1, for different initial numbers of infectious individuals. In both panels, a threshold of M = 100
was used when computing the TER and the overall population size was assumed to be N = 1,000 individuals.

Parameter values used: B, = 4, B; = 5 and y = 4.9 month™.
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Figure S1.2. Comparison between calculated values of the CER and TER for the stochastic SIR model with

seasonal transmission, for a range of values of f;. A. The CER (equation (8) in the main text — blue line) and

the TER (obtained by solving systems of equations (11) in the main text numerically — orange line) when 8, =

10, B, = 0 and y = 4.9 month™. B. Analogous results to panel A, but with 8; = 3. C. Analogous results to

panel A, but with 8; = 6. D. Analogous results to panel A, but with §; = 9. In all panels, a threshold of M =

100 was used when computing the TER and the overall population size was assumed to be N = 1,000

individuals. In all panels, the inset shows R,(t) = B(t)/y(t) as a function of t.
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Figure S1.3. Proportion of the year for which the TER exceeds z in the stochastic SIR model with seasonal
transmission, for a range of values of M and z. A. The TER (obtained by solving systems of equations (11) in
the main text numerically) for a range of different values of the threshold number of infections, M. The blue
shaded region shows the period of the year for which the TER exceeds z = 0.4 when M = 100. B. The duration
of the year for which the TER exceeds z = 0.4, shown as a function of M. C. Heatmap indicating the duration of
the year for which the TER exceeds z, shown for a range of values of M and z. In all panels, values of 5, = 4,

B, = 5and y = 4.9 month™ are used. The overall population size was assumed to be N = 1,000 individuals.
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Figure S1.4. Temperature and inferred vector density in Feltre, northern Italy, in 2014 and 2015. A. Daily

mean temperature in Feltre in 2014 (from MODIS satellite Land Surface Temperature measurements as

described in [4]; blue line) and fitted temperature values obtained by fitting equation (4) in the main text to

those data (orange line). B. Analogous to panel A, but using temperature data from 2015. C. Monthly number

of adult female vectors per hectare in 2014 (and early 2015) obtained by solving system of equations (3) in the

main text numerically based on the fitted temperature values in panel A (blue dots), and inferred number of

adult female vectors per hectare obtained by fitting equation (5) in the main text to the monthly values (blue

line). The ecological model is initialised at the beginning of April 2014, following the approach of Guzzetta et al.

[4]. D. Analogous to panel C, but for 2015 (and early 2016), based on the fitted temperature values in panel B.
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