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1 The MARISA model

1.1 MARISA model
MARISA (Modelling Antiretroviral drug Resistance In South Africa) is a mechanistic, compartmental model
developed to capture the dynamics of HIV NNRTI resistance among adults in South Africa [1], and is described
in detail elsewhere [1, 2]. It models the continuum of care, the disease progression, acquisition and reversion of
NRTI and NNRTI resistance, and their impact on the efficacy of the ART regimens. The model was calibrated
using different sources of data: 1) cohort data about more than 54,000 people living with HIV from IeDEA
collaboration [3, 4], 2) data from literature, and 3) general HIV estimates at the country scale produced by the
Thembisa model. The Thembisa model is a compartmental model providing UNAIDS with estimates on the
South African HIV epidemic [5].
The model was adapted to investigate the impact of the introduction of DTG-based regimens in South Africa
in 2020[2]. The changes included incorporating DTG-based regimen into the continuum of care. The adapted
MARISA model is split in 4 dimensions: 1) care stages (15 levels), 2) disease progression, characterised by the
CD4 counts (4 levels), 3) gender (2 levels), 4) NRTI and NNRTI resistance.

1.2 MARISA model for DTG resistance
The model was further adapted to investigate complex resistance dynamics. The binary resistance dimension
was hereby extended to a "resistance genotype", represented as key drug resistance mutations against INSTIs,
while also retaining NRTI and NNRTI resistance. Furthermore, we subdivided the "Failed" compartment on
DTG-based ART into "Failed recent", "Failed intermediate", and "Failed long" (see section 2.2.1), extended
the cascade of care dimension by adding an "Out of care" stage (see section 2.2.2), and take into account the
proportion of people on treatment with undetectable drug levels (see table 6).
In short, the first dimension of the model accounts for the continuum of care, starting at HIV-infection of
susceptible individuals and diagnosis, followed by first (NNRTI- or DTG-based) and second (PI-based) line
treatment. Each regimen has three stages; treatment initiation ("Treated") with subsequent virological sup-
pression ("Suppressed") or failure ("Failed"), whereby "Failed" is composed of three compartments reflecting
time on failing treatment (see section 2.2.1). Before 2020, all individuals receive a NNRTI-base first-line reg-
imen and switch to the second-line PI-based regimen in case of confirmed virological failure. From 2020, the
DTG-based regimen is used as a first-line regimen for all populations. All individuals who are on NNRTI-based
regimen can transition to DTG-based regimen (figure 1). The second dimension splits individuals in 4 classes
according to CD4 counts: 1) CD4 > 500 cells/µL, 2) 350 < CD4 < 500 cells/µL, 3) 200 < CD4 < 350 cells/µL
and 4) CD4 < 200 cells/µL. The third dimension makes the distinction between male and female. The fourth
dimension comprises the different resistance mutations, collectively making up the resistance genotype. Its
structure and parametrization are described in section 2.4.
We used the following indices to indicate a layer of a dimension: j for the second dimension (j = 1, 2, 3, 4), k
for the third dimension (k = 1, 2) and l for the fourth dimension (l = 1, ..., x).

2 Parameters and rates of the DTG MARISA model
Parameters and rates regarding the continuum of care and disease progression dimensions have been described
in detail before[1, 2].

2.1 Diagnosis, treatment initiation and switching rates to PI-based regimen
Diagnosis rates depend on gender and CD4 classes and treatment initiation rates depend on CD4 classes. They
have been described in detail in [1]. In short, diagnosis rates are constant from 2016, while the treatment
initiation rate has been adapted in order to model the impact of the Treat-All policy. Treatment initiation
rates are increased for the first three first CD4 count classes from 2017 to 2022 in order to have identical rates
irrespective of CD4 counts from 2022. Switching rates from unsuppressed first line regimen (NNRTI-based
and/or DTG-based) to PI-based regimen γk

FNNRTI→TPI
were rescaled in order to reflect PI-coverage in South

Africa (∼ 4% in 2016 according to [6]). Treatment initiation rates are described in detail in [2]. In short,
treatment initiation rates on DTG after 2020 are considered equal to the treatment initiation rates on NNRTI
prior to 2020. As a consequence of the Treat-All policy implemented in 2017, treatment initiation rates of HIV
infected individuals increase until 2022, after which they remain constant (see [2] supplemental information S1
Text, Section 2.2). Switching rates from NNRTI- to DTG-based regimens were fixed for both switching from
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Figure 1: Cascade of care dimension in DTG MARISA. On DTG-based ART, the "Failed" compartment
is further subdivided into "Failed recent", "Failed intermediate", and "Failed long".

suppressed or failing NNRTI-based regimen to 1 year-1. Individuals switching from suppressed NNRTI-regimen
would remain suppressed, while individuals switching from failing NNRTI-based regimen would start DTG in
the "Treated" compartment (see figure 1).

2.2 Rates related to continuum of care and disease progression
Rates related to continuum of care and disease progression have been described and published before[1, 2]. In
short, rates related to disease progression νCD4 and ν̃CD4 as well as rates related to continuum of care γ, which
respectively model transition from one to another CD4 class and transition from one to another care stage, were
estimated using observational cohort data from IeDEA-SA collaboration. Mean estimates and 95% confidence
intervals (95%CI) are reported in Table 1 and 2.
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2 PARAMETERS AND RATES OF THE DTG MARISA MODEL Tom Loosli & al.

Table 1: Rates related to disease progression. Rates are in month−1. CD4 classes correspond to: 1:
CD4 > 500 cells/µL; 2: 350 < CD4 < 500 cells/µL; 3: 200 < CD4 < 350 cells/µL; 4: CD4 < 200 cells/µL.

