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Supplementary Text 4 

Text S1.1 – Parameters of the Chikungunya transmission model 5 

The parameters of the model of Chikungunya virus transmission are listed in Table S1.1, 6 

along with the assumed parameter values. For the temperature-dependent parameter 7 

values, a funcFonal form is provided (based on the temperature, 𝑇). 8 

 9 

Table S1.1. Parameters of the Ae. albopictus ecological model and the Chikungunya transmission model 10 

(systems of equa=ons (3) and (6) in the main text). Graphical representa.ons of parameters that are 11 

temperature-dependent are shown in Pole7 et al. [1]. Relevant references from which the assumed values and 12 

func.onal forms were obtained are shown in the final column. 13 

Parameter Interpreta=on Value Units Reference 

𝑛!  
Average number of eggs per 

adult female oviposi.on 60 - [1–3] 

𝑑!(𝑇) 
Development rate from egg 

to larva 

1

6.9 − 4𝑒"#
$"%&
'.) *

!  

 

days") [1–3] 

𝑑+(𝑇) 
Development rate from larva 

to pupa 
1

0.12𝑇% − 6.6𝑇 + 98 days") [1–3] 

𝑑,(𝑇) 
Development rate from pupa 

to adult 
1

0.027𝑇% − 1.7𝑇 + 27.7 days") [1–3] 

𝑑-(𝑇) 
Rate of egg deposi.on for 

female adults 
1

0.046𝑇% − 2.77𝑇 + 45.3 days") [1–3] 

𝑚!(𝑇) Egg mortality rate 506 − 506𝑒"#
$"%.
%/.0 *

"

 days") [1–3] 

𝑚+(𝑇) Larval mortality rate 0.029 + 858𝑒$"'0.' days") [1–3] 

𝑚,(𝑇) Pupal mortality rate 0.021 + 37𝑒$"01.2 days") [1–3] 

𝑚-(𝑇) Adult vector mortality rate 0.031 + 95820𝑒$".&.' days") [1–3] 

𝑘 Adult vector bi.ng rate 0.09 days") [1,2] 

𝛽- 
Probability of vector infec.on 
from a single blood meal from 

an infec.ous host 
0.77 - [2] 



𝛽3 
Probability of host infec.on 

from a single blood meal from 
an infec.ous vector 

0.70 - [2] 

𝜔- Extrinsic incuba.on period 2.5 days [2] 

𝜏 Time un.l host recovery 4.5  days [2] 

𝑎4 Overcrowding term 44.5 (2014), 32.6 (2015)  - [2] 
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Text S1.2 - Supplementary details about the algorithms used for outbreak simula?ons 15 

Algorithm 1 – Seasonal stochasFc SIR model 16 

Two possible events can occur in the stochasFc SIR model. These events, and the rates at 17 

which they occur, are shown in Table S1.2. 18 

Table S1.2. Possible events in the stochas=c SIR model. 19 

Event Rate 

A randomly chosen suscep.ble individual 
becomes infected 

𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)
𝑁  

A randomly chosen infected individual is 
removed 𝛾(𝑡)𝐼(𝑡) 

 20 

A single realisaFon of the stochasFc SIR model can be simulated using the following 21 

algorithm: 22 

1. Set the iniFal Fme 𝑡 and the values of 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡). 23 

2. Steps 2-3 should be repeated while the outbreak is sFll ongoing (i.e. 𝐼(𝑡) > 0) or 24 

unFl the user chooses to stop the simulaFon. Calculate the Fme of the next event, 25 

𝑡 + 𝜏, using the expression 26 

.
𝛽(𝑠)𝑆(𝑠)𝐼(𝑠)

𝑁

!"#

!
+ 𝛾(𝑠)𝐼(𝑠)d𝑠 = − ln(𝑟$), 27 

where 𝑟$ is a random number sampled from a uniform distribuFon on (0,1). 28 



3. Determine whether the next event is an infecFon event or a removal event. To do 29 

this, sample a second random number (𝑟%) from a uniform distribuFon on (0,1). If 30 

𝑟% <
𝛽(𝑡 + 𝜏)𝑆(𝑡)𝐼(𝑡)/𝑁

𝛽(𝑡 + 𝜏)𝑆(𝑡)𝐼(𝑡)/𝑁 + 𝛾(𝑡 + 𝜏)𝐼(𝑡), 31 

then the next event is an infecFon event; set 𝑆(𝑡 + 𝜏) = 𝑆(𝑡) − 1, 𝐼(𝑡 + 𝜏) = 𝐼(𝑡) +32 

