Optimal Pre-dilatation Treatment before Implantation of a Magmaris Bioresorbable Scaffold in Coronary Artery Stenosis. The OPTIMIS trial

4

- 5
- 6 Kirstine Nørregaard Hansen MD^{1,2}, Jens Trøan MD¹, Akiko Maehara MD³, Manijeh Noori MD^{1,2},
- 7 Mikkel Hougaard MD PhD¹, Julia Ellert-Gregersen MD PhD¹, Karsten Tange Veien MD¹, Anders
- 8 Junker MD PhD¹, Henrik Steen Hansen MD^{1,2}, Jens Flensted Lassen MD PhD^{1,2}, Lisette Okkels
- 9 Jensen MD DMSci PhD^{1,2}
- 10
- 11
- ¹Department of Cardiology, Odense University Hospital, Odense, Denmark
- 13 ²University of Southern Denmark, Odense, Denmark
- ¹⁴ ³Cardiovascular Research Foundation, New York Presbyterian Hospital, New York, USA

15

- 16 Short title: Bioresorbable scaffolds and lesion preparation
- 17 Word count: 4,805

18

Correspondence to: Kirstine Nørregaard Hansen MD Odense University Hospital Department of Cardiology Sdr. Boulevard 29 5000 Odense C Denmark E-mail: kirstinenoerregaard@live.dk Phone: +45 6541 2690

19

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Version 4.6 18.6.24

20 Abstract

Introduction: Bioresorbable scaffolds (BRS) have been developed to overcome limitations related to late stent failures of drug-eluting-stents, but previous studies have observed lumen reduction over time after implantation of BRS. The aim of the study was to investigate if lesion preparation with a scoring balloon compared to a standard non-compliant balloon minimizes lumen reduction after implantation of a Magmaris BRS (MgBRS) assessed with optical coherence tomography (OCT) and intravascular ultrasound (IVUS).

Method: Eighty-two patients with stable angina pectoris were included and randomized in a ratio
1:1 to lesion preparation with either a scoring balloon or a standard non-compliant balloon prior to
implantation of a MgBRS. The primary endpoint was minimal lumen area (MLA) 6 months after
MgBRS implantation.

Results: Following MgBRS implantation, MLA ($6.4 \pm 1.6 \text{ mm}^2 \text{ vs. } 6.3 \pm 1.5 \text{ mm}^2$, p=0.65), mean 31 scaffold area ($7.8 \pm 1.5 \text{ mm}^2 \text{ vs. } 7.5 \pm 1.7 \text{ mm}^2$, p=0.37), and mean lumen area ($8.0 \pm 1.6 \text{ mm}^2 \text{ vs.}$ 32 $7.7 \pm 2.1 \text{ mm}^2$, p=0.41) did not differ significantly in patients where the lesions were prepared with 33 34 scoring vs. standard non-compliant balloon respectively. Six-month angiographic follow-up with 35 OCT and IVUS was available in seventy-four patients. The primary endpoint, 6-months MLA, was significantly larger in lesions prepared with a scoring balloon compared to a standard non-36 compliant balloon (4.7 \pm 1.4 mm 2 vs. 3.9 \pm 1.9 mm 2 , p=0.04), whereas mean lumen area (7.2 \pm 1.4 37 mm^3 vs. 6.8 ± 2.2, p=0.35) did not differ significantly. IVUS findings showed no difference in 38 mean vessel area at the lesion site from baseline to follow-up in the scoring balloon group (16.8 \pm 39 $2.9 \text{ mm}^2 \text{ vs. } 17.0 \pm 3.6 \text{ mm}^2$, p=0.62), whereas mean vessel area ($17.1 \pm 4.4 \text{ mm}^2 \text{ vs. } 15.7 \pm 4.9$ 40 mm^2 , p<0.001) was smaller in lesions prepared with a standard non-compliant balloon due to 41 negative remodeling. 42

Version 4.6 18.6.24

- 43 **Conclusion**: Lesion preparation with a scoring balloon prior to implantation of a MgBRS resulted
- 44 in significantly larger MLA after 6 months due to less negative remodeling compared to lesion
- 45 preparation with a standard non-compliant balloon.
- 46 Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04666584.

Version 4.6 18.6.24

48 Clinical perspectives:

49 What is new?

50	-]	Intense	lesion	preparati	on wi	h a s	scoring	bal	loon	prior t	to impl	antatio	n of	a magnesi	ım-

- 51 based Magmaris bioresorbable scaffold results in less lumen reduction and malapposition
- 52after 6 month compared to conventional lesion preparation with a non-compliant balloon in
- 53 patients with stable angina.
- Negative remodeling was seen in lesions treated with conventional lesion preparation,
- 55 whereas optimal lesion preparation with a scoring balloon caused in stable remodeling.

- 57 What are the Clinical Implications?
- Lesions preparation with a scoring balloon is safe and ensures better vascular healing and
- 59 vessel dynamics after implantation of a magnesium-based Magmaris bioresorbable scaffold.
- 60 Optimal lesion preparation should be considered before implantation of magnesium-based
- 61 Magmaris bioresorbable scaffold.

Non-standard A	bbreviations and Acronyms
BRS	Bioresorbable scaffold
DAPT	Dual antiplatelet therapy
DES	Drug-eluting stents
EEM	External elastic membrane
IVUS	Intravascular ultrasound
MLA	Minimal lumen area
MgBRS	Magnesium-based Magmaris bioresorbable scaffold
NOAC	Novel oral anticoagulant
OCT	Optical coherence tomography
OPTIMIS	Optimal Pre-dilatation Treatment before Implantation of a Magmaris
	bioresorbable scaffold In coronary artery Stenosis
PCI	Percutaneous coronary intervention

Version 4.6 18.6.24

63 Introduction

Bioresorbable scaffolds (BRS) were developed to provide temporary vessel support during the early 64 phases of coronary vessel healing, leaving the artery stent-free after degradation as an alternative to 65 drug-eluting stents (DES) during percutaneous coronary intervention (PCI)^{1, 2}. The potential 66 advantages of BRS were restored vasomotion and potential reduction in late stent failures. The 67 68 Absorb everolimus-eluting BRS (Abbott Vascular, Abbott Park, IL, USA) showed increased risk of scaffold thrombosis and vessel shrinkage over time³ with significant minimal lumen area (MLA) 69 reduction after 6 months assessed with optical coherence tomography $(OCT)^4$. It is hypothesized 70 that the mechanism behind lumen reduction is based on decreased radial strength in BRS compared 71 with bare-metal stents and risk of recoil and scaffold dismantling⁵. The construction of BRS 72 continued to develop, and different types are now available on the market. The magnesium-based 73 BRS (Magmaris, Biotronik, Bülach, Switzerland) (MgBRS) was later introduced with improved 74 radial strength, stronger backbone, change in drug-polymer coating and showed better efficacy 75 compared to the first BRSs⁶⁻⁹. Head-to-head comparison between newer generation DES and the 76 MgBRS is limited, but the anti-restenotic efficacy has not yet solved the scaffold failure^{5, 10}. 77 Optimal lesion preparation prior to implantation of a MgBRS appeared to facilitate optimal scaffold 78 sizing and better expansion post-procedure in complex lesions¹¹, but the effect of aggressive pre-79 dilation on vessel and lumen changes over time is uncertain. Peri-procedural intravascular imaging 80 81 is recommended during implantation of a MgBRS due to lack of a radiolucent backbone. OCT is ideal to assess lumen contours¹², whereas intravascular ultrasound (IVUS) provides information on 82 the vessel wall and vessel remodeling over time^{13, 14}. The aim of this study was to assess whether a 83 more aggressive lesion preparation with a scoring balloon compared to a standard non-compliant 84 balloon prior to implantation of a MgBRS resulted in less lumen reduction MLA after 6 months. 85