Parameter Description Values [95% CI]
Parameters related to disease progression

CD4 class
1→ 2 2→ 3 3→ 4

1/νICD4 Average time to progress from one to an-
other CD4 class, at I (taken from [7])

60 36 42

1/νDCD4 Average time to progress from one to an-
other CD4 class, at D (taken from [7])

60 36 42

1/νTNNRTI

CD4 Average time to progress from one to an-
other CD4 class, at TNNRTI

47 [42,54] 30 [28,34] 60 [55,66]

1/νFNNRTI

CD4 Average time to progress from one to an-
other CD4 class, at FNNRTI

18 [16,20] 15 [14,16] 22 [21,24]

1/νTPI

CD4 Average time to progress from one to an-
other CD4 class, at TPI

32 [14,72] 22 [12,43] 33 [17,64]

1/νFPI

CD4 Average time to progress from one to an-
other CD4 class, at FPI

14 [8,26] 15 [8,27] 16 [10,25]

1← 2 2← 3 3← 4

1/ν̃TNNRTI

CD4 Average time to progress from one to an-
other CD4 class, at TNNRTI

16 [15,17] 16 [15,17] 18 [17,19]

1/ν̃SNNRTI

CD4 Average time to progress from one to an-
other CD4 class, at SNNRTI

17 [16,17] 14 [14,14] 9 [9,10]

1/ν̃TPI

CD4 Average time to progress from one to an-
other CD4 class, at TPI

16 [9,27] 19 [11,31] 41 [23,73]

1/ν̃SPI

CD4 Average time to progress from one to an-
other CD4 class, at SPI

17 [13,21] 14 [11,17] 7 [6,10]

2.2.1 Time on failing DTG-based ART

In order to model time on failing DTG-based ART, the "DTG Failed" compartment was split into the three
compartments "DTG Failed recent" (FDTGrec

), "DTG Failed intermediate" (FDTGint
), and "DTG Failed long"

(FDTGlong
), which are identical regarding re-suppression rates, out of care rates, mortality, and CD4 progression.

Progression from FDTGrec
to FDTGint

(γFDTGrec→FDTGint
) is 1/6, i.e., a time of on average 6 months for those

who did not either progress to PI-based ART, re-suppressed on DTG-based ART, or died. Similarly, progression
γFDTGint

→FDTGlong
is 1/12, which corresponds to taking on average 12 months for those not advancing to other

compartments.

2.2.2 Out of care

Out of care dynamics were implemented starting with DTG-rollout to adjust for the impact of this sub pop-
ulation of people with viraemia, but without selective pressure imposed on the virus by the ART regimen on
both acquired and transmitted drug resistance. Hereby, people on failing DTG-based ART may drop out of
care with a rate of 109 per 1000 person-years[8], and the average time in the "Out of care" compartment before
re-entering the "DTG Treated" compartment is 22.8 months[9] (see table 6).
Disease progression and mortality in "Out of care" are assumed to be equal to those in "DTG Failed" com-
partments (see 1/νFNNRTI

CD4 , table 1, and µ̃i
FNNRTI/FPI/O

, table 6). People in "Out of Care" are considered as
infectious, not acquiring any drug resistance, and allowing reversion (see section 2.3.6).
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Table 2: Rates related to transition between care stages. Rates are in month−1. CD4 classes correspond
to: 1: CD4 > 500 cells/µL; 2: 350 < CD4 < 500 cells/µL; 3: 200 < CD4 < 350 cells/µL; 4: CD4 <
200 cells/µL.

Parameter Description Values [95% CI]
Parameters related to care stages

CD4 class
1 2 3 4

1/γTNNRTI→SNNRTI
Time from TNNRTI to
SNNRTI

3.4
[3.3,3.6]

3.5
[3.3,3.7]

3.6
[3.4,3.7]

3.9
[3.8,4.1]

1/γTNNRTI→FNNRTI
Time from TNNRTI to
FNNRTI

23.4
[20.1,27.3]

22.8
[19.6,26.4]

18.9
[17.5,20.4]

12.9
[12.3,13.5]

1/γSNNRTI→FNNRTI
Time from SNNRTI to
FNNRTI

176.3
[157,197.9]

133.8
[118.6,150.8]

62.1
[57,67.6]

22.1
[20.2,23.9]

1/γFNNRTI→SNNRTI
Time from FNNRTI to
SNNRTI

6.4
[5.5,7.4]

12.9
[11,14.9]

14.3
[12.9,15.9]

18.2
[16.3,20.2]

1/γFNNRTI→TPI
* Time from FNNRTI to

TPI

467.5
[243,898.9]

376
[240.4,589.9]

258.9
[200.7,334.6]

166.4
[140,199]

1/γTPI→SPI
Time from TPI to SPI

3.8
[2.7,5.2]

3.8
[2.6,5.5]

4
[3,5.3]

5
[4,6.4]

1/γTPI→FPI
Time from TPI to FPI

14.3
[7.8,26.8]

14
[7.3,27]

11.8
[7.8,18]

7.6
[5.9,9.9]

1/γSPI→FPI
Time from SPI to FPI

61.4
[30.8,122.8]

40.9
[21.4,78.9]

40
[21.4,74.3]

19.1
[9,40]

1/γFPI→SPI
Time from FPI to SPI

2.3
[1.1,4.1]

12.9
[3.2,51.3]

5.5
[2.8,11.3]

11.7
[4.8,28]

Parameters related to time on failing DTG-based ART
1/γFrecent→Fint

** Time from recently failing to intermediate time on failing DTG-based ART 6

1/γFint→Flong
** Time from intermediate to long time on failing DTG-based ART 12

Note:
* Switching rates γk

FNNRTI→TPI
are rescaled to reflect PI-coverage in South Africa (∼ 4% in 2016

according to [6]).
** Time on failing treatment is only considered for DTG-based ART. F1 thus corresponds to DTG only,

and starting after the DTG-rollout in 2020.

2.3 Resistance rates
2.3.1 DTG drug resistance mutations (DRMs)

The resistance dimension is adapted to include complex mutational patterns and acquisition pathways. Resis-
tance to NRTI and NNRTI is treated as before[1, 2], and is considered in the resistance genotype. For DTG
resistance, the following key mutations were included in the model: G118R, E138K, G140ACS, Q148HKNR,
N155H, and R263K. Key mutations for DTG resistance were identified based results from the DTG RESIST
study in 599 people on failing DTG-based ART[10], and a rapid scoping review for DTG resistance in 2023[11].
The drug resistance dimension is based on combinations of the "resistance genotype" with the following com-
position (whereby NNRTI and NRTI positions are populated using previously found rates):

G118R− E138K −G140ACS −Q148HKNR−N155H −R263K −NNRTI −NRTI

Note that the order of the mutations above does not hold any meaning. Allowed combinations and acquisition
patterns are described in the next section.

