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Abstract 
The COVID-19 pandemic has posed significant challenges to public health systems worldwide, 
necessitating accurate and adaptable forecasting models to manage and mitigate its impacts. This 
study presents a novel forecasting framework based on a Machine Learning-enabled Susceptible-
Infected-Recovered (ML-SIR) model with time-varying parameters to predict COVID-19 dynamics 
across multiple geographies. The model incorporates emergent patterns from reported time-series data 
to estimate new hospitalisations, hospitalised patients, and new deaths. Our framework adapts to the 
evolving nature of the pandemic by dynamically adjusting the infection rate parameter over time and 
using a Fourier series to capture oscillating patterns in the data. This approach improves upon 
traditional SIR and forecasting models, which often fail to account for the complex and shifting dynamics 
of COVID-19 due to new variants, changing public health interventions, and varying levels of immunity. 
Validation of the model was conducted using historical data from the United States, Italy, the United 
Kingdom, Canada, and Japan. The model's performance was evaluated based on the Mean Absolute 
Percentage Error (MAPE) and Absolute Percentage Error of Cumulative values (CAPE) for three-month 
forecast horizons. Results indicated that the model achieved an average MAPE of 32.5% for new 
hospitalisations, 34.4% for patients, and 34.8% for new deaths, for three-month forecasts. Notably, the 
model demonstrated superior accuracy compared to existing forecasting models with like-for-like 
disease metrics, countries and forecast horizons. The proposed ML-SIR model offers a robust and 
adaptable tool for forecasting COVID-19 dynamics, capable of adjusting to new time-series data and 
varying geographical contexts. This adaptability makes it suitable for localised hospital capacity 
planning, scenario modelling, and for application to other respiratory infectious diseases with similar 
transmission dynamics, such as influenza and RSV. By providing reliable forecasts, the model supports 
informed public health decision-making and resource allocation, enhancing preparedness and response 
efforts. 
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Introduction 
 
The COVID-19 pandemic has resulted in widespread economic, health and societal implications. To 
date, more than 700 million COVID-19 infections have occurred resulting in over 7 million deaths (The 
World Health Organization, 2024). COVID-19 reached pandemic status in March 2020 (The World 
Health Orgization, 2020), prompting most countries to introduce strict containment measures to mitigate 
its spread as well as surveillance systems to monitor epidemic changes. Infection-derived immunity and 
the introduction of COVID-19 vaccinations have reduced the risk of severe infections and mortality and 
have led to a withdrawal of the status ’epidemic of public health concern’ by the World Health 
Organisation (WHO) in May 2023. Consequently, national surveillance systems have been reduced with 
notable changes in testing and reporting rates making it difficult to monitor disease dynamics over time.  

Despite these advancements, SARS-CoV-2 has continued to cause periodic waves of increased 
COVID-19 cases. The dynamics of the pandemic have continually shifted due to the emergence of new 
variants, the deployment of new vaccines and treatments, and evolving policy responses. Periods of 
increased infection rates have resulted in higher rates of hospitalisation and deaths, which continue to 
pose significant threats to public health. Forecasting future cases, hospitalisations, and deaths using 
established epidemiological methods has proven challenging and often inaccurate. Accurate 
forecasting is crucial for informing post-pandemic policies, the production and stockpiling of 
prophylactics and treatments, and enabling first-line health responders to assess patient needs and 
resource demands effectively. 

Current COVID-19 forecasting models have faced numerous challenges. Traditional models, such as 
those based on the susceptible-infected-recovered (SIR) framework, often fail to account for the 
complex and evolving nature of the pandemic. For instance, the model developed by Imperial College 
London, which was initially influential, faced criticism for overestimating hospitalisations and deaths due 
to its assumptions and parameter estimations (Flaxman et al., 2020). Similarly, models relying heavily 
on data from initial outbreaks struggled to adapt to new data reflecting changing virus transmissibility, 
virulence and public health interventions (Ioannidis et al., 2020). These models' limitations underscore 
the need for more adaptive and robust forecasting tools. 

The method proposed in this paper creates a framework to reliably forecast COVID-19 disease 
dynamics by efficiently adapting to the reported time-series data in each country, using an SIR model 
with time-varying parameters, with emergent patterns being forecasted forward, to estimate the new 
cases, new hospitalisations, hospitalised patients and new deaths.  

