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Supplementary Methods

Study cohort

Eligibility criteria and enrolment

The KINDRED includes IBD patients and their first- or second-degree relatives, with a
minimum age of 7 years, from all over Germany. Families are deemed eligible if at least one
IBD patient and one relative agree to participate. In a few exceptional cases, singleton IBD
patients are also included provided that future participation of family members is likely. Most
IBD patients are informed and invited into the study by their treating physicians or by IBD
patient organizations in Germany, such as the German Crohn’s disease / ulcerative colitis
association (DCCV e.V.). The study is also advertised and promoted through a website
(https://www.epi.uni-kiel.de/forschung/ced-studien/familienstudie).

Recruitment into the KINDRED follows a standardized protocol (Suppl. Fig. 1). If patients
declare their interest in participating, they are sent a study set and a family documentation
sheet. Due to data protection concerns, the study center is not allowed to contact healthy
relatives directly without their prior expression of interest in participating. Therefore, every
IBD patient is asked to relay details about the study to their family members and to inform the
study center through the family sheet about potentially interested candidates. The latter are
then formally invited into the study and receive a study set. The study set contains detailed
information about the study, an informed consent form, a comprehensive participant
questionnaire, and biomaterial tubes for blood, stool, and hair samples. IBD-affected study
participants receive an additional questionnaire to be completed by their treating physician. If
study sets are not returned within reasonable time, up to three reminders are sent in five-week

intervals.

Follow-up



Study participants are re-contacted approximately every two years (Suppl. Fig. 2) and asked
to fill in a questionnaire with health-related information and to provide new biomaterial
samples (blood, stool, hair) at each study follow-up. IBD patients additionally receive a new
physician questionnaire. At each follow-up, healthy study participants are asked whether they
have been diagnosed with IBD in the meantime. Notably, in general, all initially non-affected
participating family members are encouraged to contact the study center immediately after
being newly diagnosed with IBD during the course of the study. In this case, the newly
diagnosed IBD patient immediately receives a study set, including biomaterial collection
tubes and participant and physician questionnaires so as to facilitate the collection of data
from very early stages of the disease course (Suppl. Fig. 3).

The first follow-up (2-year follow-up) of the study participants that were recruited in 2013
started in 2015, the second follow-up (4-year follow-up) for this group in 2017, the third
follow-up in 2019 (6-year follow-up), and the fourth follow-up of the participants recruited in
2013 started in 2021 (8-year follow-up; 5™ data assessment). For participants that were
recruited after 2013, the respective follow-up assessments are conducted after the appropriate

time intervals.

Data and biomaterial collection

The KINDRED study prospectively collects biomaterial (blood, stool, hair) as well as
comprehensive sociodemographic, socioeconomic, clinical, and lifestyle data from participant
questionnaires (adapted to the individual status as IBD patient, healthy relative, and
participating child/adolescent; please see below), plus data from physician questionnaires in
the case of IBD patients. The study aims to collect complete questionnaire data and
biomaterial from each participant but, if a participant refuses to provide some of the data or

biomaterial, their incomplete contribution is also accepted.



Questionnaires

Separate questionnaires have been developed for healthy family members and IBD patients
(for details, see Suppl. Table 1). Both questionnaires have a common backbone of questions
related to sociodemographic and socioeconomic characteristics, general health status, lifestyle
factors, and quality of life [1,2] (Suppl. Table 1). The wording is slightly modified for
children and adolescents. In addition, a validated and standardized web-based food frequency
questionnaire (FFQ) [3] and a set of physical activity questions [4] are administered to assess

the study participants’ diet and their usual physical activities during the preceding 12 months.

The questionnaire for IBD patients also includes questions about their IBD (Suppl. Table 1),
thereby complementing the physician questionnaire that patients are asked to have filled out
by their treating physician during the next visit. The physician questionnaire (Suppl. Table 1)
enquires detailed disease-related information and includes established and validated questions
and scores, such as the Harvey-Bradshaw-Index (HBI), the Mayo Score, and the Crohn’s
Disease Activity Index (CDAI). All self-reported IBD diagnoses were validated against the

physician questionnaires or other medical records.