2.3.2 DTG DRM accumulation pathway

The dimension could thus hold 28 = 256 possible resistance genotypes; however, mutations do not occur ran-
domly. The DTG resistance mutations we allow in the model are derived from the observed cases of DTG
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resistance in [10]. Figure 2 shows the modelled 12 DTG DRM combinations their accumulation. Including re-
sistance/sensitivity to NRTIs and NNRTIs (see section 2.3.4) results in a total of 48 allowed resistance genotypes,
which corresponds to the number of modelled resistance compartments.

Figure 2: DTG resistance mutations included in the DTG MARISA model, including allowed combinations
and accumulation pathways. 140X comprises mutations G140G/C/S, 148X comprises G148H/K/N/R. Drug
resistance scores and levels are derived from the Stanford resistance algorithm, Version 9.5.1

2.3.3 DTG DRM acquisition rates

Mutation acquisition rates rDRMm , whereby m represents a specific dolutegravir resistance mutation, are derived
from the 599 people on failing DTG-based ART in the DTG RESIST study according to equation 1, where
Ṁq(t) is the number of observed cases per DTG resistance mutation combination q. The mutation combination
from which q originates by acquisition of a single mutation is denoted as q′, and Uq is the set of all possible q′.
We use WT (wildtype) for the special case where q is 00000000, i.e., does not have any DTG DRMs, NNRTI,
or NRTI resistance.

δx =

{
1 if x = WT,
racc if x ̸= WT.

Ṁq(t) =
∑
q′∈Uq

Mq′(t) ∗ rDRMq′ ̸=q
∗ δq′ (1)

We include racc as additional parameter, which represents the observed increased mutation acquisition rate
after having acquired at least one resistance mutation. In the DTG RESIST study population, a median of
three viral load tests were performed per year, and resistance testing was performed at detection of virologic
failure. However, the actual time on failing DTG-based ART is unknown. In our default model we assume
the mutations to be observed after 3 months on a failing regimen. Mutation rates depending on different
assumptions regarding time on failing DTG-based ART can be found in Table 3. The impact of the assumed
time on failing DTG-based ART on model outcomes is further explored in the section 3.4.

Supplementary Material July 20, 2024 7
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Table 3: Rates related to drug resistance mutation acquisition. Mutation acquisition rates are increased by
racc upon acquiring at least one mutation. Rates are in month−1.

Parameter Description Values
Assumed time on failing DTG-based ART (see eq. 1)*
2 months 3 months 6 months

Mutation acquisition rates
rG118R Time to acquire G118R 0.0014 0.0011 0.0005
rE138K Time to acquire E138K 0.0012 0.0010 0.0004
rG140ACS Time to acquire G140ACS 0.0062 0.0047 0.0021
rQ148HKNR Time to acquire Q148HKNR 0.0040 0.0029 0.0013
rN155H Time to acquire N155H 0.0053 0.0041 0.0018
rR263K Time to acquire R263K 0.0096 0.0072 0.0032

Mutation rate increase
racc Mutation rate multiplier if ≥ one

DTG DRM is present
214.8 210.6 203.4

Note:
* Data from the DTG RESIST cohort collaboration study [10].

Figure 3 shows the distribution of dolutegravir resistance levels over time on failing dolutegravir-based ART
(assuming treatment adherence, and using DTG DRM rates assuming 3 months on failing DTG-based ART in
DTG RESIST, see 1).

Figure 3: Modelled progression in DTG resistance levels over time. Shown is the distribution of dolutegravir
resistance levels over time on failing DTG-based ART under the assumption of DTG DRMs accumulating
as outlined in 2, and assuming 3 months in equation 1. Drug resistance scores and levels are derived from
the Stanford resistance algorithm, Version 9.5.1

2.3.4 NNRTI and NRTI resistance acquisition

The rates for NNRTI and NRTI resistance acquisition have been described in detail before [1, 2]. In short,
NRTI-resistance is defined as having both the K65R and the M184V mutations, and was calibrated using
results from a meta-analysis that estimates the prevalence of NRTI resistance mutation after 3 years on a failing
NNRTI-based first-line regimen [12] (see Table 6). In light of the scarcity of programmatic data of people on
failing DTG-based ART, this approach was not feasible for specifically assess NRTI resistance acquisition rates
on failing DTG-based ART; we therefore use σNRTI

res on DTG-based regimen as well, i.e., we assume NRTI
resistance is acquired at the same rate on failing NNRTI-based ART as on failing DTG-based ART.

2.3.5 Resistance acquisition in cascade of care

An individual can acquire NNRTI-resistance when failing a NNRTI-based regimen, and can acquire DTG
resistance when failing a DTG-based regimen. NRTI resistance can be acquired on a failing NNRTI- or DTG-
based regimen. Acquisition of NRTI and NNRTI resistance is independent of DTG resistance mutations.
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2.3.6 Reversion

Reversion to wild-type occurs when virus replication occurs without selective drug pressure, i.e. in the "In-
fected", "Diagnosed", and "Out of care" compartments, as well as "Failure" for drug resistance positions not
part of resistance to the failing regimen (e.g., reversion of NNRTI failing DTG regimen). We assume the same
reversion rates for those on failing treatment and those out-of-care.
Rates for NRTI and NNRTI are populated with previously found rates [1, 2] and are listed in Table 6. Reversion
rates of DTG resistance mutations are largely unknown, but have been reported to occur[13], and previous work
on reversion after treatment interruption following first generation INSTI regimen showed rapid reversion of
INSTI DRMs[14]. We assume an average time to reversion of 2 years for all DTG resistance mutations; a wide
range is analyzed in the sensitivity analyses, see section 3.4. Reversion along distinct mutational pathways has
been shown for NRTI DRMs [15]. For simplicity, DTG resistance mutations are assumed to revert alongside
the same pathways as acquisition.

2.3.7 Resistance transmission

In view of the low level of NRTI pre-treatment drug resistance (PDR) [16, 17], we assume that NRTI resistance
is not transmitted. The probabilities of DTG resistance mutation transmission are unknown. In the default
model, we assume DTG resistance mutations to be transmitted like NNRTI resistance. A range of reduced
transmission probabilities for DTG DRMs compared to NNRTI resistance are explored in sensitivity analyses,
see section 3.4.