The proposed method aims to address these challenges by creating a framework capable of reliably 
forecasting COVID-19 disease dynamics across multiple geographies, where data are reported. This is 
achieved by efficiently adapting to the reported time-series data in each country using a novel machine 
learning-enabled SIR model with time-varying parameters. The model forecasts emergent patterns to 
estimate new cases, new hospitalisations, COVID-19 patients in hospital, and new deaths. By 
incorporating machine learning techniques, the model can dynamically adjust to new data, improving 
accuracy and reliability in predicting future COVID-19 trends. 

 

Methods 
Data 
Time-series data from 01/01/2020 to 20/02/2024 reported for COVID-19 new cases, new 
hospitalisations, hospitalised patients (the number of patients in hospital at the reporting date), and new 
deaths were collected for five countries. Data for the United Kingdom, Italy, Japan, and Canada, 
available under a CC-BY-4.0 license, were sourced from Our World in Data (OWID) as of 20/02/2024 
(Edouard Mathieu, 2020). The data for the USA, made available under a Public Domain U.S. 
Government license, were collected from the CDC for all metrics (Centres for Disease Control and 
Prevention, 2024).  All data obtained from the different sources were ingested into an internal database, 
structured and standardised. This collected data then goes through a preprocessing standardisation 
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process. Preprocessing involved scaling the data to reflect daily data and interpolating the data onto 
daily time points. Then data was further smoothed with a 7-day rolling average. 

Compartmental Model 
Compartmental models are essential tools in the study of the dynamics of dependent sub-populations, 
from ecology to epidemiology. In the specific case of epidemiology, they are commonly referred to as 
SIR models, after the most fundamental form with three sub-populations; susceptible, infected, 
recovered. These models help in understanding the spread and control of diseases within a population.  
 
In our proposed method the compartmental model includes five key sub-populations, namely: the 
susceptible group, S, the exposed (or incubating) group, E, the infectious group, I, the hospitalised 
group, H, the recovered group, R, and the deceased group, D. Also, three non-conventional 
subpopulations, I2, H2, and L have been included to find the cumulative infections, hospitalisations and 
discharges from hospital (or leaving hospital), which can in turn be used to find the daily new cases and 
daily new hospitalisations and daily hospital discharges. I2, H2  and L do not appear in the right-hand 
side of the system of equations (i.e. they do not inform the predicted results). The various flow rates 
between these groups are illustrated in the schematic below in Fig. 1. With the model ordinary 
differential equations (ODEs) being defined as: 
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The above parameters of the ODEs are defined as: the time-varying infection rate, &! (where  #  is the 
time step), the rate of becoming infectious, 0, the rates of recovering of the exposed group, the infectious 
group, and the hospitalised group, /", /#,  and  /$ respectively, the rate of hospitalisation, 1, the rate of 
becoming susceptible again, *, and the rate of death. It is difficult to measure these parameters as they 
have rate dimensions “per-time”, and thus the values of these parameters have been found through a 
parameter fitting algorithm by fitting the model to existing data, specifically new cases, new 
hospitalisations, new deaths and hospitalised patients. These metrics are equivalent to the 
compartments I2 H2 H and D, respectively. The parameter fitting process is described further in the 
below section “Parameter Fitting”. It should be noted that not all of the reported data are required to 
complete the parameter, although the parameter estimations are more robust where more disease 
metrics can be included. In the instances where new hospitalisations, patients and new deaths were 
available, hospital discharges were then calculated and used for further parameter fitting.  

 
Figure 1: Schematic of the compartmental model, with purple boxes denoting compartments with 
which equivalent reported data can be used to fit the model parameters. 
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Parameter Fitting 
To estimate the parameters of the compartmental model, an established parameter fitting algorithm was 
used, specifically, the least-squares (SciPy, 2024). This function was chosen as it can robustly fit non-
linear curves to data using the Trust Region Reflective algorithm which can handle large sparse 
problems with bounds on the parameters. This is done by finding a local minimum of a cost function 
provided for the relevant parameter set. In this instance the function finds the residual between select 
model outputs and the respective reported data. The residual can be built using new cases, new hospital 
admissions, new deaths and hospitalised COVID-19 patients. Commonly, not all the metrics are 
reported, however it is not necessary for all the data points to be used, and also since new cases are 
reported inconsistently as rates of testing and reporting are decreasing it has been found that fitting and 
forecasting is best improved by omitting the metric from the residual when there is sufficient data from 
the other metrics. In the instances in which, new hospital admissions, patients and new deaths are 
available, a new metric discharges can be estimated by assuming the changes in the number of patients 
is equal to the difference between the new hospitalisations and the new deaths and discharges. Thus, 
 