Collection, work-up, and storage of biomaterial

At the initial (baseline) assessment, blood, stool, and hair samples are collected from all
participants (Suppl. Table 2), including approximately 35 ml blood from adult participants
and adolescents (12 to 18 years) and 15 ml from children between 7 and 11 years of age.
Study participants also receive sets for the self-collection of stool and hair, accompanied by
written instructions on how to collect the sample. Upon receipt at the study center, the
biomaterial samples are pseudonymized and stored in the local popgen biobank at Kiel

University (Suppl. Table 2).



Data management, and privacy protection

All clinical data are pseudonymized and stored separately from the identifying data in a
central study database at the Institute of Epidemiology and the popgen biobank at Kiel
University. The data management and the privacy protection concept of popgen has been
reviewed and approved by the independent data protection authorities of Schleswig-Holstein

(ULD) and the ethics committee of the Medical Faculty of Kiel University.

In this work, we focused on keeping our study data in accordance with the FAIR principles
[5]. That means that data must be findable, accessible, interoperable and reusable. Also, as we
used data that contains a fingerprint of the donor, data protection is of utmost importance. For
this purpose, we established andata management tool called iRods (Rule-Oriented Data
management systems) for internal use {iRODS Consortium. https://irods.org}. Each user has
to log in to the system with an account via API and has access only to content intended for
them. Data is shared between the users via subproject groups to only individuals who are in
the authorized group. Users outside this group have no access to the data stored there. This
guarantees secure use of sensitive data. In addition, the rights system allows a distinction to be
made as to whether a user only has viewing rights or can modify the data. The system allows
metadata to be stored for the project as json-files. This not only allows the metadata to be
closely located to the research data, but also to be searchable directly within the system.
Likewise, it also allows the data to be reused at a later date. The metadata input mask was
created for this purpose in compliance with the STORMS checklist intended for microbiome

studies [6].



Supplemental Results:
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Figure S1: Process of study participant enrolment. Abbreviations: IBD, inflammatory bowel

disease; IC, informed consent.
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Figure S2: Current number of study participants (IBD patients and healthy family members)
by assessment phase in the prospective Kiel IBD Family Cohort. Abbreviations: IBD,

inflammatory bowel disease.
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Figure S3: Procedure following the report of a new IBD onset case during study follow-up.
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Figure S4: Scatterplots show the association of immune / physiological parameters (anti

ASCA-IgA/IgG, anti GP2-IgA/IgG, relative calprotectin levels, CRP, Hb, Bristol stool score)

with the main anthropometric variables (IBD condition, gender, BMI, age). Plots display the

modelling results after model selection minimizing AIC. Model statistics are in Table 2. The

polygons highlight the 95% CI.
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Figure S5: Scatterplots show the association of immune / physiological parameters (anti

ASCA-IgA/IgG, relative calprotectin levels, Bristol stool score) with the LDpred2 based

polygenic risk scores for UC and IBD using LMs correcting for relevant covariates (age,

BMI, gender), as well as Spearman rank correllation results. Grey polygons highlight the 95%
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Figure S6: (A) Analysis of disease onset prediction via logistic regression of PRS, based on
different slices of data, all baseline samples (Nonse=4, Ncp=551, Nuc=438, Nusp=32,
Neontr =787), baseline controls with 4 onset samples (Nonse=4, Neonr=787), all baseline samples
with onset cases of later time points (Nonse=7, Nep=551, Nuc=438, Nupp=32, Neonr=787) as
well as baseline controls with the supplemental onset cases (Nonse=7, Neontr:=787). We used
used models accounting for or ignoring potential covariates (age, BMI, sex). Depicted are
predicted probabilities of the individual models for each PRS and colored disease and line
type differ by model type (w/o covariates). Weak but significant predictions are most
consistently possible for IBD genetic predisposition, and to a lesser amount for UC PRS. (B)
Correlation of PRS with the microbial dysbiosis index (MD-index, Gevers et al. 2014) show
signifcant positive relationships between microbial dysbiosis and genetic predisposition for
CD and IBD, (C) while GMHI shows no significant association to genetic predisposition to
IBD. PRS are based on LDpred? prediction [7]. (D) Genetic predisposition for either CD UC
or IBD in general shows significant correlation to taxonomic community distance, (E) while