2.4 Structure of the Resistance-Genotype matrices
The resistance dimension is implemented using matrices describing the transitions between resistance genotypes.
Two matrices Ai,j and Rj,i describe the movement between the resistance-genotypes. The Impact of the geno-
types on a treatment is given by the matrix Ej,trt. A1,1 and R1,1 represent the wildtype, having no resistance
mutations and therefore being fully susceptible to all treatments. Table 4 describes all matrices included in
modelling transitions in the resistance dimension.

Table 4: Description of the compartments used in the model.

Notation Description Definition

Resistance matrices
Ab,c Matrix with rates to acquire the genotype c from genotype b
Rs,t Matrix with rates to revert to genotype t from genotype s
Ef,g Matrix with the impact of genotype f on treatment g (using the

previously implemented α1, α2, and α3 parameters, see note)
g=1: NNRTI, first 3 months,
g=2: NNRTI, over 3 months,
g=3: PI, g=4: DTG

Additional matrices
Pd Subset of Ab,c affected by treatment d d := NNRTI, DTG, PI
Tu,v Matrix for transmission of drug resistance (probability of geno-

type u being transmitted as genotype v)
Note: α1 (Impact of NNRTI-resistance on NNRTI-based ART in the first 3 months on ART) is 1.97[18, 19],
α2 (Impact of NNRTI resistance on NNRTI-based ART after 3 months on ART) is 3.24[18, 19], and α3

(Impact of NRTI resistance on DTG-based ART) is 1 [20, 21, 22].
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The resistance genotype comprises 8 positions (see 2.3.1), for each included DRM, and NNRTI and NRTI
resistance; 00000000 thus represents absence of all DRMs, NNRTI, and NRTI resistance.The matrices are
structured as follows (note that for better readability, in the conceptual matrices we only note 3 resistance
positions):

Ab,c =


000 ··· 111

000 0 · · · r000→111
DRM

...
...

...
111 0 · · · 0



Rs,t =


000 ··· 111

000 0 · · · 0
...

...
...

111 r111→000
DRM · · · 0



Ef,g =


NNRTI DTG PI

000 1 1 1
...

...
...

...
111 α111→NNRTI

impact α111→DTG
impact α111→PI

impact



Pd =


000 ··· 111

000 0 · · · ϕ000→111
d

...
...

...
111 0 · · · 0



Tu,v =


000 ··· 111

000 1 · · · ϕ000→111
transmission

...
...

...
111 ϕ111→000

transmission · · · ϕ111→111
transmission


Hereby r000→111

DRM represents resistance acquisition rates (see table 3 for DTG mutation rates, and table 6 for
NRTI and NNRTI rates). Reversion rates are represented by r111→000

DRM (see section 2.3 and table 6). Impact
of a resistance genotype is depicted as α111→treatment

impact , see table 4. ϕ000→111
d denotes whether a failing regimen

results in selective pressure on a genotype, i.e., ϕWT→NNRTI
DTG = 0, while ϕWT→G118K

DTG = 1. The transmission of
a resistance genotype is denoted as ϕ000→111

transmission, and reflects the probabilities by which a resistance genotype
is transmitted.

2.5 Impact of Resistances on treatments
DTG MARISA uses the E matrix for each resistance genotype and treatment to model the impact of resistance
on treatment response. The parameters increase the previously estimated rates of failure γTNNRTI→FNNRTI

,
γSNNRTI→FNNRTI

and decrease the suppression rates γTNNRTI→SNNRTI
and γFNNRTI→SNNRTI

for resistant indi-
viduals.
In order to achieve the same suppression levels as estimated from IeDEA-SA cohort data with the modified rates,
the scaling parameter αg is used, which increase the overall suppression rates and decreases the failing rates.
αNNRTI was previously estimated as 1.62 based on overall suppression rates for NNRTI-based regimen (88%) in
the IeDEA cohort data [2, 3]. The different failing and suppression rates according to CD4 class j and NNRTI-
resistance status l are given in Eq 2-5. The rates γTNNRTI→FNNRTI ,g, γTNNRTI→SNNRTI ,g, γSNNRTI→FNNRTI ,g

and γFNNRTI→SNNRTI ,g represent the overall suppression and failure rate for g-based ART, as estimated with
IeDEA cohort data (see Tables 1 and 2). As impact on treatment for DTG cannot be modelled from the IeDEA
cohort data, impact on treatment is assumed to be the same as in NNRTI-based ART. Impact of high level
DTG-resistance on DTG-based ART is assumed to be the same as for NNRTI resistance on NNRTI-based ART;
the impact of intermediate level DTG-resistance on DTG treatment efficacy is assumed be 50% of the impact
of high level resistance.

γjl
TNNRTI→FNNRTI ,g

= E[l, g] · 1/αg · γTNNRTI→FNNRTI
(2)

γjl
TNNRTI→SNNRTI ,g

:= 1/3− γj,l
TNNRTI→FNNRTI ,g

(3)
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2 PARAMETERS AND RATES OF THE DTG MARISA MODEL Tom Loosli & al.

γjl
FNNRTI→SNNRTI ,g

= 1/E[l, g] · αg · γFNNRTI→SNNRTI
(4)

γjl
SNNRTI→FNNRTI ,g

= E[l, g] · 1/αg · γSNNRTI→FNNRTI
(5)

2.6 DTG-efficacy and impact of NRTI-resistance on DTG
The efficacy of DTG-based regimens has been a subject of extensive study. In the NAMSAL study, after
adjusting for CD4 counts and baseline NNRTI resistance, an odds ratio (OR) of 1.02 was found between
NNRTI- and DTG-based regimens (assuming no resistance) [23]. We therefore employ equal treatment efficacy
in our model for NNRTI- and DTG-based regimens (a range of other efficacies for DTG-based regimen has been
previously investigated in MARISA [2]).
The impact of NRTI resistance on the efficacy of DTG-based regimens has been investigated in the NADIA trial,
where viral suppression rates for NRTI-resistant individuals starting a DTG-based regimen were comparable to
those of NRTI-sensitive individuals [24]. We thus model NRTI resistance having no impact on DTG efficacy.
According to the large DTG RESIST cohort collaboration, NRTI resistance increases the risk of developing
DTG resistance in those with viremia, with an adjusted odds ratio of 13.4 for intermediate or high-level NRTI
resistance (95% CI 4.55–39.7) [10]. Therefore, we model NRTI resistance to increase the rates of acquiring DTG
resistance. In the default model, the presence of NRTI resistance quadruples the hazard for DTG resistance;
in the sensitivity analyses, we cover a wide range from NRTI resistance having no impact on DTG resistance
acquisition, to ten times higher hazard 3.4.