Δpatients = new_hospitalisations− (discharges+ new_deaths), 
 

and so, discharges = new_hospitalisations – new_deaths−Δpatients 
 

Although this metric is neither reported nor used in further analysis, it is beneficial to the parameter 
fitting process, as it more robustly defines the dynamics of the disease progression. As an example in 
a poorly defined system, an increase in say the hospitalisation rate and an increase in the hospital 
recovery rate will result in the same net number of patients, however this is mitigated through more 
complete data sets. Additionally, the model parameters are limited through the enforcement of 
reasonable bounds, based on their expected magnitude and thus further strengthening the parameter 
fitting. 

Time-varying Parameters 
As previously discussed, the disease dynamics of COVID-19 are constantly changing due to changing 
pathogen characteristics such as new variants with different infectiousness and virulence, changes in 
herd immunity and other external factors. Therefore, to cover a time-period sufficient to train the model, 
time-varying parameters were used. Specifically, the infection rate, &!, was allowed to vary over time. 
Through experimentation it was found that the optimal time between peaks is approximately 40 days 
for training purposes, which was determined through trial and error.  
 
The length of the training period was determined by the time between parameter changes, ensuring an 
even frequency for the time-vary parameter. In the validation process the training period was 160 days 
(a factor of 40). With the infection rate,  &!,  defined at six distinct time points, 

t=(0, 20, 60, 100, 120, 160). 
 

The first and final time points were fixed, but, for optimal parameter fitting, the intermediate time points 
were allowed to vary and fitted in the same parameter fitting process described previously. This required 
a minimum and maximum bounds for these time points, along with their initial values. These were 
defined to be, 

tinitial=(20, 60, 100, 140) 
tmin=(8, 48, 88, 128) 

tmax=(32, 72, 112, 152). 
 

This allows the times at which the parameters vary to be adjusted, without the individual time points to 
touch or overlap, i.e. the second time point was initially at t=20 and bound between t=8 and t=32, the 
third time point had a minimum bound of t=48. The values of the minimum and maximum of the time 
points were 30% above and below the initial value (relative to the time between the points). For example, 
for the initial time point at 20 days, the maximum bound was 20 + (0.3 × 40) = 32. 
 
Using this set up for time-varying infection rate (with the other parameters remaining static) a greater fit 
was achieved on the training data, than using entirely static parameters. The resulting time-varying 
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parameters created an oscillating pattern. A pattern that must be forecast forward, to effectively forecast 
the overall disease dynamics. 

Forecasting 
To perform forecasts using the fitted compartmental model, the sample paths were run from the 
beginning of the training period, through the to the end of the 160-day training period, then were 
forecasted for an additional three months. The model uses both, the found static parameters and the 
found time-varying parameters. However, the time-varying parameters were not informed for the 
forecasted period, thus the found pattern of the infection rate must be forecasted first. Here, it was 
assumed that the following three months will follow the same pattern as in the training period, namely 
an oscillating pattern. 
 
To capture the oscillating pattern, a Fourier series was used to estimate the behaviour of the infection 
rate, &!. Here the same parameter fitting process was applied to the parameters of a third order Fourier 
series, training on the fitted infection rates. Then the found Fourier series was used to project the pattern 
forward.  
The Fourier series was defined as: 

?(#) = @& +A(@' cos(E(F#) + G' sin(E(F#))
)

'*+
. 

 
To make the transition from the found values, and the forecasted Fourier series values as smooth as 
possible, the Fourier series was shifted to minimise the difference at the points of transition. 
 
 

 
Figure 2. In each plot the vertical dashed line represents the end of the training data a) Infection rate 
parameter fitted from trends in reported data and third order Fourier series fitted to the fitted infection 
rate. The Fourier series was then forecasted beyond the observed training data. b) Initial version of 
transition point from fitted infection rate parameter to forecasted infection rate from Fourier series. c) 
Aligned version of transition point from fitted infection rate parameter to forecasted infection rate from 
Fourier series. 
 