1, and 𝑅(𝑡 + 𝜏) = 𝑅(𝑡). If instead the inequality above is not saFsfied, then the next 33 

event is a removal event; set 𝑆(𝑡 + 𝜏) = 𝑆(𝑡), 𝐼(𝑡 + 𝜏) = 𝐼(𝑡) − 1, and 𝑅(𝑡 + 𝜏) =34 

𝑅(𝑡) + 1. Update the current Fme, 𝑡. 35 

Algorithm 2 – Seasonal stochasFc Chikungunya transmission model 36 

As described in the main text, to simulate the Chikungunya transmission model, we begin by 37 

solving the determinisFc ecological model (system of equaFons (3) in the main text) 38 

numerically.	Following the approach of GuzzeYa et al. [2,4], the ecological model is 39 

iniFalised on 1st April of the respecFve years with 10,000 eggs and no individuals in any 40 

other compartment. We then fit equaFon (5) in the main text to the output from system of 41 

equaFons (3) to obtain a Fme series describing the number of adult female vectors each day, 42 

𝑁&(𝑡). 43 

We then proceed by simulaFng the epidemiological component of the system (the 44 

analogous stochasFc model to system of equaFons (6) in the main text). Within each day, 45 

transmission parameter values are assumed to remain constant. Seven different types of 46 

event can occur in the simulaFons within each day (Table S1.3). 47 

Table S1.3. Possible events within each day in the stochas=c Chikungunya transmission model. 48 

Event Rate 

A randomly chosen suscep.ble vector dies 𝑚-(𝑇(𝑡))𝑆- 
A randomly chosen suscep.ble vector 

becomes exposed 𝑘𝛽-
𝑆-𝐼3
𝑁  



A randomly chosen exposed vector dies 𝑚-(𝑇(𝑡))𝐸- 
A randomly chosen exposed vector becomes 

infec.ous 
1
𝜔-

𝐸- 

A randomly chosen infec.ous vector dies 𝑚-(𝑇(𝑡))𝐼- 
A randomly chosen suscep.ble host 

becomes infec.ous 𝑘𝛽3
𝑆3𝐼-
𝑁  

A randomly chosen infec.ous host is 
removed 

1
𝜏 𝐼3 

 49 

The stochasFc host-vector model is then simulated using the following steps: 50 

1. Set the iniFal Fme 𝑡, and the values of 𝑆&(𝑡), 𝐸&(𝑡), 𝐼&(𝑡), 𝑆'(𝑡), 𝐼'(𝑡) and 𝑅'(𝑡). 51 

𝑆&(𝑡) is set to be 𝑁&(𝑡) (from the determinisFc ecological model), 𝑆'(𝑡) is set to be 52 

the number of people living within the simulaFon area, and 𝐼'(𝑡) is set to be one 53 

(this is the iniFal infecFon). All other compartments are iniFalised with zero 54 

individuals. 55 

2. Steps 2-3 should be repeated while the outbreak is sFll ongoing (i.e. 𝐸& + 𝐼& + 𝐼' >56 

0) or unFl the user chooses to stop the simulaFon. Propose the next event Fme, 𝑡 +57 

𝜏, using the expression 58 

𝜏 = −
ln 𝑟$
𝜃(𝑡), 59 

where 𝜃(𝑡) = 𝑚&@𝑇(𝑡)A𝑆&(𝑡) + 𝑘𝛽&
(5(!)+6(!)

,
+𝑚&(𝑇(𝑡))𝐸&(𝑡) +

$
-5
𝐸&(𝑡) +60 

𝑚&(𝑇(𝑡))𝐼&(𝑡) + 𝑘𝛽'
(6(!)+5(!)

,
+ $

#
𝐼'(𝑡) and 𝑟$ is a random number sampled from a 61 

uniform distribuFon on (0,1).  62 

3. Then, do one of the following, depending on the proposed next event Fme (𝑡 + 𝜏): 63 

•  If this proposed Fme 𝑡 + 𝜏 is not in the same day as Fme 𝑡 (i.e. if ⌊𝑡 + 𝜏⌋ − ⌊𝑡⌋ >64 

0), then do not perform any event and instead update the Fme to be the end of the 65 

original day (i.e. update 𝑡 to ⌈𝑡⌉). Update the vector populaFon size according to the 66 

determinisFc ecological model (i.e. 𝑁&(𝑡)). Let 𝜎(𝑡) = 𝑁&(𝑡) − 𝑆&(𝑡) − 𝐸&(𝑡) −67 



𝐼&(𝑡). If 𝜎(𝑡) > 0, then add 𝜎(𝑡) individuals to 𝑆&(𝑡). If 𝜎(𝑡) < 0, then remove 68 