functional community distance is only weakly correlated to CD-PRS.
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Figure S7: (A) Differences of LDpred? [7] based polygenic risk scores for CD, UC or general
IBD affected individuals (CD/UC/IBD) and their healthy first degree relatives, distant
relatives, unrelated controls, or all available healthy controls. All pairwise comparisons were
made via Wilcoxon rank test and corrected for multiple testing via FDR. Affected individuals
have on average a higher PRS than even their healthy family members, hinting towards a
larger accumulation of risk variants in these individuals even in comparison to closely related
family members. Further more, CD-PRS and UC-PRS are specific to the respective patient

population, while the combined IBD-PRS is more general.
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Figure S9: Differential abundance analyses of ASVs based on the first follow-up time point (F1, Table S9). Displayed are the log fold changes for
each ASV clustered by genus classification, including standard errors of the fold changes as indicated by individual doted lines. Color bars indicate the

phylum membership. DA only displays signifcant differential abundance for the respective comparison/contrast (Prpr < 0.05).
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Figure S10: Differential abundance analyses of ASVs based on the second follow-up time point (F2, Table S10). Displayed are the log fold changes
for each ASV clustered by genus classification, including standard errors of the fold changes as indicated by individual doted lines. Color bars indicate

the phylum membership. DA only displays signifcant differential abundance for the respective comparison/contrast (Prpr < 0.05).
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(# Prpr<0.1000, * Prp<0.0500, ** Prpg<0.0100, *** Prpe<0.0010). Overlapping, significant patterns of differential abundance for the respective taxa

in the KINDRED cohort, Maltese- and Swedish SIC cohort are indicated in the bottom color bars (see Table S12).
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Figure S12: Alpha diversity analyses focussing on differences of onset cases, CD patients,

UC patients, and ulBD patients to healthy control individuals, based on species richness

(Chaol), general complexity (Shannon H), and relative phylogenetic relatedness at high

phylogenetic levels (NTI) or across the complete phylogenetic tree (NRI). Differences were
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assessed via pairwise Wilcoxon tests. Correlation of dysbiosis indices MD and GMHI [8,9]
with the different alpha diversity measures in the three available time points (Chaol: BL
(poly): F21500=226.97, P<2.2x10", adj.R*=0.1997; F1 (poly): F,cs=83.778, P<2.2x10",
adj.R?=0.2037; F2 (poly): F156=55.745, P<2.2x10"°, adj.R*=0.1691; Shannon:BL (poly):
F21500=243.43, P<2.2x107", adj.R*=0.2112; F1 (poly): Foaus=101.80, P<2.2x107,
adj.R*=0.2376; F2 (poly): F»s:=89.468, P<2.2x107°, adj.R*=0.2475; NRI: BL (poly):
F21500=28.311, P=7.823x10"", adj.R’=0.02928; F1 (lin.): F,s=38.058, P=1.212x107,
adj.R?=0.05417; F2 (poly): F1s5:c=16.126, P=1.581x10", adj.R>=0.05324; NRI: BL (poly):
F21500=96.927, P<2.2x107", adj.R*=0.09579; F1 (lin.): Fr0s=93.097, P<2.2x107,
adj.R?=0.1246; F2 (poly): F25c=31.103, P=1.66x10", adj.R*=0.1006; linear models) [10-12].
Grey polygons highlight the 95% CI and “** highlight the still healthy, future onset patients.