2.7 Impact of regimen backbone
As a simplifying assumption, all individuals that transition to DTG-based regimen are assumed to have re-
ceived a NNRTI-drug combined with TDF and 3TC/FTC and to keep this NRTI-backbones combination after
transitioning to DTG-based regimen. This assumption is motivated by the expected reluctance of clinicians to
prescribe zidovudine (AZT) for TDF-experienced individuals transitioning to DTG. In the case where NRTI
backbones are adapted when transitioning to DTG, the model might overestimate the impact of NRTI-resistance
on DTG-based regimen. In counterfactual scenarios, we assess the impact of an optimized backbone regimen
for people switching from NNRTI- to DTG-based ART, see section 3.3.

2.8 Other parameters: HIV transmission and mortality
Parameters regarding HIV transmission and mortality have been previously described [1, 2]. Briefly, MARISA
accounts for sexual HIV transmission both for sex between men and women, and for sex between men. The
model includes different transmission risks per intercourse, and assumes higher risk behaviour in undiagnosed
individuals. HIV transmission parameters were sourced from the literature ((see Table 6) or estimated using
results from the Thembisa model (see Table 6).
Mortality was modeled based on CD4 counts and treatment stage. Relative mortality estimates were previously
obtained from the literature (see Table 6), and a scaling parameter for the mortality risk among suppressed
individuals with CD4 > 500 copies/ml was fitted to HIV mortality estimates from the Thembisa model. Further
details on HIV transmission and mortality can be found elsewhere [1].

Table 5: Parameters estimated from outputs of the Thembisa model.

Parameter Description Values
βu Number of unprotected sexual acts per month 3.1

(for undiagnosed individual)

βd Number of unprotected sexual acts per month 1.24
(for diagnosed individual)

γI→D(2016)/γI→D(2005) Ratio of diagnosis rates between 2005 and 2016 4.4

1/γI→D(2005) Time to diagnosis in 2005 (months) 26

1/γD→TNNRTI
(2005) Time to ART initiation in 2005 (months) 60

µ0 Mortality risk (in (month · 1000 people)−1) 0.08
for a suppressed individual with CD4 > 500 cells/µL
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2.9 Parameters from the literature

Table 6: Parameters collected from the literature. As mortality estimates in the fourth CD4 class vary
according to the proportion of people with CD4 < 50 cells/µL, lower and upper bounds are given (see [1]
S1 File Section 1.2 for more details). The mortality risk µj

X in CD4 class j (i = 1, . . . , 4) and care stage X
(X = I,D, TNNRTI , . . .) is given by: µj

X = µ0 · µ̃j
X . CD4 classes correspond to: 1: CD4 > 500 cells/µL; 2:

350 < CD4 < 500 cells/µL; 3: 200 < CD4 < 350 cells/µL; 4: CD4 < 200 cells/µL.

Parameter Description Values Ref

Resistance parameters
1/σNNRTI

res Time to acquire NNRTI-resistance (months) 5 [25, 26, 27, 28, 29]
1/σNRTI

res Time to acquire NRTI-resistance (months) 40 [12]
1/σrev Time for NRTI and NNRTI resistance to revert

back to wild-type (months)
125 [16]

αNRTI→DTG Impact of NRTI resistance on DTG resistance
mutation acquisition rate

HR=4 [10]

Out of care parameters
1/γFDTG→O Time from "DTG Failed" to "Out of care"

(months)
110 [8]

1/γO→TDTG
Time from "Out of care" to "DTG Treated"
(months)

22.8 [9]

Druglevel parameter
ρDTGdetect

Proportion with detectable drug levels on failing
DTG-based ART

0.626 [30]

Other parameters
ν0,0 probability that a male infects a male (per act) 0.8% [31]
ν0,1 probability that a male infects a female (per act) 0.3% [31]
ν1,0 probability that a female infects a male (per act) 0.3% [31]
ρ0,0 percentage of MSM 5% [32]
µ̃i relative mortality risk [33, 34]

(Ref: suppressed indiv. with CD4>500) CD4 class
1 2 3 4

µ̃i
I/D: not treated (I and D) 1.6 2 4.6 40.9-134.4

µ̃i
TNNRTI/TPI

: started treatment (TNNRTI and
TPI)

2.5 2.6 3.1 10-50.7

µ̃i
SNNRTI/SPI

: suppressed (SNNRTI and SPI) 1 1.3 2 8.3-41.7
µ̃i
FNNRTI/FPI/O

: failed (FNNRTI and FPI) 3.9 3.9 4.3 11.8-59.7
Note: The rates σNNRTI

res , σNRTI
res , and σrev are included in the resistance matrices, see table 4.
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3 MODEL SIMULATION Tom Loosli & al.

3 Model simulation

3.1 Default scenario and uncertainty range
Model simulations are performed using
the resistance-related parameters out-
lined in Table 7. Additionally, we con-
duct simulations using parameter val-
ues adjusted to either favor or impede
the emergence of resistance to derive
an uncertainty range (see Box 1) that
complements the main simulation.

Box 1| Uncertainty range

In our simulations, the choice for dolutegravir resistance-
relevant parameters is difficult as there is little data avail-
able. We therefore model - in addition to our main anal-
ysis - a parameter set with more pessimistic, and more
optimistic assumptions. The outcomes will then be in-
terpreted as Uncertainty Range. This range is not to be
interpreted as confidence interval, but represents scenar-
ios with plausible parameterizations making conservative
or liberal assumptions. (For a full assessment of possible
outcomes, see section 8.)

Table 7: Main parameters in the prospective scenarios.