An additional constraint was put upon the infection rate, &!,  curve to ensure that the fitted Fourier series 
did not diverge out of the bounds of the original infection rates, &!,  found during the parameter fitting 
stage in the training period. 
 
Thus, if the Fourier series in the forecasted time-period was too large or too small the attempt was re 
attempted to find a more suitable estimate. Also, note that the infection rate must always be positive. 
Figure 3 shows an example of 50 runs in which several runs have extreme values for &!  in the 
forecasted period, where the model is trained on data in the United Kingdom with the training period 
from the beginning of February 2023 to October 2023. The parameter fitting procedure found a number 
of Fourier series that were outside the boundaries of the originally fitted parameter values, thus they 
were excluded from the forecast. 
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Figure 3. Examples of forecasted infection rate profiles, before (left) and after (right) having extreme 
results filtered out of potential runs.  

 
Finally, it is important to note that the waves seen in the infection rate pre-empt the expected waves in 
the number of infections. This means that the infection rates towards the end of the training period were 
poorly defined, as they were informed by the waves outside of the training period. Thus, the final point 
of the found infection rate values was replaced by the mid-point value between the final and penultimate 
value, so that the final value did not distort the resultant Fourier series. Although the final point was 
included when the found infection rates were joined with the forecasted Fourier series, to ensure the 
final points of the training period aligned well with the training data, prior to forecasting. 
 
The final forecast was constructed from 50 runs of the model, each resulting in a separate scenario, 
thus the median of these runs was used as the forecast, and the associated 50%, 80% and 95% 
prediction intervals were calculated. 
 

Assumptions and Limitations 

The parameters of the model are found through a parameter fitting process, which relies on reported 
data. However, reported data is often not reflective of true values, with more recently reported data 
generally being less accurate than ‘older’ data, as recent data are often retrospectively updated (Lauren 
J. Beesley, 2022). Reported new cases are hugely dependent on testing rates with many infected 
people either choosing not to test or not being symptomatic enough to consider testing. For new 
hospitalisations and deaths, even though they are generally well reported the definitions of the “COVID-
19 related hospitalisations or deaths” will vary between data providers but might also change within one 
source over the course of time (Tom Jefferson, 2022). Another key consideration is the timeliness, 
completeness and consistency of data reporting due to systematic inefficiencies or public holidays 
(Hildah Tendo Nansikombi, 2023). Also, over the course of the pandemic, sources have actively 
changed and updated their definitions for the reported disease metrics used to fit the model, and thus 
it is important to know what the definitions in the reported time-period refer to, and if there have been 
any changes to the definitions. As witnessed during the COVID-19 pandemic, testing rates are likely to 
degrade over time, particularly when the official status of an outbreak changes or effective treatments 
and prophylactics are introduced which may having a significant impact on the data quality over a 
specified training period. Therefore, if degrading testing rates are observed, and if the other metrics are 
reported well-enough, ‘cases’ are often removed from the fitting process. Overall, the model does not 
use any estimations of true values or any attempted standardisation of metric definitions, thus the 
reported results are relative to the standards of the reported data used (e.g. reported deaths are fed 
into the model with true-to-source reported values without normalisation for different definitions).  
 
Another limitation is that the basis of the forecast assumes that the trends of the forecast will be the 
same as seen in the training period. This means it does not consider potential impacts of cases, 
hospitalisations or deaths from emergent new variants, increased contact events (i.e. the Christmas 
period), seasonal effects (i.e. increased time inside in the winter), governmental policies (i.e. lockdown 
procedures, which have been largely unused in the time periods considered and are unlikely to be 
significantly reintroduced), or increased vaccination schemes. It should be noted that adjustments could 
be made to estimate the impact of some external events) 
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This model does not consider the population birth rate or the all-cause mortality rate, as it is assumed 
that the impact over the time-period being considered is negligible. Thus, the sum of the ODEs is zero, 
and the total population, T, is constant. 
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This model is referred to as a “late-stage” pandemic model as it is assumed that everyone who dies of 
COVID-19 passes away in hospital, which was not true in the early pandemic when a non-negligible 
number of people passed away outside of hospital, notably in care-homes. 
 
