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Supplementary Note 

 

Lee et al. Pan-cancer mutational signature analysis of 111,711 targeted sequenced tumors  

using SATS 

 

Calculate the size of targeted sequencing panel  

For targeted sequencing panels in AACR Project GENIE (covering a few genes to hundreds of 

genes, Supplementary Table 6), we calculated the number of genomic sites in which a specific 

mutation type of SBS or DBS could occur (Supplementary Table 3 and Supplementary Table 5 

respectively). Specifically, we downloaded the genomic information of panels 

(https://www.synapse.org/#!Synapse:syn26706790) and extracted the corresponding genomic 

sequences (from the human reference genome hg19). For SBS, we considered 96 mutation types 

from 32 trinucleotide mutation contexts. Indeed, the SBS was categorized into 96 SBS types 

composed of a mutated pyrimidine (e.g., C to G mutation) at the trinucleotide context (e.g., TCT 

with flanking 5’ and 3’ nucleotide), a total of 4×6×4 = 96 SBS types and 4 × 2 × 4 = 32 

mutation contexts. For DBS, we considered 78 mutation types from 10 dinucleotide mutation 

contexts: AC, AT, CC, CG, CT, GC, TA, TC, TG, and TT. Finally, we counted the numbers of 

SBS or DBS mutation contexts in individual targeted sequencing panels.  

 

Impact of sample sizes on SATS signature detection 

We found that identifying spiky and common signatures, such as SBS1 and SBS2/13, only 

requires few thousand targeted sequenced tumors (Supplementary Fig. 5b), while detecting less 

spiky or less common signatures needs more samples (e.g., SBS10a, Supplementary Fig. 10a). 

The flattest signatures SBS3 and SBS5 require a much larger number of samples, approximately 

40,000 and 80,000 samples, respectively, to be detected by all panels (Supplementary Fig. 5b). 

Furthermore, we found that the detection probability of signature SBS44 unexpectedly started 

decreasing after 10,000 samples, which coincided with an increasing detection probability of 

signature SBS5. This indicates that when two flat signatures, SBS3 and SBS5, are detected, 

another relatively flat signature, SBS44, becomes difficult to detect. This observation is 

consistent with previous findings on mutational signature analysis of WGS data, which showed 

that signatures with flat profiles are likely to be misidentified as other flat signatures1. The 

remaining signatures with a prevalence of less than 5% are unlikely to be detected even with a 

large number of samples (Supplementary Fig. 5b), as it is for the current algorithms based on 

WGS and WES data2. Notably, the probability of detecting false positive signatures decreases 

from 0.35 at 10,000 samples to less than 0.01 at 200,000 samples (Supplementary Fig. 10b). 

 

Cancer types of AACR Project GENIE  

AACR Project GENIE included 102 cancer types and 757 cancer subtypes defined by 

OncoTree3. To facilitate the cancer type-specific analysis, we combined 107 OncoTree cancer 

types into 23 analysis cancer types, such as combining “breast cancer”, “breast cancer, NOS” 

and “Breast Sarcoma” into breast cancer (Supplementary Table 7). Within an analysis cancer 

type, we aggregated cancer subtypes accounting for less than 3% of tumors as the rare group 

(Supplementary Table 7). 
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Estimation of signature activity matrix for a subset of samples 

Given the set of signatures present in a particular cancer type, SATS can be used for signature 

refitting to a small number of tumor samples or even a single tumor sample. To demonstrate this, 

we estimated signature burdens of lung cancers in in silico simulations for a subset of samples at 

a time.  

 

We first generated the mutation type matrices by using the mapped signature 𝐖𝑙𝑢𝑛𝑔
∗  and the 

signature activity matrix 𝐇𝑙𝑢𝑛𝑔
∗  estimated from the AACR Project GENIE lung cancer study. We 

used the panel size matrix 𝐋𝑙𝑢𝑛𝑔 to obtain the expectation matrix 𝐄𝑙𝑢𝑛𝑔
∗  through element-wise 

multiplication, 𝐄𝑙𝑢𝑛𝑔
∗  = 𝐋𝑙𝑢𝑛𝑔 ∘ 𝐖𝑙𝑢𝑛𝑔

∗ 𝐇𝑙𝑢𝑛𝑔
∗ . We set 𝐄𝑙𝑢𝑛𝑔

∗  as the Poisson mean parameter and 

generated 𝐕𝑙𝑢𝑛𝑔
𝑠𝑖𝑚,1, ⋯ , 𝐕𝑙𝑢𝑛𝑔

𝑠𝑖𝑚,10
 from the Poisson distribution. We then split these datasets into 

submatrices with sizes 1, 10, 50, 100, 500, 1000 and 5000. With 𝐖𝑙𝑢𝑛𝑔
∗  fixed, we reconstructed 

the signature activity matrices 𝐇𝑙𝑢𝑛𝑔
𝑠𝑖𝑚,𝑘

 from the separate estimates obtained from these 

submatrices. Finally, we compared the true and estimated signature expectancy for various sizes. 

 

We found that the signature burdens are consistent between the estimated and simulated ones 

regardless of the number of samples used (Supplementary Fig. 11). Thus, SATS provides a 

useful tool for analyzing individual tumors in clinical settings, by reliably estimating the 

signature burden for a few or even a single sample, based on a list of known signatures from 

targeted sequencing data. 
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