Parameter Definition Default Pessimistic
resistance
parameters

Optimistic
resistance
parameters

ρDTGdetect
Proportion with detectable drug levels on
failing DTG-based ART

0.626 0.814 0.482

RDTG DTG DRM reversion rate, see section 2.3 2 Years 3 Years 2 Years

αNRTI→DTG Impact of NRTI resistance on DTG resis-
tance mutation acquisition rates

HR=4 HR=5 HR=3

EDTG→DTG Impact of DTG resistance on DTG efficacy 3.24 3.9 2.7

TDTG Transmission probability of DTG resistance
mutations compared to NNRTI resistance

Same Same -20%

3.2 Prospective scenarios
We simulate the HIV epidemic in South Africa up to 2040 with DTG used as initial first-line regimen (for
ART-initiators), and patients on NNRTI-based regimens being switched to a DTG-based regimen starting in
2020. The modelled number of people living with HIV increases at a slower rate than before 2020, and the
number of new HIV infections continues to decrease, as well as the number of AIDS-related deaths (figure 4
A-C).
The modelled HIV epidemic in South Africa continues the trends in reaching the UNAIDS goals (figure 4 D-F).
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Figure 4: Modelled HIV epidemic in South Africa from 2020 to 2040. A) Number of people living with HIV.
B) Number of new HIV infections. C) Number of AIDS-related deaths. D) UNAIDS goal 1: Proportion of
people living with HIV being diagnosed. E) UNAIDS goal 2: Proportion of people with HIV diagnosis being
on ART. F) UNAIDS goal 3: Proportion of people on ART being virally suppressed. Points and errorbars
correspond to UNAIDS estimates; shaded area corresponds to the uncertainty range (see box 1 and table 7).

After the switch to DTG-based ART, the number of people on DTG-based ART is rapidly increasing, transi-
tioning to a modest but steady increase in 2023. The number of individuals with viremia on DTG-based ART
remains stable in this phase. The population CD4 levels continue to improve in those on DTG-based ART
(figure 5).

Figure 5: Modelled Viral load status and CD4 levels of individuals on DTG-based ART.
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3.3 Counterfactual scenario: DTG resistance mitigation strategies
We use counterfactual scenarios to evaluate strategies to mitigate acquired and transmitted DTG resistance
such as those proposed in the ongoing RESOLVE study[35]. The following strategies are investigated:

1. Baseline scenario:
Virologic failure on DTG-based ART is managed according to the current treatment guidelines in South
Africa, where PI-based ART coverage in South Africa is relatively low at 4%[6], and switching to PI-based
ART is only restrictively included in HIV management guidelines. Individuals on failing DTG-based ART
remain viremic for extended periods of time.

2. Switch to PI-based ART:
Individuals on failing DTG-based ART are immediately switched to PI-based ART once treatment failure
has been detected. Immediate switching can only be done after detecting the virologic failure, i.e., depends
on the frequency of viral load monitoring. We assess two options: i) switching to PI-based ART is done
after an average time of 6 months after turning viremic on DTG-based ART, and ii) switching to PI-based
ART is done after an average time of 12 months after turning viremic on DTG-based ART.

3. GRT-informed switching to PI-based ART:
Upon detection of viremia in individuals on DTG-based ART, they undergo druglevel testing, and in
case of detectable concentrations followed by genotypic resistance testing. They are then switched to
PI-based ART in case of DTG resistance. The time from turning viremic to switching thus depends on
two durations: First, on viral load testing frequency for detecting virologic failure, and second on the time
taken from detecting virologic failure to performing druglevel- and genotypic resistance testing, receiving
results, and having the individual return to implement treatment switch. We here assess four options: i)
time to detecting viremia is 6 months, time to switching in case of DTG resistance is 6 months; ii) time
to detecting viremia is 12 months, time to switching in case of DTG resistance is 6 months. This resulted
in an average range of time on failing DTG-based ART ranging from 1 to 1.5 years.

All counterfactual scenarios involve increased treatment switching for those on DTG-based ART, but differ
in who and when individuals are switched to PI-based ART. The number of people on PI-based ART varies
across counterfactual scenarios (figure 6). In scenarios with immediate switch to PI-based ART, the number of
individuals on PI-based ART by 2040 is similar to those on DTG-based ART.

Figure 6: Modelled number of individuals by ART regimen for each counterfactual scenario (see section
3.3).
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3.4 Sensitivity analyses
In previous works, the sensitivity of parameters related to transmission and NNRTI resistance were thoroughly
assessed[1, 2].

We conducted sensitivity analyses by changing one variable at a time while fixing the other parameters for:
mutation acquisition rate, reversion rate, NRTI impact on DTG resistance emergence risk, Impact of DTG re-
sistance on DTG efficacy, transmission probability of DTG resistance mutations compared to NNRTI resistance
transmission, and the proportion of people with detectable drug levels on failing DTG-based ART, described in
table 8 (figure 7).

In addition, we performed a variance-
based global sensitivity analysis on
these variables. 1’000 bootstrap repli-
cates per included parameter were per-
formed in a Monte Carlo estimation of
first oder and total Sobol’ indices (see
box 2) on population levels of transmit-
ted and acquired DTG resistance (fig-
ure 8).

Box 2| Sobol’ Indices

Sobol’ indices are quantitative measures used in sensitiv-
ity analyses to assess the importance of input parameters
and their interactions on the variability of model outputs.
They thereby help identify influential factors in complex
models. Sobol’ indices are calculated based on decomposi-
tion of the total output variance, disregarding interactions
(First-Order indices), and including all orders of interac-
tions (Total indices). Sobol’ indices are dependent on the
ranges of input parameters. [36, 37, 38]

Table 8: Parameter ranges used in sensitivity analyses.

Parameter Definition Value Lower
bound

Upper
bound

rDRMi
Time to acquire DTG resistance mutation
DRMi based on time on failing ART in the
DTG RESIST study (see section 2.3 and
equation 1).