86

87 Methods

Version 4.6 18.6.24

88 Study design

89	The OPTIMIS (Optimal pre-dilatation Treatment before Implantation of a Magmaris bioresorbable
90	scaffold In coronary artery Stenosis) study was a prospective, randomized-controlled trial
91	conducted at Odense University Hospital in Denmark from December 2020 to September 2023. The
92	study compared lesion preparation with a scoring balloon to a standard non-compliant balloon, prior
93	to implantation of a MgBRS and the effect on lumen dimension in the scaffold treated segment after
94	6 months. The patients were randomized to the two pre-dilatation methods in a ratio 1:1. The
95	primary hypothesis of the OPTIMIS-study was that intense lesion preparation with a scoring
96	balloon prior to implantation for a MgBRS would result in a larger MLA after 6-month follow-up,
97	compared to standard pre-dilatation with a non-compliant balloon. A detailed description of the
98	study design has previously been published ¹⁵ .
99	The study was approved by the Regional Committees on Health Research Ethics for Southern
100	Denmark (Project-ID: S-20200114) and Danish Data Agency (Journal no.: 20/49900), the trial was

- 101 registered at ClinicalTrials.gov (NCT04666584).
- 102

103 *Patient population*

Eighty-two patients with stable angina pectoris referred to PCI were enrolled in the study, if they 104 met the inclusion criteria. Patients were eligible if; 1) age was between 18 and 80 years, 2) if they 105 106 had stable angina pectoris, 3) the target lesion was in a native coronary artery, 4) vessel was suitable for treatment with MgBRS complying with the scaffolds recommended limitations of coronary 107 artery diameter between ≥ 2.75 mm and ≤ 4.0 mm measured with OCT or IVUS. Exclusion criteria 108 109 were 1) patients participating in other randomized stent studies, 2) expected survival < 1 year, 3) allergy to aspirin, ticagrelor, clopidogrel or prasugrel, 4) allergy to sirolimus, 4) ostial lesions 110 (cannot be cleared with flush by OCT), 5) serum creatinine > 150 μ g/L (due to the required amount 111

Version 4.6 18.6.24

112	of contrast by OCT), 6) vastly calcified (evaluated with OCT defined as an arc $> 180^{\circ}$, calcium
113	thickness > 0.5 mm and calcium length of > 5 mm), 7) tortuous coronary arteries where the PCI-
114	operator estimated that the introduction of an OCT-catheter would not be possible or would be
115	associated with increased risk, and/or, 8) lesion length > 40 mm. All patients were screened for
116	protocol inclusion and exclusion criteria before enrolment. Patients underwent clinical and invasive
117	imaging follow-up with OCT and IVUS at 6 months.
118	
119	Antithrombotic therapy
120	Patients were treated with aspirin 75 mg /day prior to the PCI procedure. On the day for the PCI,
121	they received a loading dose of 600 mg clopidogrel. Patients were prescribed dual antiplatelet
122	therapy (DAPT) with aspirin 75 mg /day and clopidogrel 75 mg/day for 6 months followed by
123	lifelong monotherapy with 75 mg of aspirin. Patients in Warfarin or novel oral anticoagulant
124	(NOAC) were loaded with 600 mg of clopidogrel. If patients had been admitted and treated for an
125	acute myocardial infraction within the last 12 months, patients kept their previously prescript
126	antithrombotic medication.
127	
128	Devices
129	The metallic-based MgBRS contains a magnesium alloy with a bioresobable poly-L-lactide acid
130	polymer coated with sirolimus as eluting drug released completely after 100 days. The strut
131	thickness is 150 μ m. The MgBRS is completely absorbed after 1 year ¹⁶ . The scaffold sizes were
132	available in a diameter of 3.0 mm and 3.5 mm, and lengths of 15, 20, and 25 mm.
133	The scoring balloon (ScoreFlex, OrbusNeich) catheter is a short mono-rail type balloon catheter. It
134	provides forced dilatation with a dual-wire semi-compliant balloon system which facilitates local,

safe and controlled plaque modification at lower resolution pressure.

Version 4.6 18.6.24

136

137 *Procedure strategy*

The coronary stenosis was identified by the PCI operator's interpretation of the angiography and 138 was treated with a MgBRS in all patients. Patients received a dose of heparin (70 UI/kg) prior to the 139 procedure. At the discretion of the operator, pre-dilatation with a 2.0 mm balloon was allowed. Pre-140 interventional imaging with OCT and IVUS was performed. The scaffold sizing was based on the 141 external elastic membrane (EEM) diameters of the proximal and distal reference segments. If the 142 EEM was visible in >180° of the cross sectional area, the smaller EEM diameter rounded down to 143 the nearest 0.5 mm was used to determine scaffold diameter. If the EEM was visible in <180°, the 144 scaffold diameter was based on the lumen diameter¹⁷. Patients were allocated 1:1 to either lesion 145 146 preparation with 1) a scoring balloon, or 2) a standard non-compliant balloon. The lesion was predilated in a 1:1 balloon: artery ratio. Up-scaling to a 0.5 mm larger balloon was allowed, if the pre-147 dilatation goal was not achieved, as long as the balloon type corresponded to the randomization 148 arm. The pre-dilatation goal was an angiographic residual stenosis of less than 20%. The lesion was 149 then treated with implantation of a MgBRS, and inflation pressure was maintained for 30 seconds 150 151 during implantation. Mandatory post-dilatation was performed with a non-compliant balloon with the same size or maximally 0.5 mm larger than the implanted scaffold. Lastly, intravascular 152 imaging with OCT and IVUS of the scaffold treated segment was performed and controlled by the 153 154 PCI-operator and an on-site OCT-analyst. Optimization (if any) was performed at the operators' discretion. Additional intervention was allowed if there was 1) major under-expansion (minimal 155 scaffold area (MSA) $< 4.5 \text{ mm}^2$), 2) major malapposition (defined as strut > 0.3 mm from the lumen 156 157 wall for > 3 mm), 3) presence of significant edge dissection, or 4) residual stenosis < 5 mm proximal or distal to the scaffold (causing MLA $< 4 \text{ mm}^2$). Repeated OCT and IVUS of the final result were 158