Poly indicates a second order polynomial fit, instead of a linear model fit. See Table S13.
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Figure S13: (A) Non-metric Multidimensional Scaling (NMDS) of Bray-Curtis distances

among baseline samples, (B) follow-up 1, and (C) follow-up 2, displaying the significant

clustering by health conditions and significant correlations of clinical inflammation measures
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with community distance (see Table S16, Table S17, Table S23). (D) NMDS displaying the
gradient of community dysbiosis as expressed by MD-index [8], across the three time points,
in parallel with significantly correlated clinical measures of inflammation and healthy onset
cases highlighted in red (*, develop IBD until the next follow-up). (G, H, I) Nutrition
(approximated normalized nutrient uptake) was also significantly correlated with community
distances. Arrow colors represent different nutrient groups (AA-aminoacids, FA-fatty acids,
carbon-carbohydrates, minerals-trace elements, vitamins, makro nutrients-larger nutrient
clusters (i.e. proteins, fats, water)). (J, K, L) Correlation of MD-index and the first NMDS
axis showing a clear gradient of dysbiosis in the community (Spearman rank correlation).
Onset cases are distributed in the range of standard deviation around the mean of the

community distribution (NMDS1) and the severity of dysbiosis (MD-index).
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Figure S14: (A) Non-metric Multidimensional Scaling (NMDS) of Bray-Curtis distances
among baseline samples, (B) follow-up 1, and (C) follow-up 2, displaying the significant
gradient of community dysbiosis as expressed by GMHI [9], across the three time points, in

parallel with significantly correlated clinical measures of inflammation and healthy onset
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cases highlighted in red (*, will develop IBD until the next follow-up, see Table S16, Table
S17, Table S23). (D, E, F) Correlation of MD-index and the first NMDS axis showing a clear
gradient of dysbiosis in the community (Spearman rank correlation). Onset cases are
distributed in the range of standard deviation around the mean of the community distribution
(NMDS1) and the severity of dysbiosis (GMHI). (G) Principle coordinate analysis of german
swedish and maltese samples, highlighting the transferrability of GMHI across cohorts
(derived from german samples). (H) Community variability between health/IBD conditions
within and between the german, swedish and maltese cohorts showing a common theme of
increased variability in IBD cases compared to healthy controls, as based on Jaccard distance.
(I) Mean differences of GMHI between healthy individuals and diseased groups within
different IBD cohorts. The strongest and most consistent differences occur between healthy
and CD individuals observable accross cohorts (Wilcoxon test). (J) Partial correlation of MD-
index and GMHI with approximated and scaled nutrient intake via ppcor (Kim 2015),
combining the P values of Spearman, Kendall and Pearson correlations via Brown’s method
and corrected via FDR (Brown 1975). Correlations were adjusted for age, gender, and BMI

(# Prpr<0.1000, * Prpr<0.0500, ** Prpr<0.0100, *** Prp<0.0010).
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Figure S15: Violinplots visualize differences in community variability between the main

health conditions (Table S20), as expressed by the within group distance to the centroid in

NMDS of taxon and function based Bray-Curtis distances. (via betadisper function). Global

P-values were derived via permutation test of multivariate homogeneity of group dispersions

(10000 permutations). Overall, we can see a significant increas of community variability in

CD and UC patients compared to healthy controls.
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Figure S17: (A) Non-metric Multidimensional Scaling (NMDS) of Bray-Curtis distances of

PICRUSt2 based KO abundances among baseline samples [13], (B) follow-up 1, and (C)
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follow-up 2, displaying the significant clustering by health conditions and significant
correlations of clinical inflammation measures with community distance (see Table S16,
Table S17, Table S23)). (D, E, F) NMDS displaying the gradient of community dysbiosis as
expressed by the taxonomy based MD-index [8], across the three time points, in parallel with
significant clinical measures of inflammation correlated to the functional differences among
communities. Healthy IBD onset cases are highlighted in red (*, develop IBD until the next
follow-up). (G, H, I) Nutrition (approximated normalized nutrient uptake) was also
significantly correlated with functional community distances. Arrow colors represent different
nutrient groups (AA-aminoacids, FA-fatty acids, carbon-carbohydrates, minerals-trace
elements, vitamins, makro nutrients-larger nutrient clusters (i.e. proteins, fats, water)). (J, K,
L) Correlation of MD-index and the first and second NMDS axes show a clear gradient of
dysbiosis in the community (Spearman rank correlation). Onset cases are distributed in the
range of standard deviation around the mean of the community distribution (NMDSI,
NMDS2) and the severity of dysbiosis (MD-index).(M) Visualization of the explained
variation of significant anthropometric variables as based on serial PERMANOVA of Bray-
Curtis distances in all three time points available and focused on physiological measures,
different reported pathologies of individuals, use of pharmaceuticals, and nutrient intake as
derived from FFQ data. Variables are displayed if they show significant clustering in at least