3 Months 2 Month 6 Months

RDTG Reversion matrix (for reversion of DTG
resistance mutations only), see section 2.3

2 Years 6 Months 20 Years

αNRTI→DTG Impact of NRTI resistance on DTG resis-
tance mutation acquisition rates

HR = 4 HR = 1 HR = 10

EDTG→DTG Impact of DTG resistance on DTG efficacy 3.24 2 4

TDTG Transmission probability of DTG resistance
mutations compared to NNRTI resistance

100% 5% 100%

ρDTGdetect
Proportion with detectable drug levels on
failing DTG-based ART

0.626 0.3 1
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Figure 7: Predicted levels of acquired (red) and transmitted (blue) dolutegravir resistance in 2040 were
assessed varying only key parameters: A) the acquisition rate of DTG DRMs based on the assumed duration
on failing DTG-based ART during which these mutations were acquired, as observed in the DTG RESIST
study, B) the time for DTG DRMs to revert given unsuppressed viral replication, C) the impact of NRTI
resistance on the risk for acquiring DTG resistance mutations (hazard ratio of NRTI resistance compared
to no NRTI resistance), D) the probability of transmitting DTG resistance mutations in a transmission
event, E) the impact of DTG resistance on the efficacy of DTG-based ART (hazard ratio of high level DTG
resistance compared to no DTG resistance, see section 2.5), F) the proportion of people with detectable drug
levels on failing DTG-based ART. Discrete datapoints were modeled (crosses); the line represents a spline
over modelled outcomes. Parameter values in the main analysis are represented as gray dotted lines.
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Figure 8: Monte Carlo estimation of first- order and total Sobol’ indices were implemented using 1,000
samples per included variable. Six key parameters for predicting dolutegravir resistance levels were included:
mutation acquisition rate, which are derived from the assumed time people in the DTG RESIST study were
on failing dolutegravir-based ART (ranging from 2 to 6 months, see eq. 1); dolutegravir DRM reversion rates
(range from 0.5 to 20 years); Impact of NRTI resistance on the risk for acquiring dolutegravir DRMs (hazard
ratio for NRTI resistance compared to no resistance ranging from 1, no increased risk, to 10 times higher
risk); assumed impact of dolutegravir resistance on dolutegravir efficacy (ranging from a hazard ratio of 2 to
4 for high level DTG resistance compared to no DTG resistance); transmission probability of dolutegravir
DRMs compared to NNRTI resistance transmission (ranging from 0.05, dolutegravir DRMs are 20 times
less likely to be transmitted compared to NNRTI resistance, to 1, dolutegravir DRMs are transmitted with
the same probability as NNRTI resistance); proportion of people with detectable druglevel on failing DTG-
based ART (ranging from 30% to 100%). First-order and total Sobol’ sensitivity indexes for A) acquired
and B) transmitted dolutegravir resistance. Outcomes (proportion with DTG resistance) in 2040 in C)
acquired dolutegravir resistance, and in D) transmitted dolutegravir resistance. Color bands represent from
light to dark 95%, 50%, and median of realized outcomes of all samples using a rolling window with width
corresponding to 5% of the data.
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4 Model ODEs

4.1 Description of the compartments
Table 9 describes the compartments used in the model, while model ODEs are given in Equations 6.

Table 9: Description of the compartments used in the model.

Notation Description Definition

Dimensions/Compartments
j index for the 2nd dimension (CD4 counts) j = 1, 2, 3, 4 (4 CD4 strata)
k index for the 3rd dimension (gender) k = 0: men, k = 1: women
l index for the 4th dimension (Resistance-Genotype) l = 1, ..., gtot with gtot = 2m

(m = Number of Mutations)
Ijkl(t) number of infected (not diagnosed) indiv.
Djkl(t), number of diagnosed (not treated) indiv.
Ojkl(t) number of out of care indiv.

NNRTI-based treatment
T jkl
NNRTI(t), number of indiv. that have started NNRTI-based treatment for less than 3 months

Sjkl
NNRTI(t), number of suppressed indiv. on NNRTI-based treatment

F jkl
NNRTI(t), number of indiv. failing NNRTI-based treatment

PI-based treatment
T jkl
PI (t) number of indiv. that have started PI-based treatment for less than 3 months

Sjkl
PI (t) number of suppressed indiv. on PI-based treatment

F jkl
PI (t) number of indiv. failing PI-based treatment

DTG-based treatment
T jkl
DTG(t) number of indiv. that have started DTG-based treatment for less than 3 months

Sjkl
DTG(t) number of suppressed indiv. on DTG-based treatment

F jkl
recent(t) number of indiv. failing DTG-based treatment, on avg. 6 months

F jkl
int (t) number of indiv. failing DTG-based treatment, on avg. between 6 months and 1.5 years

F jkl
long(t) number of indiv. failing DTG-based treatment, on avg. over 1.5 years

Aggregated compartments
Susck number of susceptible indiv. of gender k
Infkl

u (t) number of undiagnosed indiv. Infkl
u (t) := Ikl(t)

Infkl
d (t) number of infectious diagnosed indiv.
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4.2 Model ODEs
The rates γ represent transition between care stages, νCD4 the transition between CD4 stages and µij the
mortality. The rate σrev represents reversion of NNRTI-resistance when no more drug pressure is exerted, while
σNNRTI
res and σNRTI

res represents the rates of acquiring NNRTI-resistance and NRTI-resistance, respectively, when
an individual is failing NNRTI-based treatment. To model new infections, we use βu and βd the respective
monthly number of sexual contacts among undiagnosed and diagnosed individuals, ρk,k the assumed proportion
of heterosexual individuals within men and women and νk,k′ the probability of HIV transmission per sexual act.

İjkl(t) = + βu

(
l∑

x=1

ρ1−k,kν1−k,k
Susck
Nk

Inf (1−k)l
u · Trl,x +

l∑
x=1

ρk,kνk,k
Susck
Nk

Infkl
u · Trl,x

)
1j=1

+ βd

(
l∑

x=1

ρ1−k,kν1−k,k
Susck
Nk

Inf
(1−k)l
d · Trl,x +

l∑
x=1

ρk,kνk,k
Susck
Nk

Infkl
d · Trl,x

)
1j=1

− νI,jCD4 · I
jkl(t)1j≤3 + νI,j−1

CD4 · I
(j−1)kl(t)1j≥2

−
l∑

x=1

Rx,l · Ijkl(t) +
gtot∑
x=l

Rl,x · Ijkx(t)

− γjk
I→D(t) · Ijkl(t)

− µj
I · I

jkl(t),

Ḋjkl(t) = + γjk
I→D(t) · Ijkl(t)

− νD,j
CD4 ·D

jkl(t)1j≤3 + νD,j
CD4 ·D

(j−1)kl(t)1j≥2

−
l∑

x=1

Rx,l ·Djkl(t) +

gtot∑
x=l

Rl,x ·Djkx

− (γj
D→TNNRTI

(t) + γjk
D→TDTG

(t)) ·Djkl(t)