Version 4.6 18.6.24

- then performed. Blinding of the patient, PCI-operator or investigator to pre-dilatation technique wasnot possible during the index procedure.
- 161
- 162 *Intravascular imaging acquisition*
- 163 OCT and IVUS were performed at baseline and after 6-month of follow-up. The imaging
- procedures were preceded by administration of 200 µg of intracoronary nitroglycerin. OCT was
- 165 performed with frequency-domain OPTIS OCT system (Illumien OCT system; Abbott Vascular,
- 166 Santa Clara, CA, USA) using the DragonflyTM Imaging catheter. The catheter was positioned 10
- 167 mm distally to the lesion or scaffold-treated segment, and the coronary artery was then flushed with
- 168 15 ml contrast injection to clear the artery for blood during automated pullback at a rate of 20 mm/s
- 169 over a distance of 75 mm. The IVUS system (Boston Scientific, Marlborough, MA, USA) used a
- 40MHz OptiCross 2.6 Fr catheter placed 10 mm distally to the lesion or scaffold-treated segment.
- 171 Motorized IVUS pullbacks were performed with a pullback speed of 0.5 mm/sec after intracoronary
- bolus of 200 μg nitroglycerine.
- 173

174 Intravascular imaging analysis

The intravascular imaging pullbacks were analyzed by two independent analysists who were both 175 blinded to the pre-dilatation technique during analysis. The baseline IVUS and OCT pullbacks were 176 177 matched with the follow-up images using anatomical landmarks. OCT offline software (Offline Review Workstation; Abbott Vascular) was used for quantitative OCT analysis, and the 178 commercially available program for computerized IVUS-analysis Echoplaque (INDEC Systems, 179 180 Inc., Santa Clara, CA, USA) was used for IVUS-analysis. The scaffold-treated segment was analyzed for every mm. Lumen dimensions at baseline and follow-up were measured: MLA, mean 181 lumen area, lumen volume, and difference in MLA (follow-up MLA - baseline MLA). Quantitative 182

Version 4.6 18.6.24

183	analysis of scaffold was done using IVUS, because IVUS showed better detection of scaffold
184	remnants than OCT. Scaffold dimensions at baseline were measured: MSA, mean scaffold area,
185	minimum scaffold diameter, and scaffold volume. Scaffold malapposition was defined to be present
186	when the distance between the abluminal surface of the strut and the luminal surface of the vessel
187	wall exceeded the struts thickness of 150 μ m. Major malapposition was defined as struts > 0.3 mm
188	from the lumen wall for >3 mm in length ¹⁸ , and the remaining were classified as minor. At baseline,
189	malapposition area, distance, and volume were analyzed. At follow-up, visible struts or strut
190	remnants were categorized as malapposed when the abluminal border of the strut/remnant was
191	separated from the lumen surface by a visible space exceeding 150 μ m. The malapposition
192	observations was matched from baseline to follow-up and divided into resolved, persistent, or late
193	acquired malapposition. If a scaffold contained both resolved and persistent malapposition at
194	follow-up, it was summarized as persistent. To evaluate the effect of pre-dilatation method on
195	remodeling in the specific lesion site, IVUS was used to identify the pre-procedure MLA in lesion.
196	The lesion site was defined as 5 mm proximally and distally to MLA. The corresponding 10 mm
197	segment was identified in IVUS pullback post-procedure and at 6-month follow-up using
198	anatomical landmarks such as side branches, calcified plaques and scaffold edges. Remodeling was
199	defined as changes in mean EEM area in the lesion site and deemed significant if the mean EEM
200	area changed more than 0.5 mm ² . Enlargement was defined as positive remodeling, and reduction in
201	mean EEM area was defined as negative remodeling. Quantitative IVUS analysis included
202	measurements of EEM, peri-scaffold plaque (EEM area – scaffold area), and total plaque area
203	(EEM area – lumen area).

204

205 Statistical analysis

Version 4.6 18.6.24

206	Categorical data was presented as numbers and frequencies and compared using chi-square test or
207	Fisher's exact statistics. Continuous data was presented as mean \pm SD and compared using
208	Student's t-test. Paired t-test was used for comparison from baseline to follow-up. If the distribution
209	were skewed, a non-parametric test was performed, and median with interquartile range (IQR) was
210	stated.
211	All tests were two-tailed, and a p-value <0.05 was considered statistically significant. STATA
212	version 18.0 (StataCorp, Collage Station, TX, USA) was used for the statistical analysis. Inter-
213	observer variability for imaging analysis was tested for consistency of agreement using an intraclass
214	correlation coefficient (ICC) was calculated for MLA at follow-up and for malapposition area at
215	baseline and follow-up. The Pearson correlation coefficient was used to evaluate the direction and
216	strength of the linear relation between two parameters.
217	The estimated sample size was based on data from the HONEST study ¹⁹ . The reduction of MLA
218	from 6.99 mm ² to 5.01 mm ² (27%) 6 months after implantation of the Magmaris BVS, represented
219	the expected reference group. Optimal lesion preparation with pre-dilatation with a scoring balloon
220	is estimated to minimize MLA reduction from 6.99 mm^2 to 6.22 mm^2 (11%). A power calculation is
221	conducted using the expected MLA after 6 months (6.22 mm^2 for the scoring balloon and 5.01 mm^2
222	for the standard non-compliant balloon). Inclusion of 35 patients in each group is necessary to reach
223	statistical significance in case of 2-tailed significance level of 0.05 and power of 80 %. Loss to
224	follow-up and poor image quality finalize an expected drop-out rate of 15 %, thereby requiring 82
225	patients in total.
226	
227	Endpoints

The primary endpoint was MLA in the scaffold-treated segment pre-dilated with a scoring balloon
versus standard non-compliant balloon 6-month after implantation of a MgBRS assessed with OCT.

Version 4.6 18.6.24

230	Secondary endpoints were differences between treatment groups in: 1) change in MLA, and 2)
231	percentage and size of incomplete scaffold apposition at baseline and follow-up.

232

233 **Results**

A flowchart of enrolled patients is provided in Figure 1.

In total, 82 patients were enrolled in the study. Follow-up images were not available in 8 patients 235 due to following reasons. One patient randomized to standard non-compliant balloon pre-dilatation 236 was excluded due to vessel dissection that could not be covered by a MgBRS scaffold. Two patients 237 were excluded, one in the scoring balloon group and one in the standard non-compliant balloon 238 group, due to scaffold failure where the MgBRS was lost in the coronary artery proximally to the 239 240 study lesion. In all three cases, patients were treated with a DES. Five patients had unavailable follow-up images: Two patients withdrew consents (one in the scoring balloon group and one 241 242 standard non-compliant balloon group), one patient died within the 6-month angiographic follow-up (standard non-compliant balloon group), one patient had a subacute scaffold thrombosis 5 days after 243 implantation (standard non-compliant balloon group), and one patient was postponed due to nurses' 244 245 strike (standard non-compliant balloon group).

246

247 *Clinical and procedural characteristics*

248 Baseline clinical and procedural characteristics are presented in Table 1 and Table 2.

249 The treatment groups were well matched without any significant differences in baseline

250 characteristics. Also, there were no significant differences in procedural characteristics, except for

balloon length which was significantly shorter in the scoring balloon group (only available in 10

and 15 mm) (13.1 \pm 2.5 mm vs. 15.5 \pm 3.3 mm, p < 0.001) compared to the standard non-compliant balloon group.