one time point (# Prpr<0.1000, * Prpz<0.0500, ** Prpr<0.0100, *** Prpe<0.0010).
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conditions/pathologies between community clusters and the distribution of future IBD onset

patients (“*”).
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Figure S19: Significant functional enrichments in the Maltese, treatment naive IBD cohort, based on signficantly differential abundant Kos between

single health conditions. Repeatedly detected metabolic pathways are highlighted in bold. Differential abundance was tested via DESeg2 and the

enrichment score was derived from -log10(P-values)xdirection of fold change.
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Figure S20: Significant functional enrichments in the Maltese IBD cohort in disease remission, based on signficantly differential abundant Kos

between single health conditions. Repeatedly detected metabolic pathways are highlighted in bold. Differential abundance was tested via DESeq2 and

the enrichment score was derived from -log10(P-values)xdirection of fold change.
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Figure S22: Significant functional enrichments in the treatment naive, Maltese IBD cohort, Maltese remission cohort, and treatment naive Swedish

cohort, based on signficantly differential abundant Kos between healthy controls (+SC) and IBD conditions. Enrichments of repeated metabolic



pathways are highlighted in bold. Differential abundance was tested via DESeq2? and the enrichment score was derived from -loglO(P-

values)xdirection of fold change.
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Figure S23: Network importance/centrality measures derived at the baseline time point and
highlighting differential abundance associations at each node as derived from DESeq?.
Centralities range from the number of connections (degree), the position on the shortest paths
within the network (betweeness, [14]), generalized importance (PageRank index [15]) and the
average neighborhood degree of any given vertex (k-nearest neighbor degree [16]). Colored
boxes highlight significant associations in KIN and external cohorts with IBD pathologies or

IBD onset. Significance of centralities is derived from Z-test against a large collection of
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randomized centralities of the network and ASV names in red highlight significantly higher

than random network importance (FDR corrected, Table S25).
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Figure S24: Network importance measures derived at the first follow-up time point and
highlighting differential abundance associations at each node as derived from DESeq2.

Centralities range from the number of connections (degree), the position on the shortest paths

39



within the network (betweeness, [14]), generalized importance (PageRank index [15]) and the
average neighborhood degree of any given vertex (k-nearest neighbor degree [16]). Colored
boxes highlight significant associations in KIN and external cohorts with IBD pathologies or
IBD onset. Significance of centralities is derived from Z-test against a large collection of
randomized centralities of the network and ASV names in red highlight significantly higher

than random network importance (FDR corrected Table S25).
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Figure S25: Network importance measures derived at the second follow-up time point and
highlighting differential abundance associations at each node as derived from DESeq2.
Centralities range from the number of connections (degree), the position on the shortest paths
within the network (betweeness, [14]), generalized importance (PageRank index [15]) and the
average neighborhood degree of any given vertex (k-nearest neighbor degree [16]). Colored
boxes highlight significant associations in KIN and external cohorts with IBD pathologies or

IBD onset. Significance of centralities is derived from Z-test against a large collection of
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randomized centralities of the network and ASV names in red highlight significantly higher

than random network importance (FDR corrected Table S25).
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Figure S26: Spiec-Easi networks of baseline samples, follow-up 1, and follow-up 2. Bacterial
nodes highlight significant differentially abundant ASVs in the network. (A) Bacteria not

