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ABSTRACT:  
Background: Robust methods to track pathogens support public health surveillance. Both wastewater (WW) and 
individual whole genome sequencing (WGS) are used to assess viral variant diversity and spread. However, their 
relative performance and the information provided by each approach have not been sufficiently quantified. 
Therefore, we conducted a comparative evaluation using extensive individual and wastewater longitudinal SARS-
CoV-2 WGS datasets in Northern Ireland (NI). 
 
Methods: WGS of SARS-CoV-2 was performed on >4k WW samples and >23k individuals across NI from 14th 
November 2021 to 11th March 2023. SARS-CoV-2 RNA was amplified using the ARTIC nCov-2019 protocol 
and sequenced on an Illumina MiSeq. Wastewater data were analysed using Freyja to determine variant 
compositions, which were compared to individual data through time series and correlation analyses. Inter-
programme agreements were evaluated by mean absolute error (MAE) calculations. WW treatment plant (WWTP) 
performances were ranked by mean MAE. Volatile periods were identified using numerical derivative analyses. 
Geospatial spreading patterns were determined by horizontal curve shifting.  
 
Findings: Strong concordance was observed between wastewater and individual variant compositions and 
distributions, influenced by sequencing rate and variant diversity. Overall variant compositions derived from 
individual sequences and each WWTP were regionally clustered rather than dominated by local population size. 
Both individual and WW sequencing detected common nucleotide substitutions across many variants and 
complementary additional substitutions. Conserved spreading patterns were identified using both approaches. 
 
Interpretation: Both individual and wastewater WGS effectively monitor SARS-CoV-2 variant dynamics. 
Combining these approaches enhances confidence in predicting the composition and spread of major variants, 
particularly with higher sequencing rates. Each method detects unique mutations, and their integration improves 
overall genome surveillance. 
 
Funding: Individual sequencing was funded via the Belfast Health and Social Care Trust (Department of Health 
for Northern Ireland) and the COVID-19 Genomics UK (COG-UK) consortium, which was supported by the 
Medical Research Council (MRC), UK Research and Innovation (UKRI), the National Institute for Health 
Research (NIHR), the Department of Health and Social Care (DHSC), and the Wellcome Sanger Institute. The NI 
Wastewater Surveillance Programme was funded by the Department of Health for Northern Ireland. EPT was 
supported through the COG-UK Early Career Funding Scheme.  
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INTRODUCTION:  
The COVID-19 pandemic presented unprecedented challenges to global societies, economies, and healthcare 
systems. Since its initial identification in late 20191, the SARS-CoV-2 virus has continually mutated, generating 
new variants that spread globally, causing millions of infections and deaths2. This inherent capacity for rapid 
mutation and high transmissibility compelled the development of innovative strategies for surveillance, 
containment, and mitigation. 

As SARS-CoV-2 mutations accumulate, genetic relationships between variants can be represented with 
a phylogenetic tree. Genomic surveillance samples sequences from the viral population and places them on the 
tree. This enables the classification of conserved mutation patterns, known as lineages. The Pango lineage 
classification system3 categorises global SARS-CoV-2 diversity. Assigning unique lineage labels enables 
researchers to identify transmission patterns4, monitor new variants, and assess control measures. 

This classification system supports the variant of concern (VOC) framework for identifying and 
monitoring virus variants that pose significant public health risks. VOCs show evidence of increased 
transmissibility, severe disease, reduced treatment or vaccine effectiveness, or diagnostic failures. Identified 
variants undergo rigorous analysis to assess their public health impact. Genomic surveillance complements 
traditional epidemiology, providing critical evidence for informed decision-making by public health authorities 
to mitigate virus spread and protect public health. 

Effective genomic surveillance depends on accurate variant identification, linked closely to sequencing 
effort, quality, and intensity5. During the pandemic, researchers and public health authorities used reverse 
transcription quantitative real-time polymerase chain reaction (RT-qPCR) and whole genome sequencing (WGS) 
to monitor SARS-CoV-26. Global use of viral sequences tracked new variant emergence7. However, individual 
sequencing is resource-intensive and limited by potential uneven sampling and the typically low percentage of 
sequenced positive cases. 