Version 4.6 18.6.24

254

255 *Optical coherence tomography findings*

- 256 Post-procedure and 6-month follow-up OCT findings are presented in Table 3. Inter-observer
- variability for MLA at follow-up was: ICC=0.996 (95% confidence interval (CI): 0.999-1.00,
- 258 p<0.001), for total malapposition area at baseline: ICC=0.949 (95% CI: 0.77-0.99, p<0.001), and
- 259 for total malapposition at follow-up: ICC=0.874 (95% CI: 0.50-0.97, p=0.001).

260

261 <u>Lumen dimensions</u>

At baseline, there was no significant difference in MLA, mean LA, or lumen volume between the 262 two treatment groups assessed with OCT. At 6-month follow-up, MLA (the primary endpoint) in 263 the scaffold-treated segment was significantly larger in the patients allocated to pre-dilatation with a 264 scoring balloon, compared to a standard non-compliant balloon (4.71 mm² \pm 1.35 vs. 3.91 mm² \pm 265 1.86, p = 0.04). There was no significant difference between the two groups in mean LA, or lumen 266 volume at 6-month follow-up. There was a relative reduction in MLA of -24.8% for the scoring 267 balloon group compared to -38.3% in the standard non-compliant balloon group, p=0.009. 268 269 Representative cases of lumen reduction from baseline to follow-up are shown in Figure 2.

270

271 <u>Scaffold measurements and malapposition</u>

At baseline, scaffold parameters, such as scaffold length, mean scaffold area, minimal scaffold area, and total scaffold volume were similar in the two groups. Total number of analyzable struts were similar at baseline between the two groups (199.9 \pm 70.5 in the scoring balloon group and 210.7 \pm 60.0 in the standard non-compliant balloon group, p=0.46). At follow-up, the total number of analyzable struts were reduced to 70.8 \pm 35.1 in the scoring balloon group and 85.1 \pm 32.1 in the standard non-compliant balloon group (p=0.07).

Version 4.6 18.6.24

278	At baseline, half of the scaffolds in both groups had minor malapposition. There were no major
279	malappositions in any of the groups. Percentage of malapposed struts was small in both groups and
280	significantly lower in the scoring balloon group with 1.5 % compared to 4.6 % in the standard non-
281	compliant balloon group (p=0.02). At baseline, malapposition volume tended to be smaller in the
282	scoring balloon group (0.38 mm^2 [0.15; 0.95]) compared to the standard non-compliant balloon
283	group [1.07 mm ^{2} 0.48 ; 2.27], but there was no significant difference (p= 0.09).
284	At 6-month follow-up, 15.4% of the lesions treated with the scoring balloon had minor
285	malappositions, whereas 42.9% in the standard balloon group had minor malappositions (p=0.009).
286	There significantly smaller total malapposition volume (0.0 [0.0; 0.0] vs. 0.21 [0.0; 0.59],
287	p=0.009) and percentage of malapposed struts (0.0 [0.0; 0.0] vs. 1.62 [0.0; 3.49], p=0.004) in the
288	scoring group compared to the standard non-compliant balloon group at 6-month follow-up. Type
289	of malapposition did not differ between groups. Malappositions were resolved in 31.4 % of the
290	scaffolds in the scoring balloon group, compared to 48.6% in the standard non-compliant balloon
291	group. In the scoring balloon group, 5% had persistent malapposition vs. 20% in the standard
292	balloon group. Late acquired malapposition was seen in 15.4% in the scoring balloon group
293	compared to 22.9% in the standard non-compliant balloon group, and often positioned at scaffold
294	edge and in relation to calcified plaque. Malapposition types are presented in Figure 3.
295	At 6-month follow-up, no scaffold area and volume were drawn since most of the struts were
296	absorbed. OCT images of scaffold degradation are shown in Figure 2. The total number of struts
297	were similar in the two groups, but there were significantly less struts per cross section in the
298	scoring balloon group compared to standard non-compliant balloon group after 6 months.
299	

300 Intravascular ultrasound findings

Version 4.6 18.6.24

Post-procedure and 6-month follow-up IVUS findings are presented in Table 3 and Table 4 andSupplementary table 1.

303

304 Vessel dimensions

There was no difference in vessel measurements between the two groups at baseline or at 6-month 305 follow-up (Table 3). The paired analysis of mean area in the 10 mm lesion site and corresponding 306 segment post-procedure and at 6-month follow-up are presented in Table 4. There was no 307 significant difference in mean lumen area from post-procedure to 6-month follow-up in the scoring 308 balloon group $(8.5 \pm 1.4 \text{ mm}^2 \text{ vs. } 8.1 \pm 1.8 \text{ mm}^2, \text{ p}=0.08)$, whereas a significant decrease in lumen 309 area was found in the standard non-compliant balloon group $(8.2 \pm 1.7 \text{ mm}^2 \text{ vs. } 7.4 \pm 2.6 \text{ mm}^2)$, 310 p=0.009). Vessel area in the 10 mm segment corresponding to the lesion site did not change in the 311 scoring balloon group from baseline to 6-month follow-up ($16.8 \pm 2.9 \text{ mm}^2 \text{ vs. } 17.0 \pm 3.6 \text{ mm}^2$, 312 p=0.62), but was significantly decreased $(17.1 \pm 4.4 \text{ mm}^2 \text{ vs}, 15.7 \pm 4.9 \text{ mm}^2, \text{ p} < 0.001)$ in the 313

standard non-compliant balloon group indicating negative remodeling.

315

316 <u>Pattern of remodeling</u>

Figure 4 shows the relationship between relative change in lumen area and relative change in vessel area (A), and relative change in lumen area and relative change in plaque area (B). There was a significant positive correlation between relative change in lumen area and relative change in vessel area at the 10 mm lesion site (r=0.72, 95% CI: 0.58-0.81, p<0.001), but there was no correlation between relative change in lumen area and relative change in plaque area (r=-0.02, 95% CI: -0.25-0.21, p=0.88).

Version 4.6 18.6.24

324 *Clinical 6-month follow-up*

In patients allocated to pre-dilatation with a scoring balloon prior to implantation of the MgBRS 325 one patient had a target vessel revascularization not related to the scaffold-treated segment. There 326 were no events observed corresponding to the scaffold-treated segment in the scoring balloon 327 328 group. In patients treated with the standard balloon prior to implantation of the MgBRS following events were observed: one patient admitted with STEMI and subacute scaffold thrombosis 5 days 329 after index procedure. This patient was only treated with aspirin for 4 days followed by 330 monotherapy with clopidogrel as the patient also received NOAC; one patient died due to an 331 intracranial hemorrhage 92 days after index procedure. 332

333

334 **Discussion**

In summary, we found that MLA assessed with OCT was significantly larger in the scoring balloon 335 group compared to the standard non-compliant balloon group 6 month after implantation of the 336 MgBRS. In both groups, MLA decreased from baseline to 6-month follow-up, but less MLA 337 reduction was seen in the scoring balloon group compared to the standard non-compliant balloon 338 group. At the lesion site, there was no change in remodeling from baseline to follow-up in the 339 340 scoring balloon group, whereas negative remodeling was observed in lesions prepared with the standard non-compliant balloon. In the lesions pre-dilated with a scoring balloon, there was 341 342 significantly less malapposition at follow-up compared to the standard non-compliant balloon 343 group.