−𝜎(𝑡) individuals from 𝑆&(𝑡), 𝐸&(𝑡) or 𝐼&(𝑡) (with each vector to remove chosen 69 

uniformly at random from those compartments).  70 

•  If instead the proposed Fme 𝑡 + 𝜏 is in the same day as 𝑡 (i.e. if ⌊𝑡 + 𝜏⌋ − ⌊𝑡⌋ = 0), 71 

do not update the vector populaFon size. Determine the type of the event occurring 72 

at Fme 𝑡 + 𝜏 (since transmission parameters are assumed to be constant within each 73 

day, this is equivalent to deploying the Gillespie direct method within each day). To 74 

do this, define 𝜃.(𝑡) to be the sum of the first 𝑖 terms of 𝜃(𝑡), so that 𝜃$(𝑡) =75 

𝑚&@𝑇(𝑡)A𝑆&(𝑡), 𝜃%(𝑡) = 𝑚&(𝑇(𝑡))𝑆&(𝑡) + 𝑘𝛽&
(5(!)+6(!)

,
, and so on. Then, sample a 76 

second number (𝑟%) from a uniform distribuFon on (0,1), and perform one of the 77 

following events. 78 

-  If 𝑟% <
/7(!)
/(!)

, then the next event is the death of a suscepFble vector; set 79 

𝑆&(𝑡 + 𝜏) = 𝑆&(𝑡) − 1, 𝐸&(𝑡 + 𝜏) = 𝐸&(𝑡), 𝐼&(𝑡 + 𝜏) = 𝐼&(𝑡), 𝑆'(𝑡 + 𝜏) =80 

𝑆'(𝑡), 𝐼'(𝑡 + 𝜏) = 𝐼'(𝑡), and 𝑅'(𝑡 + 𝜏) = 𝑅'(𝑡). 81 

-  If instead, /7(!)
/(!)

< 𝑟% <
/8(!)
/(!)

, then the next event is a suscepFble vector 82 

becoming exposed; 𝑆&(𝑡 + 𝜏) = 𝑆&(𝑡) − 1, 𝐸&(𝑡 + 𝜏) = 𝐸&(𝑡) + 1, 𝐼&(𝑡 + 𝜏) =83 

𝐼&(𝑡), 𝑆'(𝑡 + 𝜏) = 𝑆'(𝑡), 𝐼'(𝑡 + 𝜏) = 𝐼'(𝑡), and 𝑅'(𝑡 + 𝜏) = 𝑅'(𝑡). 84 

-  If instead, /8(!)
/(!)

< 𝑟% <
/9(!)
/(!)

, then the next event is the death of an exposed 85 

vector; 𝑆&(𝑡 + 𝜏) = 𝑆&(𝑡), 𝐸&(𝑡 + 𝜏) = 𝐸&(𝑡) − 1, 𝐼&(𝑡 + 𝜏) = 𝐼&(𝑡), 86 

𝑆'(𝑡 + 𝜏) = 𝑆'(𝑡), 𝐼'(𝑡 + 𝜏) = 𝐼'(𝑡), and 𝑅'(𝑡 + 𝜏) = 𝑅'(𝑡). 87 

-  If instead, /9(!)
/(!)

< 𝑟% <
/:(!)
/(!)

, then the next event is the transiFon of an exposed 88 

vector into an infecFous vector; set	𝑆&(𝑡 + 𝜏) = 𝑆&(𝑡), 𝐸&(𝑡 + 𝜏) = 𝐸&(𝑡) − 1, 89 



𝐼&(𝑡 + 𝜏) = 𝐼&(𝑡) + 1, 𝑆'(𝑡 + 𝜏) = 𝑆'(𝑡), 𝐼'(𝑡 + 𝜏) = 𝐼'(𝑡), and 𝑅'(𝑡 + 𝜏) =90 

𝑅'(𝑡). 91 

-  If instead, /:(!)
/(!)

< 𝑟% <
/;(!)
/(!)

, then the next event is the death of an infecFous 92 

vector; set	𝑆&(𝑡 + 𝜏) = 𝑆&(𝑡), 𝐸&(𝑡 + 𝜏) = 𝐸&(𝑡), 𝐼&(𝑡 + 𝜏) = 𝐼&(𝑡) − 1, 93 

𝑆'(𝑡 + 𝜏) = 𝑆'(𝑡), 𝐼'(𝑡 + 𝜏) = 𝐼'(𝑡), and 𝑅'(𝑡 + 𝜏) = 𝑅'(𝑡). 94 

-  If instead, /;(!)
/(!)

< 𝑟% <
/<(!)
/(!)