Wastewater (WW) screening for pathogens like poliovirus is long established in global surveillance8,9. 
Wastewater-based epidemiology (WBE) is based upon detection of viral RNA fragments shed in bodily secretions 
and excretions10-12 into municipal systems. Initially this was achieved using RT-qPCR, but the feasibility of 
wastewater-based sequencing (WBS) is now established13-16. Wastewater analysis anonymously surveys whole 
communities17, capturing symptomatic, asymptomatic, and pre-symptomatic infections18,19. This enhances 
understanding of community transmission and could serve as a source of early warning for outbreaks20. 

WW contains a mixture of sequences, requiring computational deconvolution to determine the variants 
present. The widely used tool Freyja21 distinguishes and identifies variants in this complex mix by referencing 
genetic barcodes to perform depth-weighted demixing. Recent studies show alignment between Freyja and 
individual sequencing in tracking SARS-CoV-2 variants18,22,23. 

The aims of this investigation are: 1) to quantify concordance between these approaches, examining the 
effects of sampling rate and variant diversity; 2) to evaluate how individual WW treatment plants (WWTPs) reflect 
the national picture or local diversity; 3) to determine the overlap in mutations detected by each method; and 4) 
to monitor intra-national transmission trends by detecting collective spreading patterns. To achieve these aims, 
we conducted a comparative evaluation of individual and wastewater-based WGS datasets in Northern Ireland 
(NI). By integrating geospatiotemporal metadata from both sequencing efforts and performing comparative 
analyses, we elucidate the synergy between these approaches and suggest how to combine them to improve 
surveillance.  
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METHODOLOGY: 
For detailed methodologies, see the Supporting Information. 
 
WW sequencing programme 
Wastewater treatment plant (WWTP) selection: 31 WWTPs across NI were chosen based on population 
density, geographical distribution, and representation of urban and rural areas. This selection covers 
approximately 1,220,989 individuals, representing ~65% of NI’s population. See Table S1 for more information. 
Sample collection: Composite WW samples were collected over 24-hour periods (Nov 14, 2021 - Mar 11, 2023) 
using an Isco Glacier autosampler. 
Sample processing: Samples were clarified by centrifugation and concentrated using a CP-Select Concentrating 
Pipette™. Nucleic acids were extracted using the Roche MagNA Pure 96 Instrument. 
SARS-CoV-2 quantitative reverse transcription polymerase chain reaction (RT-qPCR): Extracted RNA was 
screened using AgPath-ID™ One-Step RT-qPCR Reagents and SARS-CoV-2 N1 + N2 Assay Kits on a 
LightCycler 480 II System. 
Whole genome sequencing (WGS): SARS-CoV-2 positive samples were sequenced using the Mini-XT SARS-
CoV-2 protocol24,25 and ARTIC Network primers26,27. Libraries were prepared with Nextera XT and sequenced 
on an Illumina MiSeq. Sequencing FASTQs were generated onboard. 
Quality control (QC): Samples were excluded if they did not achieve ≥50% aligned whole-genome coverage 
with ≥10 bases per position. A timeline heatmap of the WW sample collection with QC inclusion/exclusion is 
shown in the SI as Figure S1. 
 
Individual sequencing programme 
Individual Testing: Nasopharyngeal swabs underwent RT-qPCR testing, with positives sent for WGS. Pillar 1 
testing targeted patients and frontline workers, while Pillar 2 involved the whole population until June 2022. See 
the Supporting Information, including Table S2 and Figure S2 for more information about the healthcare structure 
of NI. 
WGS: From Nov 14, 2021, to Mar 11, 2023, 22,924 SARS-CoV-2 genomes were sequenced with Illumina and 
556 with Nanopore. Using the Mini-XT protocol24,25, cDNA was amplified by tiled PCR with ARTIC primers26,27, 
purified, quantified, and sequenced on Illumina MiSeq or Oxford Nanopore platforms. Sequencing FASTQs were 
generated onboard. 
Quality control (QC): Samples were excluded if they lacked sufficient collection time and location metadata, or 
if they failed to achieve either ≥50% whole-genome coverage (≥10 reads per base for Illumina or ≥20 for Nanopore) 
or a ≥10,000 base continuous sequence without Ns (i.e., ambiguous or missing nucleotide bases). 

Geographic Information Systems (GIS) 
Geospatial Mapping: Geopandas v0.14.3 was used for geographic visualisations and analyses. 

Local Government Districts (LGDs) in NI: NI comprises 11 LGDs, responsible for local government. A 
shapefile from OpenDataNI was used for LGD-level geospatial analysis. See the Supporting Information and 
Table S3 for additional information. 