Another key consideration in the construction of the compartmental model is there is no explicit value 
related to vaccinations. For COVID-19, vaccinations do not prevent infection or any later stage, thus a 
vaccinated person could not be isolated from potentially being infected and therefore should not form a 
separate compartment. However, vaccinations more broadly reduce the severity of outcomes, thus 
meaning vaccinations impact the magnitude of the fitted parameters. The model can naturally account 
for this due to the time-varying parameter fitting and a vaccine compartment was therefore excluded, 
however adding additional vaccination data into the model could potentially improve the control over 
the fitted parameters. 
 

Validation 

The model was validated by back-testing the forecasts for the United States, the United Kingdom, Italy, 
Canada, and Japan; these countries were selected due to sufficient data availability. For each country 
40 three-month forecasts were performed, a total of 200 forecasts. The first forecast from October 2022 
and the final from February 2023, with a new forecast every three days between these two dates. This 
specific date range was chosen so that the training periods were always after the appearance of the 
omicron strains of SARS-CoV-2 and before the later stages of COVID-19 pandemic when the reporting 
of some metrics started to decrease. This meant the data used in the training period was the most 
consistent.  
 
The set up of each of the 200 forecasts was the same, with the exception of which metrics were used 
for the training process (due to varying reporting standards from different countries). Each forecast 
comprised of 50 runs, each with unique, randomly selected (within the prescribed range) initial 
parameter estimations. For each run the parameters were fitted to the training data (the new cases data 
were not included as they were found to be too inconsistent) and the resultant fitted parameters were 
used to build a three-month forecast. The infection rate, &!,  was allowed to vary in time with an initial 
choice of 40 days between parameter updates and the training period comprising of 160 days. To 
forecast the time-varying infection rate a Fourier series was fitted to the found &! parameter and 
projected forwards. With each of the 50 runs completed the associated median and 95%, 80%, and 
50% prediction intervals were calculated. From the five countries that were used for the validation, the 
United States and Italy were completed using new hospitalisations, new deaths, and patients. The 
United Kingdom, Canada and Japan did not have new hospitalisation data. New cases were excluded 
from the fitting process, however the first time point in the training data was used to as the initial number 
of cases. 
 
Validation metrics were calculated by comparing the forecast results with the observed data over the 
same respective time for each forecasting period. For each time point of the forecasted period the 
absolute percentage error between the observed value, Jobs,    and observed value, Jrep,    of each 
disease metric was calculated, 

APE = 100 OJ,-. − J/01OJ,-.
. 

 
From this, two key error metrics were calculated, the mean absolute percentage error (MAPE) and the 
APE of the final time point of the cumulative metrics (CAPE). The MAPE is a measurement of how well 
the forecast fits to the reported data of the forecasted time-period, whereas the CAPE informs on the 
magnitude or the predicted cases, hospitalisations and deaths in the forecasted period. It should be 
noted that in the instances with no new hospitalisation data to validate against and patient data was 
used, the error calculation CAPE is not valid.  
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Results 

We visualised the retrospective forecast results, including sample paths and prediction intervals, along 
with the observed data for the United States, Italy, the United Kingdom, Canada and Japan for new 
hospitalisations, new deaths and patients (Figures 4, 5, 6, 7 and 8). In the forecasts for the United 
States and Italy for all three metrics the forecast results show good adherence to the training data and 
beyond into the forecasted period, following the trend observed in reported data with a magnitude close 
to the final points of data that were reported. For the United Kingdom, the forecasts for new deaths and 
patients follow the magnitude, timing and trends of the reported data well. It should be noted that, 
reporting of the new hospitalisation data in the UK ended in September 2022. Despite this the SIR 
model calculates a forecast for the new hospitalisations that has a magnitude consistent to the final 
reported values of the hospitalisations and the trends seen in the new deaths and patients. The resulting 
new hospitalisation forecast could not be validated against any data. 
 

 
Figure 4. Example forecasts for United States for new hospitalisation, new deaths and patients. In each 
plot the vertical dashed line represents the end of the training data. Above, each predicted run’s sample 
path (grey), median prediction (blue) and observed data (purple). Below, median prediction (blue) and 
95%, 80% and 50% prediction intervals (shaded blue) in the forecasted period compared with observed 
data (purple). 
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Figure 5. Example forecasts for Italy for new hospitalisation, new deaths and patients. In each plot the 
vertical dashed line represents the end of the training data. Above, each predicted run’s sample path 
(grey), median prediction (blue) and observed data (purple). Below, median prediction (blue) and 95%, 
80% and 50% prediction intervals (shaded blue) in the forecasted period compared with observed data 
(purple). 
 