, then the next event is the infecFon of a suscepFble 95 

host; set	𝑆&(𝑡 + 𝜏) = 𝑆&(𝑡), 𝐸&(𝑡 + 𝜏) = 𝐸&(𝑡), 𝐼&(𝑡 + 𝜏) = 𝐼&(𝑡), 𝑆'(𝑡 + 𝜏) =96 

𝑆'(𝑡) − 1, 𝐼'(𝑡 + 𝜏) = 𝐼'(𝑡) + 1, and 𝑅'(𝑡 + 𝜏) = 𝑅'(𝑡). 97 

-  If instead, /<(!)
/(!)

< 𝑟% < 1, then the next event is the removal of an infecFous 98 

host; set	𝑆&(𝑡 + 𝜏) = 𝑆&(𝑡), 𝐸&(𝑡 + 𝜏) = 𝐸&(𝑡), 𝐼&(𝑡 + 𝜏) = 𝐼&(𝑡), 𝑆'(𝑡 + 𝜏) =99 

𝑆'(𝑡), 𝐼'(𝑡 + 𝜏) = 𝐼'(𝑡) − 1, and 𝑅'(𝑡 + 𝜏) = 𝑅'(𝑡) + 1. 100 

Then update the current Fme, 𝑡 (i.e. set 𝑡 to be 𝑡 + 𝜏). 101 

 102 

Text S1.3 – Deriva?on of the CER for the host-vector model 103 

We derive the CER for the host-vector model, considering a scenario in which a single 104 

infecFous host enters the populaFon at Fme 𝑡 = 𝑡0. To do this, we denote the probability of 105 

a major outbreak failing to occur starFng from 𝑖 infecFous hosts, 𝑗 exposed vectors and 𝑘 106 

infecFous vectors in the populaFon at Fme 𝑡 = 𝑡0 by 𝑞.12(𝑡0).  107 

We begin by assuming that there is one infecFous host and no exposed or infecFous vectors 108 

in the populaFon in order to write down an equaFon for the temporal evoluFon of 𝑞$00. We 109 

then consider the possible events in the next ∆𝑡 months (i.e. the Fme interval [𝑡0, 𝑡0 + ∆𝑡]), 110 

where ∆𝑡 represents a very short Fme period so that at most a single event is possible. In 111 



that Fme period, the probability that a vector is infected (i.e. transiFons from the 112 

suscepFble compartment to the exposed compartment) is approximately 𝑘𝛽&
(5+6
,
Δ𝑡; the 113 

probability that the infecFous host recovers is approximately $
#
Δ𝑡; and the probability that 114 

no event occurs is approximately 1 − 𝑘𝛽&
(5+6
,
Δ𝑡 − $

#
Δ𝑡. Applying the law of total 115 

probability gives 116 

					𝑞$00(𝑡0) 		= Prob(vector	infection	event	occurs	in	[𝑡0, 𝑡0 + Δ𝑡])117 

× Prob(no	major	outbreak	|	vector	infection	event	occurs	in	[𝑡0, 𝑡0 + Δ𝑡])118 

+ Prob(host	recovery	event	occurs	in	[𝑡0, 𝑡0 + Δ𝑡])119 

× Prob(no	major	outbreak	|	host	recovery	event	occurs	in	[𝑡0, 𝑡0 + Δ𝑡])120 

+ Prob(no	event	occurs	in	[𝑡0, 𝑡0 + Δ𝑡])121 

× Prob(no	major	outbreak	|	no	event	occurs	in	[𝑡0, 𝑡0 + Δ𝑡]) 122 

																							= 𝑘𝛽&
𝑆&𝐼'
𝑁 Δ𝑡𝑞$$0(𝑡0 + Δ𝑡) +

1
𝜏 Δ𝑡𝑞000

(𝑡0 + Δ𝑡)123 

+ c1 − 𝑘𝛽&
𝑆&𝐼'
𝑁 Δ𝑡 −

1
𝜏 Δ𝑡d 𝑞$00

(𝑡0 + Δ𝑡). 124 

Making the assumpFon that infecFon lineages are independent (so that 𝑞$$0(𝑡0 + Δ𝑡) =125 