Bioinformatics 
Nextflow pipeline: Bioinformatics analyses were conducted using the Illumina Nextflow pipeline developed by 
the ARTIC network, tailored for SARS-CoV-2 data processing. The pipeline, which automates 
fieldbioinformatics tools, was utilised in our modified version from https://github.com/QUB-Simpson-
lab/ncov2019-artic-nf. Software updates included SAMtools28 and BCFtools29 upgraded to v1.18, trim_galore 
(https://github.com/FelixKrueger/TrimGalore) to v0.6.10, and iVar30 to v1.4.2. Additionally, Freyja21 v1.4.9 for 
variant calling and Pangolin31 v4.3.1 for lineage calling were integrated. 

The workflow involved several key steps: The SARS-CoV-2 reference genome1 (i.e., NC_045512.2, 
MN908947.3, or hCoV-19/Wuhan/WIV04/2019) and ARTIC primer schemes were downloaded and indexed 
using BWA32. Paired-end FASTQ files were pre-processed with trim_galore for consistent adapter and quality 
trimming. Reads were mapped to the reference genome using BWA mem, and primer sequences were removed 
with iVar trim. Consensus sequences were generated using iVar consensus with SAMtools mpileup output, and 
variants were called using iVar variants and Freyja variants. Lineage calling was performed using Pangolin, and 
Freyja demix was used for depth-weighted demixing with a depth cutoff of 10. A flowchart of the pipeline can be 
found in the Supporting Information as Figure S3. 
 
Classification of SARS-CoV-2 variants into mutation constellations: We used regular expression patterns to 
parse and categorise Pango lineage names into mutation constellations, which are collections of functionally 
significant mutations arising independently in the virus's genome. This method organised Pango lineages demixed 
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by Freyja and identified by Pangolin (see Table S4). Our classifications have subtle variations from those curated 
by the Pango Network (https://cov-lineages.org/constellations.html), aligning more closely with the variant mix 
detected in NI. 
 
Geospatial abundance time series calculations of SARS-CoV-2 constellations: Using pandas v2.2.2, we 
estimated SARS-CoV-2 constellation abundance across Northern Ireland, its LGDs, and the WWTP catchment 
areas. Anonymised sample time of collection and LGD metadata were obtained from CLIMB (COG-UK) (and is 
also available on GISAID7). Each sample was mapped to a constellation (individuals) or constellations (WW), 
and daily counts (individuals) or means (WW) were computed, ensuring continuous time series with interpolation. 
A 15-day centred rolling window smoothed fluctuations, and percentages normalised data for comparisons. 
 
Calculation of mean absolute errors (MAEs): Circulating mutation constellations were defined as those with 
an abundance of ≥ 10%. Daily mean absolute error (MAE) for each of these constellations was computed by 
summing the absolute differences between corresponding constellation abundances in their time series and 
dividing by the number of circulating variants. 
 
Quantitative determination of volatile periods: We used numerical derivative analysis to identify periods of 
abundance fluctuations within each programme. Smoothed (7-day centred rolling window average) daily slopes 
of the abundance time series were calculated, and net changes in constellation abundances were determined by 
summing the absolute values of these derivatives. Volatile periods were identified using a net 2%/day threshold, 
marking those exceeding it as volatile. 
 
Correlations: Pearson correlation coefficients and associated p-values were calculated using SciPy33 1.13.0 
(stats.pearsonr). 
 
WWTP quantitative rankings: To evaluate the reflectivity of wastewater treatment plants (WWTPs) in detecting 
SARS-CoV-2 variants, we compared variant abundances from individual population sequencing (Pillar 2) with 
those from each WWTP. Mean absolute error (MAE) time series per WWTP versus Pillar 2 samples in NI were 
used to quantify mean discrepancies between the surveillance methods. Ranking based on mean MAE assesses 
agreement over time, identifying the most and least reflective WWTP sites for SARS-CoV-2 variant detection. 
 
Assessing complementarity between programmes using the Freyja UShER substitution barcode database:  
We used the Freyja UShER substitution barcode database to categorise nucleotide substitutions in individual and 
wastewater samples. This matrix-format database assigns columns to genomic substitutions (e.g., G210T) aligned 
to the reference genome and rows to unique SARS-CoV-2 Pango lineages, denoted by binary values indicating 
substitution presence. Each lineage's 'barcode' serves as a genetic fingerprint, providing the set of expected present 
substitutions. 