 
 

Figure 6. Example forecasts for United Kingdom for new hospitalisation, new deaths and patients. In 
each plot the vertical dashed line represents the end of the training data. Above, each predicted run’s 
sample path (grey), median prediction (blue) and observed data (purple). Below, median prediction 
(blue) and 95%, 80% and 50% prediction intervals (shaded blue) in the forecasted period compared 
with observed data (purple). 
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Figure 7. Example forecasts for Canada for patients and new deaths. In each plot the vertical dashed 
line represents the end of the training data. Above, each predicted run’s sample path (grey), median 
prediction (blue) and observed data (purple). Below, median prediction (blue) and 95%, 80% and 50% 
prediction intervals (shaded blue) in the forecasted period compared with observed data (purple). 
 
 

 
Figure 8. Example forecasts for Japan for new deaths and patients. In each plot the vertical dashed 
line represents the end of the training data. Above, each predicted run’s sample path (grey), median 
prediction (blue) and observed data (purple). Below, median prediction (blue) and 95%, 80% and 50% 
prediction intervals (shaded blue) in the forecasted period compared with observed data (purple). 
 
The proposed forecasting framework was evaluated using data from the United States, Italy, the United 
Kingdom, Canada, and Japan. The accuracy of the forecasts was assessed using the Mean Absolute 
Percentage Error (MAPE) and the Cumulative Absolute Percentage Error (CAPE) across several 
metrics: new hospitalisations, patients, and new deaths (Table 1.). For new hospitalisations, only two of 
the countries had data available for validation. The MAPE for the United States was 20.9%, indicating 
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a high level of accuracy. In contrast, Italy exhibited a higher MAPE of 32.4%. The overall MAPE for new 
hospitalisations across all countries was 26.7%. The CAPE for new hospitalisations was lower, with the 
United States at 19.7% and Italy at 26.0%, contributing to an overall CAPE of 22.9%. 
 
The accuracy of patient forecasts was also evaluated. The MAPE for the United States was 27.7%, 
while Italy, Canada and Japan had a MAPE of between 33-34%. The overall MAPE for patient forecasts 
was 34.4%. The new deaths metric showed larger variation in forecast accuracy. The United States had 
a MAPE of 19.6% and a CAPE of 12.5%, demonstrating high accuracy. Italy, on the other hand, had a 
MAPE of 42.8% and a CAPE of 38.3%. The United Kingdom, Canada, and Japan had MAPEs of 43.0%, 
33.3%, and 33.8%, respectively, potentially highlighting that differences in reporting standards for 
deaths may yield variable results. The overall MAPE for new deaths across all countries was 34.4%, 
with an overall CAPE of 28.4%. 
 
 
Table 1. Validation results for three-month forecasts for each disease metrics for all countries and 
overall. Crosses mark where no data were available for validation. 

 New hospitalisations Patients New deaths 
MAPE (%) CAPE(%) MAPE (%) CAPE(%) MAPE (%) CAPE(%) 

United States 20.9 19.7 27.7 X 19.6 12.5 
Italy 32.4 26.0 34.0 X 42.8 38.3 

United Kingdom X X 43.0 X 39.8 32.1 
Canada X X 33.3 X 35.2 30.5 
Japan X X 33.8 X X X 
Overall 26.7 22.9 34.4 X 34.4 28.4 

 
 
The forecasts were performed for a three-month time period. Figure 9 overviews the average MAPEs 
and CAPEs of the new hospitalisations, patients, and new deaths across all countries for a range of 
forecast durations, from two weeks up to 12 weeks (Figure 9.) As expected, the further forward the 
model forecasts the less accurate it becomes. However, an increase in forecast horizon does not see 
an equally proportional increase in error. For example, increasing the forecast horizon from four weeks 
to 12 weeks (a 300% increase) sees the MAPE for new hospitalisations increase from 17% to 27% (a 
58% relative increase). Considering the same, the MAPE for patients increases from 27% to 34% (a 
27% relative increase), and the MAPE for deaths sees a growth from 21% to 34.4% (a 63% relative 
increase). This highlights the stable performance of the model over longer forecasting horizons. 
 

 
Figure 9. Overall mean absolute percentage error values for different forecast horizon lengths, from 
two to 12 weeks, across all five countries for each disease metric. 
 