showing any differential abundance patterns between CD patients and healthy controls are
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signified via (@), bacteria overabundant in CD via (m) and bacteria more abudnant in controls
are signified via (P ). (B) Bacteria not showing any differential abundance patterns between
UC patients and healthy controls are signified via (®), bacteria overabundant in UC via (%)
and bacteria more abudnant in controls are signified via (P ). (C) Bacterial nodes highlight
significant differentially abundant ASVs in the network. Bacteria not showing any differential
abundance patterns between UC patients and healthy controls are signified via (e), bacteria
overabundant in UC via (%) and bacteria more abudnant in CD are signified via (m). (D)
Bacterial nodes highlight significant differentially abundant ASVs in the network. Bacteria
not showing any differential abundance patterns between UC patients and healthy controls are
signified via (e®), bacteria overabundant in healthy controls via () and bacteria more

abudnant in IBD (CD+UC) are signified via (m).
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Figure S27: (A) Network similarity of disease and time point specific sub networks, as well

as subnetworks of external cohorts (Malta, Sweden) based on graphlet distance (Yaveroglu et
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al. 2014) and relative edge sharing distance, displayed via NMDS. Networks show a clear
compositional difference between healthy and diseased networks as based on graphlet
distance (Control vs. IBD (incl. IBD networks): F)s=2.4144, P=0.0412, R’=0.1183,
adj. R’=0.0693; PERMANOVA) and relative edge sharing distance (KINDRED only- Control
vs. IBD: F\;=1.0775, P=0.0621, R’=0.1334, adj. R’=0.0096; all cohorts (Contr., CD, UC)-
Control vs. IBD: F}1,=1.1096, P=0.0935, R’=0.0846, adj. R’=0.0084; all cohorts (Contr., CD,
UC, IBD)- Control vs. IBD (incl. general IBD networks): Fy5=1.1201, P=0.0853, R’=0.0586,
adj. R°=0.0063; PERMANOVA). (B) Global network characteristics derived from
KINDRED, Malta IBD-naive, Malta IBD-remission, and Sweden-SIC cohorts. Significance is
based on Wilcoxon tests between healthy control based networks and networks derived from
diseased individuals (CD, UC, IBD). Assortativity [17], diameter, radius, and size [18],
density [19], natural connectivity [20]. Full time point specific (KINDRED BL, KINDRED
F1, KINDRED F2) and cohort specific (Malta IBD-naive incl. controls, Malta IBD-remission

incl. controls, Sweden-SIC cohorts)
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Figure S28: (A) Heritability estimates derived from the likelihood based method /me4qtl [21]

using either only kinship information with or without additional environmental and
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anthropometric covariates. The upper 25% percentile of taxa are highlighted (based on A’
estimate including environmental covariate). Additional information like differential
abundance in IBD accross cohorts, as well as their association to IBD onset or remission are
depicted (Table S27). (B) Comparison of community distance and topography (Bray-Curtis
distance ASV) with kinship distances and IBS genetic distance based on Procrustes
superimposition [22]ckson, 2001). Divergence between community distance and relatedness
based on procrustes residuals, shows a higher divergence in IBD cases, and thus a stronger
divergence from the inheritance and transmission patterns of the microbiome (pairwise

Wilcoxon tests).
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Figure S29: Subnetwork at baseline based on Cand. Saccharibacteria and its 1* and 2™ order
naighbourhood, including other oral taxa such as Veillonella, Granulicitella, Klebsiella,

Rothia, Fusobacteria, or Streptococcus, and their significant differential abundance patterns

(Table S8).
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Supplemental tables:

Table S1: Overview of items included in the different questionnaires of the Kiel IBD Family
Cohort BL=baseline assessment; Fl=since first follow-up assessment; F2=since second
follow-up assessment.
Abbreviations: CDAI, Crohn’s Disease Activity Index; FSS, Fatigue Severity Scale; HBI,

Harvey-Bradshaw-Index; IBD, inflammatory bowel disease.)

Table S2: Overview of biomaterial sample collection, processing, and storage time between

processing and storage.

Table S3: Distribution of IBD types within the IBD patients (n=1321) of the Kiel IBD Family
Cohort. Abbreviations: CD, Crohn’s disease; IBD, inflammatory bowel disease; UC,

Ulcerative colitis; ulBD, undefined inflammatory bowel disease.

Table S4: Baseline characteristics of unaffected (healthy) relatives of IBD patients (n=1072)
in the Kiel IBD Family Cohort, stratified by age group. Values are median (IQR) or absolute

and relative frequencies. Abbreviations: IBD, inflammatory bowel disease.