For each constellation, substitutions are categorised into three groups: ‘core’ substitutions found in all 
lineage barcodes, ‘accessory’ substitutions present in some but not all barcodes within the constellation, and  
‘other’ observed substitutions not catalogued by Freyja. 

We compared the number and identity of substitutions to assess how well the two sequencing 
programmes complement each other across various geospatial scales: NI-wide, by LGD, and by WWTP. 
Substitutions were detected in individual and WW samples using minimum allele frequencies of 0.75 and 0.25, 
respectively, with a minimum read depth of 10 from Freyja/iVar outputs. 

 
Customisation of Freyja UShER barcodes: During transitions between mutation constellations (e.g., Delta-like 
to Omicron BA.1-like), inaccuracies in reported abundances occurred, likely due to Freyja encountering 
challenges in distinguishing between mixed samples of parent lineages and their recombinants. To resolve this, 
we customised the Freyja UShER substitution barcodes database to exclude recombinant Pango lineages (X*) 
while retaining XBB* lineages, recovering accurate abundance estimation within relevant mutation constellations. 
Further details are available in the Supporting Information (see Figure S4). 
 
RESULTS:  
Variant abundances derived from WW match individual sequencing in Northern Ireland 
Samples were collected from individuals present or living within Northern Ireland (NI) as well as from wastewater 
treatment plants (WWTPs) (Figure 1, left). Abundance time series were calculated and used to visualise the 
prevalence and distribution of each SARS-CoV-2 mutation constellation across NI (see Methodology). 
Comparison of abundance time series from WW surveillance with those from individual sequencing programmes 
(Figure 1, right) demonstrates excellent agreement, underscoring the efficacy of the recently introduced 
wastewater-based sequencing (WBS) programme in NI.  
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Figure 1. Surveillance of SARS-CoV-2 in Northern Ireland: Sampling strategy and temporal dynamics. 
Left: Spatial Distribution of Sequences and Wastewater Treatment Plant Catchment Areas – A map of Northern 
Ireland (NI) displays the boundaries of the 11 local government districts with wastewater treatment plant 
catchment areas highlighted in red and illustrative individual samples either within (blue dots) or outside them 
(green dots). Right: Ensemble Average SARS-CoV-2 Constellation Abundances –The ensemble average SARS-
CoV-2 constellations calculated across the entirety of NI as determined by aggregating individual sequences and 
demixing wastewater sequences, respectively. 
 
Sources of variation between wastewater and individual sequencing 
The SARS-CoV-2 constellation abundances defined from each sequencing programme did exhibit some 
variability (Figure 2A); visual inspection reveals periods of both stronger and weaker agreements between 
individual and WW sequencing. Mean absolute error (MAE) time series (Figure 2B) clearly indicated pronounced 
disagreements during transitions between dominant constellations and periods with multiple circulating 
constellations. To quantify the volatility in abundances, we used numerical derivative analysis to determine daily 
curve slopes (Figure 2C) and calculated net changes in constellation abundances (Figure 2D). Volatile periods 
were defined as those exceeding a net 2%/day threshold.  