The MAPE values for the forecasts were compared against previously published COVID-19 forecasting 
models for the United States (Figure 10.). These are models that were submitted to the CDC for 
forecasting COVID-19 in the US, where the CDC then generated an ensemble model from the submitted 
models, which outperformed every other model in their study (Cramer, 2021). When directly comparing 
our US model performance with the CDC model, the error values are lower at all timepoints, including 
at three month forecast horizon compared with their four-week forecast.  
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Figure 10. Comparison of MAPE values for deaths for different forecast horizon lengths (in weeks) for 
different models. Airfinity ML-SIR model results, showing the overall scores across the 5 countries 
and the scores for the USA specific forecasts, are compared with some of the models submitted to the 
CDC for US forecasts. Also shown is the CDC’s ensemble model from the submitted models, the 
COVIDHub-ensemble.  
 
At a four-week forecast horizon for deaths the models submitted to the CDC study and the CDC 
ensemble model were compared with our model (Figure 11.). With a four-week forecast we achieved a 
MAPE of 16.8% for the USA compared to the 47.7% achieved by the CDC ensemble model. The 
average MAPE across all the submitted models was 80.6% (including models that had a MAPE of 
greater than 100%, which are not included in Figure 11.) 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.24311170doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.30.24311170
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 11. Comparison of MAPE values for deaths at four-weeks forecast horizon for different models. 
Airfinity ML-SIR model results, showing the overall scores across the 5 countries and the scores for 
the USA specific forecasts, are compared with the models submitted to the CDC for US forecasts 
(models with a MAPE of over 100% have been excluded from the visualisation). Also shown is the 
CDC’s ensemble model from the submitted models, the COVIDHub-ensemble. 
 

Discussion 
 
Public health data on infectious diseases often suffer from quality and representativeness issues due 
to inconsistent surveillance, a lack of standardisation, timeliness, and resource limitations (Cristina 
Costa-Santos, 2021) (Groseclose, 2024). These aspects are further compounded by sociopolitical 
factors and privacy concerns, which can hinder accurate data collection and reporting, leading to 
challenges in the overall surveillance and response to infectious diseases (Ensheng Dong, 2020). 
Managing healthcare and protecting populations from crises such as the COVID-19 pandemic based 
on these data is difficult and requires flexible and adaptable models to provide forecasts that support 
decision makers. 
 
The proposed framework in this study creates a highly versatile, dynamic forecast based on a range of 
metrics and countries, quickly adaptable to other scenarios and reporting standards. The resulting 
forecasts have been validated for the USA, United Kingdom, Japan, Canada, and Italy due to the best 
data availability. The novel framework details a method to fit the parameters of a late-stage COVID-19 
SIR model, incorporating both static and time-varying parameters to account for the shifting dynamics 
of COVID-19 spread for any country with sufficiently reported data. A country’s data reporting is 
considered sufficient if at least two of the following metrics are reported: new cases, new 
hospitalisations, new deaths, or patients. 
 
The validation process showed that the average mean absolute percentage error (MAPE) of forecasted 
new hospitalisations was 32.5%, and the average MAPE of forecasted new deaths was found to be 
34.8%, both over a three-month forecast horizon. It should be noted that the forecasting framework 
consistently (and expectedly) overestimates new cases relative to the reported cases. This is likely due 
to the consistent decrease in testing. These estimations may form a basis for true case estimates; 
however, they cannot be validated without a better understanding of the true burden. 
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The performance metrics from our model highlight its adaptability, returning high accuracy across 
multiple geographies for longer forecast horizons. Individual forecasting models often show significant 
variability in accuracy, with performance fluctuating (John P.A. Ioannidis, 2022). An ensemble model 
coordinated by the US CDC (considered a benchmark for USA COVID-19 forecasting) was among the 
top performers and outperformed individual models. The average performance across the 41 individual 
models had a MAPE of 79.8%, compared with the ensemble performance of 47.7% for a four-week 
forecast horizon predicting new deaths (Cramer et al., 2021). When benchmarking our model against 
these results, it performs better with a MAPE of 16.8% under similar conditions (four-week forecast for 
deaths in the US). Furthermore, another SIR model that incorporated machine learning algorithms, 
known as SIMLR, showed MAPE values of 33% for four-week cases forecasts for the US, in line with 
the CDC COVIDHub-ensemble model (Roberto Vega, 2022). Notably, the authors of the SIMLR model 
note that their model performance was reliant on conditional probability values within the model that are 
hard to fit and thus were set manually using their domain knowledge, rather than a model fitting process. 
This further highlights the high degree of accuracy and adaptability of our ML-SIR model, without the 
need for manual parameter fitting.  
 