𝑞$00(𝑡0 + Δ𝑡)𝑞0$0(𝑡0 + Δ𝑡)), and noFng that 𝑞000(𝑡0 + Δ𝑡) = 1, 𝑆& = 𝑁&  and 𝐼' = 1 at the 126 

beginning of the outbreak, then rearranging this expression and taking the limit Δ𝑡 → 0 127 

gives 128 

d𝑞$00(𝑡0)
d𝑡0

= −𝑘𝛽&
𝑁&
𝑁 𝑞$00(𝑡0)𝑞0$0(𝑡0) −

1
𝜏 + c𝑘𝛽&

𝑁&
𝑁 +

1
𝜏d 𝑞$00

(𝑡0). 129 

DenoFng the probability of a major outbreak starFng from 𝑖 infecFous hosts, 𝑗 exposed 130 

vectors and 𝑘 infecFous vectors in the populaFon at Fme 𝑡 = 𝑡0 by 𝑝.12(𝑡0) = 1 − 𝑞.12(𝑡0) 131 

and subsFtuFng this into the above equaFon gives the first equaFon in system of equaFons 132 



(9) in the main text. An analogous approach (this Fme for 𝑞0$0 and 𝑞00$; i.e. starFng from 133 

either a single exposed vector or from a single infecFous vector) is used to derive the 134 

remaining two equaFons in system of equaFons (9) in the main text. 135 

 136 

Supplementary Figures 137 

 138 

Figure S1.1. Dependence of the TER on the ini=al number of infected individuals, for the stochas=c SIR model 139 

with seasonal transmission. A. The TER for different ini.al numbers of infec.ous individuals (obtained by 140 

solving systems of equa.ons (11) in the main text numerically). B. The dura.on of the year for which the TER 141 

exceeds 𝑧 = 0.1, for different ini.al numbers of infec.ous individuals. In both panels, a threshold of 𝑀 = 100 142 

was used when compu.ng the TER and the overall popula.on size was assumed to be 𝑁 = 1,000 individuals. 143 

Parameter values used: 𝛽& = 4, 𝛽) = 5 and 𝛾 = 4.9 month-1. 144 

  145 

BA



 146 

Figure S1.2. Comparison between calculated values of the CER and TER for the stochas=c SIR model with 147 

seasonal transmission, for a range of values of  𝜷𝟏. A. The CER (equa.on (8) in the main text – blue line) and 148 

the TER (obtained by solving systems of equa.ons (11) in the main text numerically – orange line) when 𝛽& =149 

10, 𝛽) = 0 and 𝛾 = 4.9 month-1. B. Analogous results to panel A, but with 𝛽) = 3. C. Analogous results to 150 

panel A, but with 𝛽) = 6. D. Analogous results to panel A, but with 𝛽) = 9. In all panels, a threshold of 𝑀 =151 

100 was used when compu.ng the TER and the overall popula.on size was assumed to be 𝑁 = 1,000 152 

individuals. In all panels, the inset shows 𝑅&(𝑡) = 𝛽(𝑡)/𝛾(𝑡) as a func.on of 𝑡. 153 

A β1=0 B β1=3

C β1=6 D β1=9



 154 

Figure S1.3. Propor=on of the year for which the TER exceeds 𝒛 in the stochas=c SIR model with seasonal 155 

transmission, for a range of values of 𝑴 and 𝒛. A. The TER (obtained by solving systems of equa.ons (11) in 156 

the main text numerically) for a range of different values of the threshold number of infec.ons, 𝑀. The blue 157 

shaded region shows the period of the year for which the TER exceeds 𝑧 = 0.4 when 𝑀 = 100. B. The dura.on 158 

of the year for which the TER exceeds 𝑧 = 0.4, shown as a func.on of 𝑀. C. Heatmap indica.ng the dura.on of 159 

the year for which the TER exceeds 𝑧, shown for a range of values of 𝑀 and 𝑧.  In all panels, values of 𝛽& = 4, 160 

𝛽) = 5 and 𝛾 = 4.9 month-1 are used. The overall popula.on size was assumed to be 𝑁 = 1,000 individuals. 161 

A B

C



 162 

Figure S1.4.  Temperature and inferred vector density in Feltre, northern Italy, in 2014 and 2015. A. Daily 163 

mean temperature in Feltre in 2014 (from MODIS satellite Land Surface Temperature measurements as 164 

described in [4]; blue line) and fibed temperature values obtained by fi7ng equa.on (4) in the main text to 165 

those data (orange line). B. Analogous to panel A, but using temperature data from 2015. C. Monthly number 166 

of adult female vectors per hectare in 2014 (and early 2015) obtained by solving system of equa.ons (3) in the 167 

main text numerically based on the fibed temperature values in panel A (blue dots), and inferred number of 168 

adult female vectors per hectare obtained by fi7ng equa.on (5) in the main text to the monthly values (blue 169 

line). The ecological model is ini.alised at the beginning of April 2014, following the approach of Guzzeba et al. 170 

[4]. D. Analogous to panel C, but for 2015 (and early 2016), based on the fibed temperature values in panel B.  171 

A B

C D

A B
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