The magnesium-based BRS was first evaluated in the DREAM 1G study²⁰, where a significant decrease in MLA was observed within the first 6 months (7.9 mm² \pm 1.2 vs. 5.7 mm² \pm 1.0) after implantation assessed with OCT. The second generation magnesium-based BRS, MgBRS, had higher flexibility and higher radial force, than the first generation magnesium-based BRS²¹.

Version 4.6 18.6.24

348	Previous studies have investigated the vascular healing after 6 months of the magnesium-based
349	BRS with both IVUS and OCT, but significant lumen decrease continued to occur ^{6, 19, 22, 23} .
350	Assessed with OCT, malapposition, neointimal hyperplasia and strut coverage were near impossible
351	to detect at follow-up, because the strut remnants had lost their metallic stent-like appearance
352	during the absorption process. Interestingly, the BIOSOLVE-II study (BIOtroniks - Safety and
353	performance in de nOvo Lesion of natiVE coronary arteries with Magmaris) reported measurable
354	scaffold observation, such as mean and minimum scaffold area and incomplete strut apposition as
355	visible with IVUS, but not with OCT at 6-month follow-up ²² . The same pattern applied to our
356	findings, where scaffold area detection was not possible with OCT, but analyzable with IVUS at 6-
357	month follow-up. The BIOSOLVE-II trial ²² measured smaller lumen and scaffold areas assessed
358	with IVUS compared to OCT, which was unlike our findings with smaller lumen and scaffold
359	measurements evaluated with OCT compared to IVUS. IVUS is often reported to overestimate
360	lumen area compared to OCT ¹⁷ , which may explain why no difference was found between the two
361	groups when using IVUS in lumen or scaffold measurements.
362	A third generation magnesium-based BRS (DREAMS-3G) has been developed with larger size
363	range, thinner struts (99/117/147 μ m vs. 150 μ m), and increased radial strength ²⁴ compared to the
364	MgBRS used in our study. An absolute reduction in MLA was -2.4 mm^2 (from 7.2 mm^2 to 4.8 mm^2
365	at 6-month follow-up) for the DREAMS-3G, which was comparable to our results in the standard
366	non-compliant balloon group with an absolute reduction of -2.3 mm ² . The scoring balloon group in
367	our study had less absolute reduction of -1.7 mm ² . Even though, we found a significant difference
368	in MLA between the two groups, we still revealed lumen reduction in both groups from baseline to
369	6-month follow-up. Lumen reduction of 25% was considerably larger than the expected 11% lumen
370	reduction anticipated in our power calculation.

Version 4.6 18.6.24

The HONEST trial²⁵ comparing OCT- and angio-guided implantation with the MgBRS in a 371 population with acute coronary syndrome found a significant reduction in MLA observed after 6 372 month in both groups with a relative difference of 33.2 % and 22.8 % in MLA, respectively. The 373 mechanism behind lumen reduction may be due to additional post-dilatation in an attempt to 374 optimize the apposition, resulting in fracture or dismantling of the scaffold hence reducing the 375 radial strength²⁶. Other mechanisms contributing to premature lumen loss after implantation of the 376 MgBRS could be scaffold recoil, neointimal hyperplasia and impact of underlying plaque 377 morphology and vessel remodeling⁵. The pattern of remodeling, with significant correlation 378 between change in lumen area and change in vessel area, but not between change in lumen area and 379 plaque area, indicated vessel reduction and not plaque increase as the overall reason for lumen 380 381 reduction. The pattern of remodeling was similar in the two groups, but the overall magnitude of vessel reduction causing lumen reduction was larger in the standard non-compliant balloon group 382 compared the scoring balloon group. Our results reported significantly more decrease in vessel area 383 in lesions prepared with a standard non-compliant balloon, which was not seen in the lesions pre-384 dilated with the scoring balloon. This indicates that negative remodeling and vessel shrinkage may 385 386 be contributing factors for lumen loss in our study in the standard non-compliant balloon group. In the ABSORB Cohort B trial, dynamics of the vessel wall was investigated with IVUS after 387 implantation the everolimus-eluting bioresorbable ABSORB scaffold. They reported no evidence of 388 389 late recoil, but enlargement of the vessel, lumen and scaffold area up to three years after implantation²⁷. The early resorption of the MgBRS with fast loss of radial force has been suggested 390 as a limiting factor to the device, and must be investigated further⁵. The extent of scaffold recoil is a 391 392 balance between elastic recoil and radial strength and can be affected by the fibrotic plaque in the coronary artery in the treated segment⁵. Optimal pre-dilatation with a more aggressive lesion 393 preparation could result in a better vascular healing and less lumen reduction¹¹. More lipid-rich 394

Version 4.6 18.6.24

plaques have been associated with less lumen loss after implantation of the MgBRS, whereas the 395 constrictive vascular forces and rigidity of fibrotic plaque may facilitate lumen reduction⁵. Patients 396 with acute coronary syndrome tend to have lesions with more lipid-rich plaque and positive 397 remodeling compared to our population of patients with stabile coronary syndrome, which could 398 399 explain more lumen reduction than expected in the current study. Percentage of post-procedure malapposed struts was small in our study in both groups (1.46% for 400 401 scoring balloon group and 4.57% for the standard non-compliant balloon group). As shown in previous trials^{5, 19, 20, 22}, most struts will not be visible after 6 months, due to the fast scaffold 402 absorption. Even though we found up to 43% of the scaffolds with malapposition had follow-up, the 403 percentage of malapposed struts and malapposition volume was low. Significantly less 404 405 malapposition was present in the scoring balloon group compared to the standard non-compliant balloon group, which contributes to the assumption of better vascular healing after lesion 406 preparation with a scoring balloon. To determine if these findings are a part of the natural healing 407 process needs longer follow-up time. 408 Despite reported lumen loss after implantation of the MgBRS in various intravascular imaging 409 studies^{19, 22}, the clinical performance is still deemed safe and efficient in several studies. Registries 410 have reported safety and efficacy with low 1-year TLF rates of 3.3-5.4% and stent thrombosis rates 411 of 0.5%, and TLF of 7.8% and scaffold thrombosis of 0.5% up to 24 months after implantation^{9, 28,} 412 ²⁹. A registry study found no difference in 24-month clinical outcomes between patients with acute 413 vs. stable coronary syndromes who were treated with a MgBRS³⁰. Only few studies have compared 414 the MgBRS to DES, for example the MAGSTEMI trial (MAGnesium-based bioresorbable scaffold 415 in ST-segment Elevation Myocardial Infarction) that showed a significantly higher TLF rate in the 416 MgBRS group after 1 year in a ST-segment elevation myocardial infarction population¹⁰. However, 417 a retrospective cohort reported similar 1-year clinical outcome comparing the MgBRS to a 418