Table S5: Linear model analyses of clinical inflammation markers with respect to LDpred?
Polygenic Risk Scores (CD, UC and general IBD), IBD pathology, and other covariates.

Analyses were performed on baseline samples (BL).

Table S6: Analysis of disease onset prediction via logistic regression of PRS estimates, using

models accounting or not accounting for covariates (age, BMI, sex).

Table S7: Analyses of differential phylum abundance (RPD16 based) via negative binomial
models (DESeq2, Wald test), between control individuals, CD and UC patients (excluding
ulBD) and between control individuals, IBD patients (CD, UC, ulBD patients). Models were
adjusted by scaled age, scaled BMI and sex as covariates. The three sampling time points

were analysed separately and all P values were adjusted via FDR.
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Table S8: Differential abundance analyses of baseline samples (BL) at the ASV level
(RPD16 based classification included) via negative binomial models (DESeq2, Wald test),
between control individuals, CD and UC patients (excluding ulBD), and between control
individuals and IBD patientis (including uIBD). Models were adjusted by age, BMI and sex
as covariates. All P values were adjusted via FDR. Additional support from external
independent cohorts is included based on DA following the same methodology (Malta

treatment naive, Malta remission, Sweden-SIC).

Table S9: Differential abundance analyses of samples from the first follow-up (F1) at the
ASV level (RPD16 based classification included) via negative binomial models (DESeq?2,
Wald test), between control individuals, CD and UC patients (excluding uIBD), and between
control individuals and IBD patientis (including ulBD). Models were adjusted by age, BMI
and sex as covariates. All P values were adjusted via FDR. Additional support from external
independent cohorts is included based on DA following the same methodology (Malta

treatment naive, Malta remission, Sweden-SIC).

Table S10: Differential abundance analyses of samples from the second follow-up (F2) at the
ASV level (RPD16 based classification included) via negative binomial models (DESeq2,
Wald test), between control individuals, CD and UC patients (excluding uIBD), and between
control individuals and IBD patientis (including ulBD). Models were adjusted by age, BMI
and sex as covariates. All P values were adjusted via FDR. Additional support from external
independent cohorts is included based on DA following the same methodology (Malta

treatment naive, Malta remission, Sweden-SIC).

Table S11: Differential abundance analyses of combined samples (BL, F1, F2) at the ASV
level (RPD16 based classification included) via negative binomial models (DESeq2, Wald
test), between control individuals, CD and UC patients (excluding ulBD), and between

control individuals and IBD patientis (including uIBD). Models were adjusted by age, BMI,
51



sex, and time point as covariates. All P values were adjusted via FDR. Additional support
from external independent cohorts is included based on DA following the same methodology

(Malta treatment naive, Malta remission, Sweden-SIC).

Table S12: Partial correlation of CLR transformed taxon abundances with core
physiological/clinical measures and LDpred2 derived polygenic risk scores (PRS) for CD,
UC, and IBD via ppcor (Kim 2015). P-values were derived from combining the P values of
Spearman-, Kendall-, and Pearson correlations via Brown’s method and corrected via FDR
(Brown 1975). Correlations were adjusted for age, gender and BMI. The table includes
additional information of overlapping and significant differential abundance patterns in the

KINDRED cohort, Maltese-, and Swedish SIC cohort.

Table S13: Correlation of alpha diversity with MD and GMHI across baseline, follow-up 1,
and follow-up 2 using either a linear or polynomial (quadratic) fit, as based on minimal AIC.

Models were either adjusted for covariates or without.

Table S14: Linear model analyses of alpha diversity and MD-index in relation to IBD
condition, including differences in average diversity changes as well as of the disease specific

correlation between alpha diversity and MD.

Table S15: Analyses of the relationship between clinical markers of inflammation (ASCA
IgA/lIgG, GP2 IgA/IgG, calprotectin, Bristol stool score, Hb, CRP, IBD severity (clinician)),
alpha diversity measures (Chaol species richness, Shannon Diversity (effective number), Net
relatedness index, Nearest taxon index). Analyses were performed on the residuals of the

respective markers, after fitting a linear model including age, BMI, and sex.