Comparing MAEs between programmes (Figure 2B) with sequencing rates (Figure 2E) revealed 
decreased agreement as sequencing rates declined, especially during lineage transitions and heightened SARS-
CoV-2 variant co-circulation. Correlation analyses confirmed an inverse relationship between wastewater 
sequencing rates and MAEs, with a negative correlation (Pearson r = -0.37, p-value = 3.24 × 10-17) (Figure 2F). 
The correlation remained (Pearson r = -0.25, p-value = 1.58 × 10-4) during volatile periods (Figure 2G), but 
strengthened (Pearson r = -0.39, p-value = 1.79 × 10-10) during less volatile periods (Figure 2H). During these 
volatile periods, the regression line (Figure 2G) shows a higher y-intercept and a flatter slope, implying that 
reducing Mean Absolute Error (MAE) requires more sequencing compared to less volatile periods at similar levels. 
Further analysis of MAE distribution characteristics reveals variability ranging from 0.03% to 26.15%, with a 
mean MAE of 6.19% and a standard deviation of 5.69%. 
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Figure 2. Comparative Analysis of Overall SARS-CoV-2 Abundance and Sampling Rates in Northern 
Ireland. A: Ensemble SARS-CoV-2 constellation abundances comparison – This panel presents the SARS-CoV-
2 constellation time series from Figure 1, facilitating visual comparison. Solid lines represent abundances from 
individual sequencing programmes, while dashed lines depict those from the wastewater (WW) sequencing 
programme. B: Quantification of temporal deviation between sequencing programmes – The purple line illustrates 
the daily mean absolute errors (MAEs) between all constellations observed in WW-based sequencing and those 
in individual-based sequencing programmes. Points labelled in goldenrod align with transitional periods detected 
from the wastewater programme, while points labelled in pale green indicate more stable periods. C: Rates of 
change in ensemble SARS-CoV-2 constellation abundances – The numerical derivative was calculated for each 
time series in panel A, yielding daily curve slopes. D: Net overall changes in constellation abundances to 
determine transition periods – The solid red line represents the daily sums of absolute changes for individual 
sequencing programmes, and the dotted blue line represents the wastewater sequencing programme from C. A 
horizontal dotted black line indicates a 2%/day threshold, with periods exceeding this threshold shaded in red and 
blue. E: Sampling rates of Pillar 1, Pillar 2, and WW sequencing programmes – Pillar 1 sampling rates (#/day) 
are shown in cyan, Pillar 2 in magenta, and WW samples on the secondary y-axis in salmon. F-H: Correlations 
between WW sequencing rates and inter-programme agreement – These scatter plots depict correlations between 
all WW sequencing rates (B) and mean absolute errors (E), representing inter-programme agreement. Points 
within transition periods are labelled goldenrod (G), while those outside of transition periods are labelled pale 
green (H). 
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Assessing WWTP performance for matching individual SARS-CoV-2 surveillance 
Comparison of variant abundances detected through public sequencing (Pillar 2) and by each WWTP revealed 
varied agreement across NI sampling sites (Figure 3A). Per-WWTP mean absolute error (MAE) time series were 
computed to assess the level of disagreement between the two methods, as shown by Newtownbreda (NTB), 
Belfast (BEL), and Enniskillen (ENN) in Figure 3B. Lower mean MAE values indicated higher agreement, while 
higher values indicated greater disparities. Sorting these mean MAE values in ascending order (Figure 3C) 
provided a reliability metric to rank the performance of the sites in reflecting the overall NI SARS-CoV-2 variant 
detection. 

Newtownbreda (NTB), Downpatrick (DPK), North Coast (NCT), Larne (LRN), Dunmurry (DMR), 
Culmore (CUL), Belfast (BEL), Banbridge (BNB), Whitehouse (WTH), Lisburn (LIS), and Kinnegar (KNG) 
emerged as the 10 sites with the lowest mean MAEs. While these sites tracked the sampled NI population well, 
lower-ranking sites (e.g., Enniskillen (ENN), Dungannon (DNG), Limavady (LMV), Craigavon (CRG), 
Cookstown (CKT), Omagh (OMA), Magherafelt (MGF), Warrenpoint (WRP), Coalisland (CLI), and Ballymena 
(BLM)) likely reflect distinct local viral dynamics that were not captured by Pillar 2 data. This underscores the 
additional insights these sites can provide, enhancing our understanding of viral dynamics in NI. 
 Additionally, the Pearson coefficient of -0.30 (p-value = 0.098) for the correlation between estimated 
population coverage  and mean MAE (Figure 3D) suggests that the largest population centres should not 
necessarily be prioritised for WWTP sentinel sites and invites further consideration of the role of smaller sites. 
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Figure 3. Performance evaluation 
of the WWTPs in comparison to 
Pillar 2 sequences. A: Annotated 
map of WWTP catchment areas in 
NI, coloured by local government 
district (LGD) and labelled with 
abbreviations: ATM: Antrim, AMH: 
Armagh, BLC: Ballyclare, BLM: 
Ballymena, BYM: Ballymoney, 
BRD: Ballyrickard, BNB: 
Banbridge, BEL: Belfast, CRK: 
Carrickfergus, CLI: Coalisland, 
CKT: Cookstown, CRG: Craigavon, 
CUL: Culmore, DPK: Downpatrick, 
DNG: Dungannon, DMR: 
Dunmurry, ENN: Enniskillen, KNG: 
Kinnegar, LRN: Larne, LMV: 
Limavady, LIS: Lisburn, LRG: 
Lurgan, MGF: Magherafelt, NEW: 
Newry, NTB: Newtownbreda, NCT: 
North Coast, NDN: North Down, 
OMA: Omagh, STR: Strabane, 
WRP: Warrenpoint, and WTH: 
Whitehouse. B: Per-WWTP mean 
absolute error (MAE) time series, 
with NTB, BEL, and ENN shown as 
examples. The mean value is dotted, 
and the standard deviation is shaded 
with semi-opacity. C: Relative 
ranking of WWTPs by mean MAE, 
presented in a scatter plot with point 
size indicating estimated population 
within each WWTP catchment area. 
D: Correlation between mean MAE 
and estimated population within the 
catchment, displayed as a scatter 
plot with correlation results. 
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Complementarity between wastewater and individual WGS for SARS-CoV-2 mutation detection 
Distinct patterns of nucleotide substitution are detected by wastewater and individual sequencing programmes, 
both at the national and local government district level. We categorised substitutions into three groups: 'core' 
substitutions, which are highly conserved and define mutation constellations (e.g., common substitutions in Delta-
like, BA.1-like, and XBB-like lineages); 'accessory' substitutions, which are lineage-specific but not universally 
conserved within mutation constellations; and 'other' substitutions, which are not captured in the Freyja UShER 
substitution barcode database and may represent individual-specific mutations or local infection clusters (see 
Figure 4A). 