Version 4.6 18.6.24

419	biodegradable polymer DES in a non-ST-segment elevation myocardial infarction cohort ³¹ . More
420	randomized controlled trials with long-term follow-up are needed to fully illuminate the clinical
421	benefits or disadvantages between the new generation BRS and traditional DES.
422	
423	Limitations
424	There are some potential limitations to this study. The study was not powered to correlate clinical
425	endpoints with OCT and IVUS findings. The study was conducted during the COVID-19 pandemic
426	and was furthermore challenged by nurse strike and delivery problems of OCT catheters, why the
427	inclusion period was unexpectedly prolonged. Also, the patient and lesion selections were
428	influenced by limited available scaffold sizes.
429	
430	Conclusion
431	After 6 months, lesion preparation with a scoring balloon, compared to a standard non-compliant
432	balloon, prior to implantation of a MgBRS resulted in larger MLA, no remodeling and less
433	malapposition, whereas negative remodeling was seen in the standard non-compliant balloon group.
434	
435	Sources of funding
436	The study is an investigator-initiated trial, and did not receive any financial support.
437	
438	Declaration of competing Interest
439	KNH, MN, JT, COF, MH, KTV, JEG, AJ, AM, JFL, HSH have no conflict of interests. LOJ has
440	received research grants from Biotronik, OrbusNeich, Biosensors, and Terumo to her institution.
441	

Version 4.6 18.6.24

442 **References**

- Azzi N, Shatila W. Update on coronary artery bioresorbable vascular scaffolds in percutaneous coronary revascularization. *Rev Cardiovasc Med*. 2021;22:137-145
- Serruys PW, Katagiri Y, Sotomi Y, Zeng Y, Chevalier B, van der Schaaf RJ, et al. Arterial
 remodeling after bioresorbable scaffolds and metallic stents. *Journal of the American College of Cardiology*. 2017;70:60-74
- Ali ZA, Serruys PW, Kimura T, Gao R, Ellis SG, Kereiakes DJ, et al. 2-year outcomes with the
 absorb bioresorbable scaffold for treatment of coronary artery disease: A systematic review and
 meta-analysis of seven randomised trials with an individual patient data substudy. *Lancet (London, England)*. 2017;390:760-772
- 4. Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, et al. Evaluation of the
 second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de
 novo coronary artery stenosis: Six-month clinical and imaging outcomes. *Circulation*.
 2010;122:2301-2312
- 456 5. Ueki Y, Räber L, Otsuka T, Rai H, Losdat S, Windecker S, et al. Mechanism of drug-eluting
 457 absorbable metal scaffold restenosis: A serial optical coherence tomography study. *Circulation.*458 *Cardiovascular interventions*. 2020;13:e008657
- 459 6. Haude M, Erbel R, Erne P, Verheye S, Degen H, Böse D, et al. Safety and performance of the drug460 eluting absorbable metal scaffold (dreams) in patients with de-novo coronary lesions: 12 month
 461 results of the prospective, multicentre, first-in-man biosolve-i trial. *Lancet (London, England)*.
 462 2013;381:836-844
- 463 7. Haude M, Ince H, Toelg R, Lemos PA, von Birgelen C, Christiansen EH, et al. Safety and
 464 performance of the second-generation drug-eluting absorbable metal scaffold (dreams 2g) in patients
 465 with de novo coronary lesions: Three-year clinical results and angiographic findings of the biosolve466 ii first-in-man trial. *EuroIntervention : journal of EuroPCR in collaboration with the Working Group*467 *on Interventional Cardiology of the European Society of Cardiology*. 2020;15:e1375-e1382
- 468 8. Haude M, Toelg R, Lemos PA, Christiansen EH, Abizaid A, von Birgelen C, et al. Sustained safety
 469 and performance of a second-generation sirolimus-eluting absorbable metal scaffold: Long-term data
 470 of the biosolve-ii first-in-man trial at 5 years. *Cardiovascular revascularization medicine : including*471 *molecular interventions*. 2022;38:106-110
- Verheye S, Wlodarczak A, Montorsi P, Torzewski J, Bennett J, Haude M, et al. Biosolve-iv-registry:
 Safety and performance of the magmaris scaffold: 12-month outcomes of the first cohort of 1,075
 patients. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions*. 2021;98:E1-e8
- 476 10. Sabaté M, Alfonso F, Cequier A, Romaní S, Bordes P, Serra A, et al. Magnesium-based resorbable
 477 scaffold versus permanent metallic sirolimus-eluting stent in patients with st-segment elevation
 478 myocardial infarction: The magstemi randomized clinical trial. *Circulation*. 2019;140:1904-1916
- Miyotalali infaction: The magsterin fundomized enhanced enhanc
- Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies:
 A report from the international working group for intravascular optical coherence tomography standardization and validation. *Journal of the American College of Cardiology*. 2012;59:1058-1072
- 488 13. Mintz GS, Guagliumi G. Intravascular imaging in coronary artery disease. *Lancet (London, England)*. 2017;390:793-809
- 490 14. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American college of cardiology clinical expert consensus document on standards for acquisition, measurement and
 492 reporting of intravascular ultrasound studies (ivus). A report of the american college of cardiology

Version 4.6 18.6.24

493		task force on clinical expert consensus documents. Journal of the American College of Cardiology.
494 405	15	2001;37:1478-1492
495	15.	Hansen KN, Maehara A, Noori M, Trøan J, Fallesen CO, Hougaard M, et al. Optimal lesion
496		preparation before implantation of a magmaris bioresorbable scaffold in patients with coronary
497		artery stenosis: Rationale, design and methodology of the optimis study. <i>Contemp Clin Trials</i>
498	1.6	<i>Commun.</i> 2024;38:101260
499	16.	Gutiérrez-Chico JL, Cortés C, Schincariol M, Limon U, Yalcinli M, Durán-Cortés MA, et al.
500		Implantation of bioresorbable scaffolds under guidance of optical coherence tomography: Feasibility
501		and pilot clinical results of a systematic protocol. Cardiology journal. 2018;25:443-458
502	17.	Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW. Ivus-guided versus oct-guided
503		coronary stent implantation: A critical appraisal. JACC. Cardiovascular imaging. 2017;10:1487-
504		1503
505	18.	Shlofmitz E, Croce K, Bezerra H, Sheth T, Chehab B, West NEJ, et al. The mld max oct algorithm:
506		An imaging-based workflow for percutaneous coronary intervention. Catheterization and
507		Cardiovascular Interventions. 2022;100:S7-S13
508	19.	Fallesen CO, Antonsen L, Maehara A, Noori M, Hougaard M, Hansen KN, et al. Optical coherence
509		tomography-versus angiography-guided magnesium bioresorbable scaffold implantation in nstemi
510		patients. Cardiovascular revascularization medicine : including molecular interventions.
511		2022;40:101-110
512	20.	Waksman R, Prati F, Bruining N, Haude M, Böse D, Kitabata H, et al. Serial observation of drug-
513		eluting absorbable metal scaffold: Multi-imaging modality assessment. Circulation. Cardiovascular
514		interventions. 2013;6:644-653
515	21.	Waksman R, Zumstein P, Pritsch M, Wittchow E, Haude M, Lapointe-Corriveau C, et al. Second-
516		generation magnesium scaffold magmaris: Device design and preclinical evaluation in a porcine
517		coronary artery model. EuroIntervention : journal of EuroPCR in collaboration with the Working
518		Group on Interventional Cardiology of the European Society of Cardiology. 2017;13:440-449
519	22.	Haude M, Ince H, Abizaid A, Toelg R, Lemos PA, von Birgelen C, et al. Safety and performance of
520	<i>22</i> ,	the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary
520		artery lesions (biosolve-ii): 6 month results of a prospective, multicentre, non-randomised, first-in-
522		man trial. <i>Lancet (London, England)</i> . 2016;387:31-39
523	23.	Tovar Forero MN, van Zandvoort L, Masdjedi K, Diletti R, Wilschut J, de Jaegere PP, et al. Serial
525 524	23.	
		invasive imaging follow-up of the first clinical experience with the magmaris magnesium
525		bioresorbable scaffold. <i>Catheterization and cardiovascular interventions : official journal of the</i>
526	24	Society for Cardiac Angiography & Interventions. 2020;95:226-231
527	24.	Haude M, Wlodarczak A, van der Schaaf RJ, Torzewski J, Ferdinande B, Escaned J, et al. Safety and
528		performance of the third-generation drug-eluting resorbable coronary magnesium scaffold system in
529		the treatment of subjects with de novo coronary artery lesions: 6-month results of the prospective,
530	25	multicenter biomag-i first-in-human study. <i>EClinicalMedicine</i> . 2023;59:101940
531	25.	Fallesen CO, Maehara A, Antonsen L, Nørregaard Hansen K, Noori M, Flensted Lassen J, et al.
532		Coronary artery healing process after bioresorbable scaffold in patients with non-st-segment
533		elevation myocardial infarction: Rationale, design, and methodology of the honest study.
534		Cardiology. 2021:1-11
535	26.	Barkholt T, Webber B, Holm NR, Ormiston JA. Mechanical properties of the drug-eluting
536		bioresorbable magnesium scaffold compared with polymeric scaffolds and a permanent metallic
537		drug-eluting stent. Catheterization and cardiovascular interventions : official journal of the Society
538		for Cardiac Angiography & Interventions. 2020;96:E674-e682
539	27.	Serruys PW, Onuma Y, Garcia-Garcia HM, Muramatsu T, van Geuns RJ, de Bruyne B, et al.
540		Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting
541		bioresorbable vascular scaffold: A multi-imaging modality study at 6, 12, 24 and 36 months.
542		EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional
543		Cardiology of the European Society of Cardiology. 2014;9:1271-1284
544	28.	Galli S, Troiano S, Palloshi A, Rapetto C, Pisano F, Aprigliano G, et al. Sustained safety and
545		efficacy of magnesium reabsorbable scaffold: 2-year follow-up analysis from first magmaris