Table S16: Betadiversity analyses of Bray-Curtis dissimilarity based on ASV and PICRUSt2-
KO abundances. Analyses were done using PERMANOVA either with or without

conditioning for potential covariates (age, BMI, sex). Analyses were performed globally,
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pairwise, as well dysbiosis scores in the different sampling time points (Baseline, Follow-up

1, Follow-up 2). Pairwise comparisons were corrected for multiple testing via FDR.

Table S17: Betadiversity analyses of Bray-Curtis dissimilarity based on ASV and PICRUSt2-
KO abundances focusing on physiological and anthropometric measures at different sampling

time points (Baseline, Follow-up 1, Follow-up 2).

Table S18: Linear model analyses of dysbiosis scores with respect to IBD pathology, and
other covariates. Analyses were performed on the residuals of the respective markers, after

fitting a linear model including age, BMI, and sex and then selected by minimizing AIC.

Table S19: Pairwise PERMANOVA analyses of ASV based Bray-Curtis dissimilarities of

combined KINDRED, Maltese, and Swedish cohorts, based on the main pathologies.

Table S20: Community variability analysis of Bray-Curtis dissimilarity via PERMANOVA,
as based on ASV and PICRUSt2-KO abundances focusing on IBD pathologies across

sampling time points (Baseline, Follow-up 1, Follow-up 2).

Table S21: Betadiversity analysis of Bray-Curtis dissimilarity based on ASV and PICRUSt2-
KO abundances focusing on pathologies and morbidities reported by the subjects across

sampling time points (Baseline, Follow-up 1, Follow-up 2).

Table S22: Betadiversity analyses of Bray-Curtis dissimilarity based on ASV and PICRUSt2-
KO abundances focusing on medical/pharmaceutical treatments reported by the subjects
across sampling time points (Baseline, Follow-up 1, Follow-up 2). Naive and conditioned

PERMANOVA results.

Table S23: Betadiversity analyses of Bray-Curtis dissimilarity based on ASV and PICRUSt2-
KO abundances focusing on normalized nutrient intake derived from 2 week food frequency
questionnaires, across sampling time points (Baseline, Follow-up 1, Follow-up 2). Naive and

conditioned PERMANOVA results.
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Table S24: Gene set enrichment analyses (GSEA) based on differential abundance of
PICRUSt2 KOs with respect to IBD pathology among the different time points. GSEA

derived from external cohorts are included for additional support (Prpr < 0.05) [23].

Table S25: Network importance/centrality measures derived at the different time points (BL,
F1, F2) of the KINDRED cohort, as well as subsets by helath condition (CD, UC, Controls)
within each time point. Results of differential abundance associations, as well as potential role
in disease onset or remission, for each significant node/taxon are included. Centralities range
from the number of connections (degree), the position on the shortest paths within the
network (betweeness, [14], generalized importance (PageRank index [15] and the average
neighborhood degree of any given vertex (k-nearest neighbor degree [16]. Significance of
centralities is derived from Z-test against a collection of randomized network centralities
(FDR corrected). Taxa which are significantly more central than expected by chance, and
consistently over-abundant in healthy individuals are highlighted in lightblue, taxa

consistently over-abundant in IBD cases (CD/UC) are highlighted in orange.

Table S26: Taxon heritability as derived from linear mixed models including kinship
matrices. Heritability (4”) was estimated with and without environmental variables via
Ime4qtl. The table includes differential abundance patterns in KINDRED and external cohorts
(incl. their summary). Values indicating a better fit solely by pedigree information (yellow) or
better fit when covariates (sex, age, BMI, IBD pathology) are included in addition to pedigree

information.

Supplemental references:

1. EuroQol Group. EuroQol--a new facility for the measurement of health-related quality of
life. Health Policy. 1990;16:199-208.
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2. Ludwig K, Graf von der Schulenburg J-M, Greiner W. German Value Set for the EQ-5D-5L.
Pharmacoeconomics. 2018;36:663-74.
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