We tracked the emergence of substitutions over time in wastewater samples and within individual 
sequencing data (see Methodology). Core substitutions were consistently captured by both sequencing approaches 
(see Figure 4B&F), demonstrating their reliability in identifying mutation constellation-defining mutations. 
However, there was more variability in the accessory and other substitutions detected, even when using more 
stringent detection thresholds. The numbers detected by only one approach increased from very few ‘core,’ to 
more ‘accessory’ to a majority of ‘other’ substitutions. The set sizes and proportions detected in each case are 
presented in Table S5. 
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Figure 4. Complementarity 
of individual and WW 
WGS. A. Schematics of the 
substitution classification 
system. Left: concentric Venn 
diagram showing 
intersections of substitution 
sets. The inner Venn diagram 
(chocolate) represents 'core' 
substitutions found in every 
lineage within a mutation 
constellation. The outer Venn 
diagram (rust brown) shows 
'accessory' substitutions 
present in some but not all 
lineages. The area outside the 
Venn diagrams (vanilla) 
represents 'other' 
substitutions not included in 
the Freyja UShER barcodes. 
Upper right: diagram of 
multiple lineage genomes 
grouped into constellations 
with substitutions coloured 
according to their 
classification in the Venn 
diagram. B-D. Newly 
detected core, accessory, and 
other substitutions over time 
in wastewater (WW) on the 
left and individuals on the 
right, shown per Local 
Government District (LGD) 
and for all NI samples. 
Vertical tan lines mark May 
1, 2022, when Pillar 2 
sampling decreased sharply 
towards zero. E. Set sizes of 
detected core, accessory, and 
other substitutions, showing 
unique detections and 
overlaps before and after the 
decline in Pillar 2 sampling. 
F-H. Proportional overlaps 
and unique detections of core, 
accessory, and other 
substitutions per LGD and for 
all NI samples. 
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Temporal shifting reveals conserved geospatial patterns of SARS-CoV-2 spread in Northern 
Ireland 
Focusing on the BA.1-like→BA.2-like (excluding BA.2.75-like) transition, a consistent pattern in the relative 
arrival times of BA.2-like variants emerged. Newry, Mourne and Down (ND), Armagh, Banbridge and Craigavon 
(AB), and Lisburn and Castlereagh (LC) led in early arrivals, while Causeway Coast and Glens (CC), Derry City 
and Strabane (DS), and Fermanagh and Omagh (FO) showed later arrivals (Figure 5A). 

Visualisations suggest that the Belfast area and southern regions (e.g., LC, AB, ND) detected new 
variants earlier, whereas northern and western regions (e.g., CC, FO, DS) lagged (Figure 5B). Mid and East 
Antrim (AM), Mid Ulster (MU), and FO exhibited discrepancies, with individual sequencing detecting variants 
earlier than wastewater surveillance in these regions. 

The correlation between detection dates (Pearson r = 0.63, p-value = 0.0359) indicates decent agreement 
between individual and WW data (Figure 5C). To see additional animations depicting spreading and detection 
patterns observed from WW and in individuals, please refer to the Supporting Information. 