Version 4.6 18.6.24

546		multicenter italian registry. Cardiovascular revascularization medicine : including molecular
547		interventions. 2022;41:69-75
548	29.	Haude M, Ince H, Kische S, Abizaid A, Tölg R, Alves Lemos P, et al. Safety and clinical

- Haude M, Ince H, Kische S, Abizaid A, Tolg R, Alves Lemos P, et al. Safety and clinical
 performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo
 lesions in native coronary arteries: Pooled 12-month outcomes of biosolve-ii and biosolve-iii. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac*
- 552 Angiography & Interventions. 2018;92:E502-e511
- 30. Galli S, Troiano S, Palloshi A, Rapetto C, Pisano F, Aprigliano G, et al. Comparison of acute versus
 stable coronary syndrome in patients treated with the magmaris scaffold: Two-year results from the
 magmaris multicenter italian registry. *Cardiovascular revascularization medicine : including molecular interventions*. 2023;57:53-59
- Sola P, Włodarczak A, Włodarczak S, Barycki M, Szudrowicz M, Łanocha M, et al. Magnesium
 bioresorbable scaffold (brs) magmaris vs biodegradable polymer des ultimaster in nste-acs
 population-12-month clinical outcome. *Journal of interventional cardiology*. 2022;2022:5223317

N = 41		
	N = 41	
64.9 ± 9.0	64.8 ± 7.9	
27 (65.9)	28 (68.3)	
19 (46.3)	17 (41.5)	
6 (14.6)	6 (14.6)	
21 (51.2)	11 (26.8)	
17 (41.5)	25 (61.0)	
11 (26.8)	13 (31.7)	
4 (9.8)	8 (19.5)	
27.9 ± 9.7	27.9 ± 3.7	
79.7 ± 12.5	82.1 ± 11.6	
9 (22.0)	4 (9.8)	
11 (26.8)	6 (14.6)	
0 (0.0)	0 (0.0)	
	$\begin{array}{c} 27 \ (65.9) \\ 19 \ (46.3) \\ \hline \\ 6 \ (14.6) \\ 21 \ (51.2) \\ 17 \ (41.5) \\ 11 \ (26.8) \\ 4 \ (9.8) \\ 27.9 \pm 9.7 \\ \hline \\ 79.7 \pm 12.5 \\ 9 \ (22.0) \\ 11 \ (26.8) \end{array}$	

deviation.

561

	Scoring balloon	Standard balloc	
	N = 41	N = 41	
Target coronary artery, n (%)			
Left anterior descending	23 (56.1)	24 (58.5)	
Left circumflex	6 (14.6)	8 (19.5)	
Right coronary artery	12 (29.3)	9 (22.0)	
Lesion length, mm	23.9 ± 10.5	22.5 ± 5.4	
Reference vessel diameter, mm	3.4 ± 0.3	3.4 ± 0.3	
Pre-dilatation, n (%)	41 (100)	41 (100)	
Balloon diameter at pre-dilatation, mm	3.3 ± 0.3	3.3 ± 0.3	
Balloon length at pre-dilatation, mm	13.1 ± 2.5*	15.5 ± 3.3	
Max balloon pressure at pre-dilatation, atm	13.1 ± 2.8	14.0 ± 2.7	
Number of scaffolds per lesion, mm	1.1 ± 0.3	1.1 ± 0.2	
Scaffold length, mm	19.4 ± 4.1	21.0 ± 3.9	
Scaffold diameter, mm	3.3 ± 0.2	3.3 ± 0.3	
Maximum balloon pressure, atm	11.9 ± 2.2	12.0 ± 2.4	
Expected scaffold diameter, mm	3.4 ± 0.3	3.4 ± 0.3	
Post-dilatation, n (%)	38 (93)	41 (100)	
Balloon diameter at post-dilatation, mm	3.7 ± 0.3	3.7 ± 0.4	
Balloon length at post-dilatation, mm	14.5 ± 3.6	15.7 ± 3.3	
Max balloon pressure at post-dilatation, atm	13.0 ± 2.6	12.8 ± 2.4	
Flouro time, minutes	12.3 ± 5.3	11.8 ± 5.2	

Contrast volume, ml	108.0 ± 42.9	102.6 ± 43.8			
Procedure time, minutes	49.9 ± 17.7	47.9 ± 18.4			
* significantly shorter balloon length at pre-dilatation in the scoring balloon group (p-value <					
0.001)					