As shown by (Cramer, 2021), models using additional data sources did not consistently show improved 
accuracy. These findings indicate that simply incorporating more data is not sufficient for better 
predictions, but instead requires any additional data to be incorporated in a considered manner. In our 
study we found that incorporating variables beyond the traditional SIR model led to an improvement of 
forecasts particularly when variation of parameters over time was allowed. A traditional SIR model 
implemented by Shams et al. (Fazila Shams, 2022) with a MAPE of 50.3% over a two-week forecast 
for Islamabad, while an SEIR model submitted to the CDC developed by UCLA had a four-week forecast 
MAPE of 133.4% for deaths in the USA  (Cramer, 2021), compared with a MAPE of 16.8% for the US 
and 21.56% overall for the model we propose here. This is consistent with findings by (Vinay Kumar 
Reddy Chimmula, 2020), who demonstrated that integrating machine learning techniques with 
epidemiological models can enhance prediction accuracy by capturing the non-linear patterns in the 
data, however this model was highly specialised for forecasting within Canada alone. 
 
It is well known from scientific literature that forecast accuracy and calibration degrade significantly with 
longer forecast periods. Often, the accuracy of the forecast drops beyond a four-week period. This 
phenomenon has been documented in multiple studies, including work by (Fotios Petropoulos, 2020), 
who highlighted the challenges in maintaining forecast accuracy over extended periods, especially in a 
rapidly evolving pandemic context. By capturing the trends in the non-linear time-varying parameters 
using Fourier series and forecasting those forwards, the prediction error for our forecasts remained low 
and even outperformed models with much shorter forecast horizons (Cramer 2021, Shams at al. 2022). 
 
The proposed ML-SIR model's adaptability has the potential to extend its utility beyond national 
forecasts to more localised applications, such as regional or hospital-level capacity planning. By 
incorporating local data, the model could provide targeted forecasts to help manage hospital resources, 
ensuring that facilities are prepared for surges in cases and hospitalisations. Additionally, the model can 
be adapted to incorporate granular age-specific data, enabling the analysis of the impact on particular 
risk groups, such as the elderly or those with comorbidities. This capability allows for more precise 
modelling of disease dynamics within vulnerable populations, informing tailored prevention and 
treatment strategies. Finally, the model could run different viral variant scenarios, adjusting the model 
parameters to reflect the transmissibility and severity of potential new strains. This feature allows health 
authorities to anticipate and prepare for the potential impacts of emerging variants, enhancing the 
resilience of public health systems against future disease surges. 
 
Finally, we propose continued collaboration between public health agencies, governments, academic 
institutions, and industry partners to improve data quality and develop robust forecasting models to 
ultimately provide better healthcare for everyone. Further, there is a need to improve the predictive 
accuracy of models, especially by exploring adaptable and time varying models, as well as the 
integration of behavioural, mobility, and other real-time data streams, or relatively new data types such 
as wastewater data or crowd sourcing (Jihye Choi, 2016) (Rehab Meckawy, 2022) (Aminath Shausan, 
2023). 
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Conclusions 
Here we proposed a novel and adaptable approach to forecasting COVID-19 disease dynamics. The 
primary benefit of the proposed ML-SIR model is its adaptability to new time series data and different 
geographies, while continuing to remain accurate over extended forecasting horizons. By using an SIR 
model with machine learning algorithms to determine time-varying parameters, the framework efficiently 
adapts to the reported time-series data in each country, allowing it to capture emergent patterns and 
forecast them forward. This adaptability ensures that the model can be applied to different countries, 
provided that sufficient data is available. Additionally, due to the machine learning component and the 
model’s adaptability, it is proposed that this model framework could relatively easily be applied to other 
use-cases as well as respiratory infectious diseases with similar transmission dynamics such as 
influenza and RSV. The model’s ability to adjust dynamically to new data inputs enhances its accuracy 
and reliability, making it a valuable tool for public health planning and response.  
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