 
Figure 5. Detecting apparent geospatial spreading patterns through temporal curve shifting. A. The rise of 
BA.2-like variants over 60 days during the BA.1-like to BA.2-like (excluding BA.2.75-like) transition (Jan 3, 
2022 – Mar 4, 2022) for individuals (solid lines, left) and wastewater (dotted lines, right). Local Government 
Districts (LGDs) are colour-coded and abbreviated per the Troendle-Rice-Simpson-Skvortsov scheme (see Figure 
3A and Table S3). B. Choropleth maps showing delay times derived from A, with bright yellow for the earliest 
and dark navy for the latest observances. C. Correlation scatter plot of geospatial spreading delays, comparing 
individuals (y-axis) and wastewater (x-axis), with Pearson correlation coefficient and p-value annotated. 
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DISCUSSION:  
The closely matching abundances of SARS-CoV-2 mutation constellations detected from WW and individual 
sequencing in NI demonstrate the efficacy of both programmes. Both approaches also showed consistent variant 
geospatial spreading patterns.  

Despite these independent sequencing approaches each having inherent biases, as sequencing levels 
increase their findings converge towards what is likely to be the true picture of pathogen dynamics. Comparison 
of their similarity therefore provides an objective assessment of performance. This assessment should be based 
upon volatile periods with rapid changes in variant abundances because less sequencing is required to achieve 
concordance during periods of low co-circulation, when a predominant variant is present (see Figure 2 (cf. F-H)). 
Our analysis enables unbiased detection of these volatile periods. 

Any genome surveillance programme must consider the resources required to collect, process and 
sequence samples. Our findings contribute to this decision-making process by determining the minimum 
necessary level to achieve target mean absolute errors (MAEs) between individual samples and wastewater results. 
This analysis strategy can be applied globally to provide evidence guiding the refinement of other programmes 
and assess effective sequencing strategies. Aiming to keep a MAE under 10% provides confidence that the strategy 
employed is accurately capturing pathogen dynamics. For the NI WBS programme, achieving a 10% MAE 
required approximately 15 WWTPs to be sampled on average every day during volatile periods, while reducing 
the MAE to 5% might necessitate approximately 20. 

Individual- and wastewater-based sequencing methods present distinct advantages and limitations for 
pathogen surveillance. WBS cannot capture samples from populations residing in rural areas outside municipal 
water systems, potentially underrepresenting certain demographics (See Figure 1). Nonetheless, the broad 
community-level trends captured by WBS may not be as accurately measured by individual sequencing due to 
sampling limitations, such as over-representation of healthcare-related cases. Individual sequencing generates 
largely complete viral genomes, whereas WBS sequences are fragmented and genomes are not directly attributable 
to individuals. Wastewater surveillance detects viral shedding from asymptomatic and presymptomatic 
individuals unlikely to be individually sampled. While the information contributed by each programme correlates 
with its sequencing rate (see Figure 4), WBS provided substantial additional insights even during periods of high 
individual sequencing rates. The differing strengths and weaknesses underscore the importance of integrating both 
approaches to achieve a more comprehensive understanding of viral diversity and transmission dynamics. For the 
cost of collecting and processing a relatively small number of WW samples, a dedicated WBS surveillance 
programme could provide systematic population-level monitoring. Nonetheless, individual sequencing may 
capitalise on existing healthcare and research infrastructures, provides additional detailed information, and is 
essential for elucidation of outbreak transmission trees. 

The weaker than expected correlation between population size and the national SARS-CoV-2 variant 
landscape challenges the assumption that larger population WWTPs should always be prioritised for surveillance. 
Strategic selection of sentinel sites for WBS is required to reflect both global and local patterns. The extent to 
which each WWTP site matched pathogen mutations detected in individuals varied over time (Figure 3), 
influenced by the viral dynamics within the WWTP catchment area. Our findings demonstrate that our WBS 
approach was sufficiently balanced spatially and temporally to address the study objectives.  

Figure 5 illustrates the coinciding geospatiotemporal patterns of pathogen spread observed through both 
WBS and individual WGS programmes. Although the patterns were less similar in other waves with lower 
sequencing rates, these findings underscore the value of integrating both datasets to enhance the granularity and 
accuracy of epidemiological monitoring. By capturing regional variations in pathogen dynamics, localised 
surveillance strategies can be more effectively tailored to address specific areas of concern. 