	Baseline			6-month follow-up		
	Scoring balloon	Standard balloon	p-value	Scoring balloon	Standard balloon	p-value
OCT finding						
Number of patients	40	38		39	35	
Time to 6-month follow-up, days				185 [182 ; 234]	184 [182 ; 192]	0.29
Lumen measurement						
Minimal lumen area, mm ²	6.42 ± 1.55	6.27 ± 1.48	0.65	4.71 ± 1.35	3.91 ± 1.86	0.04
Difference in minimal lumen area (6 months - baseline), mm ²				-1.70 ± 1.49	-2.30 ± 1.42	0.08
Relative change in minimal lumen area (6 months - baseline), %				-24.8 ± 20.4	-38.3 ± 22.7	0.009
Mean lumen area, mm ²	8.01 ± 1.62	7.66 ± 2.12	0.41	7.21 ± 1.41	6.79 ± 2.21	0.35
Total lumen volume, mm ³	167.31 ± 50.82	169.47 ± 54.70	0.86	151.50 ± 53.94	139.93 ± 52.95	0.36
Difference in total lumen volume (6 months - baseline), mm ³				-16.99 ± 21.35	-25.35 ± 28.45	0.16
Relative change in total lumen volume (6 months - baseline), %				-10.5 ± 11.7	-15.0 ± 16.8	0.20

Version 4.6 18.6.24

Scaffold measurement						
Total number of analyzable struts	199.9 ± 70.5	210.7 ± 60.0	0.46	70.8 ± 35.1	85.1 ± 32.1	0.07
Mean no. of struts per cross	9.11 ± 0.71	9.11 ± 0.82	1.00	3.1 ± 1.3	3.9 ± 1.7	0.03
section						
Scaffold length, mm	20.8 [16.5 ; 24.1]	22.2 [19.2 ; 24.8]	0.51	20.4 [17.2 ; 24.0]	21.0 [17.2 ; 25.2]	0.69
Minimal scaffold area, mm ²	6.40 ± 1.50	6.09 ± 1.51	0.36			
Mean scaffold area, mm ²	7.77 ± 1.49	7.45 ± 1.69	0.37			
Total scaffold volume, mm ³	161.81 ± 45.93	160.88 ± 52.44	0.93			
Scaffold malapposition						
Scaffold malapposition, n (%)	20 (50.0)	21 (55.3)	0.64	6 (15.4)	15 (42.9)	0.009
Total malapposition volume, mm ³	0.38 [0.15 ; 0.95]	1.07 [0.48 ; 2.27]	0.09	0.0 [0.0 ; 0.0]	0.21 [0.0 ; 0.59]	0.009
Mean malapposition distance, mm	0.23 [0.21 ; 0.28]	0.30 [0.25 ; 0.34]	0.003	0.0 [0.0 ; 0.0]	0.18 [0.0 ; 0.4]	0.004
Percentage of malapposed struts, %	1.5 [0.6 ; 3.0]	4.57 [1.7 ; 5.8]	0.02	0.0 [0.0 ; 0.0]	1.6 [0.0 ; 3.5]	0.004
Types of incomplete stent apposition						
Resolved, n (%)				17 (48.6)	11 (31.4)	0.28
Persistent, n (%)				2 (5.0)	7 (20.0)	0.05
Late acquired, n (%)				4 (10.3)	8 (22.9)	0.14

Version 4.6 18.6.24

Intravascular ultrasound						
Number of patients	40	38		39	34	
Time to 6-month follow-up, days				183 [153 ; 290]	183.5 [134 ;	0.66
					225]	
Vessel measurements						
EEM area at MLA site, mm ²	14.73 ± 3.39	16.19 ± 4.87	0.13	13.53 ± 3.50	13.70 ± 4.69	0.86
Mean EEM area, mm ²	16.70 ± 2.87	16.96 ± 4.22	0.75	16.24 ± 3.23	15.59 ± 4.66	0.50
Total EEM volume, mm ³	361.61 ± 97.49	383.88 ± 130.23	0.40	353.91 ± 120.67	336.85 ± 110.95	0.53

Table 4: Remodeling of lesion segment pre-procedure and corresponding segment post-

procedure and at 6-month follow-up assessed with IVUS

	Scoring	Standard	p-value
	N = 39	N = 34	
Mean lumen (mm ²)			
Pre-procedure	5.3 ± 1.4	4.8 ± 1.5	0.13
Post-procedure	8.5 ± 1.4	8.2 ± 1.7	0.31
6-month follow-up	8.1 ± 1.8	7.4 ± 2.6	0.19
Change (6 months – baseline)	-0.4 ± 1.5	-0.8 ± 1.6	0.41
p-value (baseline vs. 6 months)*	0.08	0.009	
Mean EEM area (mm ²)			
Pre-procedure	13.3 ± 3.1	13.4 ± 4.8	0.88
Post-procedure	16.8 ± 2.9	17.1 ± 4.4	0.74
6-month follow-up	17.0 ± 3.6	15.7 ± 4.9	0.20
Change (6 months – baseline)	0.2 ± 2.0	-1.4 ± 2.0	0.001
p-value (baseline vs. 6 months)*	0.62	< 0.001	
Mean plaque area (mm ²)			
Pre-procedure	7.9 ± 2.5	8.6 ± 3.9	0.39
Post-procedure	8.3 ± 2.0	8.9 ± 3.5	0.31
6-month follow-up	8.9 ± 2.4	8.3 ± 3.0	0.36
Change (6 months – baseline)	0.6 ± 1.3	-0.7 ± 1.9	0.002
p-value (baseline vs. 6 months)*	0.007	0.06	
Mean scaffold area (mm ²)			

Version 4.6 18.6.24

Post-procedure	9.5 ± 1.7	9.1 ± 1.9	0.26
6-month follow-up	10.1 ± 2.1	8.9 ± 2.8	0.04
Change (6 months – baseline)	0.6 ± 1.9	-0.2 ± 1.8	0.10
p-value (baseline vs. 6 months)*	0.07	0.58	

565 Figures and legends

566 Figure 1: Flow chart

568 Figure 2: Intravascular images of lumen reduction after implantation of Magmaris bioresorbable scaffold.

570 The upper panel shows OCT images of minimal lumen area from baseline and the corresponding site at follow-up. The lower panel shows 571 the matching site acquired with IVUS. Images A and B represent the vascular healing after lesion preparation with a scoring balloon prior 572 to MgBRS implantation. Lumen area at baseline was 7.3 mm² measured with OCT and 7.5 mm² with IVUS. Vessel area was 12.7 mm² at

Version 4.6 18.6.24

- baseline (A). At 6-month follow-up, lumen area was 8.8 mm² with OCT and 8.8 mm² with IVUS. Vessel area was 16.0 mm² (B). Images C
- and D represent the vascular healing after implantation of a MgBRS in a lesion pre-dilated with a standard non-compliant balloon. Lumen
- area at baseline was 8.8 mm^2 with OCT and 8.8 mm^2 with IVUS. Vessel area was 16.0 mm^2 (C). After 6 months, the matching site was
- reduced to 5.1 mm^2 measured with OCT, and 5.6 mm^2 with IVUS. Vessel area was 13.8 mm^2 (D). Abbreviations: IVUS = Intravascular
- 577 ultrasound; MgBRS = Magmaris bioresorbable scaffold; OCT = Optical coherence tomography.

579 Figure 3: Optical coherence tomography images of malapposition types

Version 4.6 18.6.24

Figure 4: Pattern of remodeling at the lesion site

A. Correlation between relative change in lumen area (%) and relative change in vessel area (%) at the lesion site. B. Correlation between relative change in lumen area (%) and relative change in plaque area at the lesion site