Given the ability of WBS to add information, integration of other environmental sampling approaches 
such as air, surface, water, wildlife, and food/agriculture sampling could further enhance surveillance. Air 
sampling captures viral particles in aerosols, while surfaces in public spaces and healthcare settings serve as 
reservoirs for viral RNA. Water sampling from natural bodies could reveal environmental transmission routes, 
while monitoring wildlife and food/agriculture environments could identify potential spillover events and routes 
of viral contamination. These methods collectively provide insights into community-level transmission dynamics, 
identify virus hotspots, and trace transmission chains in healthcare settings, thereby enhancing our understanding 
of viral circulation and transmission pathways alongside current genomic surveillance efforts based on wastewater 
and individual sampling. 

WW genome surveillance faces significant analytical challenges, primarily related to the complex task 
of demixing multiple co-circulating viral lineages. This process in Freyja entails deciphering signals influenced 
by sequencing depth and associated mutational frequencies relative to curated barcodes. The inherent 
combinatorial complexity of genomic mutations and the diversity observed in viral genomes further complicate 
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efficient data analysis. Differentiating between similar barcodes is particularly challenging, especially when 
specific mutations present or absent in individual samples can confound demixing efforts. Distinguishing between 
a mixture of parent lineages and recombinant strains also adds complexity. 

Mutation detection thresholds from WBS influence the overlap of mutation profiles observed between 
methods. Setting appropriate detection thresholds is crucial to extract meaningful information from mixed 
wastewater samples, considering factors such as sequencing depth, sequencer quality scores, and environmental 
conditions. Our study demonstrates that our selected thresholds (allele frequency ≥ 0.25, depth  ≥ 10) effectively 
capture core substitutions, enhancing confidence in the veracity of detected accessory and other substitution sets, 
supporting our approach despite the absence of a definitive ground truth. Additionally, wastewater-based 
surveillance effectiveness varies by location due to environmental factors like chemical composition, local biota, 
and climate conditions34. highlighting the complexity in accurately tracing respiratory virus spread and evolution 
through wastewater surveillance. Continued advancements in analytical technologies and techniques will help to 
address these complexities. 

Moving forward, reconstructing genomes by inferring and stitching together individual reads based on 
their sets of mutations offers a promising approach to overcome some of the challenges associated with current 
demixing algorithms. Rather than relying on a posteriori mutation barcodes for demixing, de novo genome 
assembly reconstructs viral genomes directly from fragmented reads. By analysing these assembled sequences, 
researchers could gain more accurate insights into the genetic diversity and evolutionary trajectories of 
metagenomic populations present in their wastewater samples. This approach would shift the focus from simply 
detecting the presence of individual mutations of a target genome in the mix to understanding the genomic context 
in which the mutations occur, potentially enhancing the breadth, accuracy, and reliability of wastewater-based 
epidemiological studies. 

 
CONCLUSIONS:  
Our study has rigorously quantified the concordance between various sequencing approaches across multiple 
spatial and temporal scales. Evaluation of the alignment of individual wastewater treatment plants (WWTPs) with 
national trends revealed nuanced insights into the contribution of each site to the larger surveillance network. 
Larger sites do not always provide the most representative data, highlighting the limitation of relying on a single 
site to adequately capture regional diversity. Analysis of mutation overlap across methods enabled establishment 
of effective detection parameters and strategies, crucial for enhancing the accuracy of variant identification.  

A key finding is that the extensive spatial coverage and the low cost per individual represented by 
wastewater-based sequencing (WBS) complement the capabilities of individual sequencing efforts. Both 
approaches contribute to elucidation of intra-national transmission trends and collective spreading patterns. We 
therefore recommend the integration of WBS within existing genomic surveillance frameworks to improve 
pathogen monitoring by: 1) expanding the use of WBS to localities currently lacking comprehensive genomic 
surveillance; 2) ensuring a balanced approach to geographic and temporal resolution in WBS implementation; and 
3) adopting a dynamic resource allocation strategy to respond swiftly to emerging threats, such as increasing 
sample collections in nearby WWTPs upon detection of a new variant. These measures will collectively enhance 
the capacity to detect, monitor, and respond to infectious disease threats at local and national levels, supporting 
more effective public health interventions. 

In summary, our comparative and quantitative evaluation demonstrates the complementary roles of WBS 
and individual WGS in enhancing our understanding of SARS-CoV-2 viral diversity and dynamics. 
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