− µj
D ·D

jkl(t),

Ȯjkl(t) = + γFDTG→O · (F jkl
recent(t) + F jkl

int (t) + F jkl
long(t))

+ νFNNRTI ,j−1
CD4 ·O(j−1)kl(t)1j≥2 − νFNNRTI ,j

CD4 ·Ojkl(t)1j≤3

−
l∑

x=1

Rx,l ·Ojkl(t) +

gtot∑
x=l

Rl,x ·Ojkx(t)

− γO→TDTG
·Ojkl(t)

− µj
FNNRTI

·Ojkl(t)

Ṫ jkl
NNRTI(t) = + γjk

D→TNNRTI
(t) ·Djkl(t)

+
(
νTNNRTI ,j−1
CD4 · T(j−1)kl

NNRTI(t)−ν̃
TNNRTI,j−1

CD4 ·T jkl
NNRTI(t)

)
1j≥2

+
(
ν̃TNNRTI ,j
CD4 · T (j+1)kl

NNRTI(t)− νTNNRTI ,j
CD4 · T jkl

NNRTI(t)
)
1j≤3

− (γjl
TNNRTI→SNNRTI

+ γjl
TNNRTI→FNNRTI

) · T jkl
NNRTI(t)

− µj
TNNRTI

· T jkl
NNRTI(t)
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Ṡjkl
NNRTI(t) = + γjl

TNNRTI→SNNRTI
· T jkl

NNRTI(t)

+ γjl
FNNRTI→SNNRTI

· F jkl
NNRTI(t)

− ν̃SNNRTI ,j−1
CD4 · Sjkl

NNRTI(t)1j≥2 + ν̃SNNRTI ,j
CD4 · S(j+1)kl

NNRTI(t)1j≤3

− (γjl
SNNRTI→FNNRTI

+ γSNNRTI→SDTG
(t)) · Sjkl

NNRTI(t)

− µj
SNNRTI

· Sjkl
NNRTI(t)

Ḟ jkl
NNRTI(t) = + γjl

SNNRTI→FNNRTI
· Sjkl

NNRTI(t)

+ γjl
TNNRTI→FNNRTI

· T jkl
NNRTI(t)

+ νFNNRTI ,j−1
CD4 · F (j−1)kl

NNRTI(t)1j≥2 − νFNNRTI ,j
CD4 · F jkl

NNRTI(t)1j≤3

−
∑

x∈PNNRTI

Al,x · F jkl
NNRTI(t) +

∑
x∈PNNRTI

Ax,l · F jkx
1,elig(t)

−
∑

x/∈PNNRTI

Rl,x · F jkl)
NNRTI(t) +

∑
x/∈PNNRTI

Rx,l · F jkx
NNRTI(t)

− (γjl
FNNRTI→SNNRTI

+ γj
FNNRTI→TPI

(t) + γj
FNNRTI→TDTG

(t)) · F jkl
NNRTI(t)

− µj
FNNRTI

· F jkl
NNRTI(t),

Ṫ jkl
PI (t) = + γj

FNNRTI→TPI
(t) · F jkl

NNRTI(t)

+ γj
FDTG→TPI

(t) · (F jkl
recent(t) + F jkl

int (t) + F jkl
long(t))

+
(
νTPI ,j−1
CD4 · T (j−1)kl

PI (t)− ν̃TPI ,j−1
CD4 · T jkl

PI (t)
)
1j≥2

+
(
ν̃TPI ,j
CD4 · T

(j+1)kl
PI (t)− νTPI ,j

CD4 · T
jkl
PI (t)

)
1j≤3

− (γj
TPI→SPI

+ γj
TPI→FPI

) · T jkl
PI (t)

− µj
TPI
· T jkl

PI (t),

Ṡjkl
PI (t) = + γj

TPI→SPI
· T jkl

PI (t)

+ γj
FPI→SPI

· F jkl
PI (t)

− ν̃SPI ,j−1
CD4 · Sjkl

PI (t)1j≥2 + ν̃SPI ,j
CD4 · S

(j+1)kl
PI (t)1j≤3

− γj
SPI→FPI

· Sjkl
PI (t)

− µj
SPI
· Sjkl

PI (t),

Ḟ jkl
PI (t) = + γj

SPI→FPI
· Sjkl

PI (t)

+ γj
TPI→FPI

· T jkl
PI (t)

+ νFPI ,j−1
CD4 · F (j−1)kl

PI (t)1j≥2 − νFPI ,j
CD4 · F

jkl
PI (t)1j≤3
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−
∑

x∈PPI

Al,x · F jkx
PI (t) +

∑
x∈PPI

Ax,l · F jkl
PI (t)

−
∑

x/∈PPI

Rx,l · F jkx
PI (t) +

∑
x/∈PPI

Rl,x · F jkl
PI (t)

− γj
FPI→SPI

· F jkl
PI (t)

− µj
FPI
· F jkl

PI (t),

Ṫ jkl
DTG(t) = + γjk

D→TDTG
(t) ·Djkl(t)

+ γj
FNNRTI→TDTG

(t) · F jkl
NNRTI(t)

+ γO→TDTG
·Ojkl(t)

+
(
νTNNRTI ,j−1
CD4 · T (j−1)kl

DTG (t)− ν̃TNNRTI ,j−1
CD4 · T jkl

DTG(t)
)
1j≥2

+
(
ν̃TNNRTI ,j
CD4 · T (j+1)kl

DTG (t)− νTNNRTI ,j
CD4 · T jkl

DTG(t)
)
1j≤3

− (γjl
TDTG→SDTG

+ γjl
TDTG→FDTG

) · T jkl
DTG(t)

− µj
TNNRTI

· T jkl
DTG(t),

Ṡjkl
DTG(t) = + γjk

TDTG→SDTG
· T jkl

DTG(t)

+ γSNNRTI→SDTG
(t) · Sjkl

NNRTI(t)

+ γjk
FDTG→SDTG

· (F jkl
recent(t) + F jkl

int (t) + F jkl
long(t))

− ν̃SNNRTI ,j−1
CD4 · Sjkl

DTG(t)1j≥2 + ν̃SNNRTI ,j
CD4 · S(j+1)kl

DTG (t)1j≤3

− γjk
SDTG→FDTG

· Sjkl
DTG(t)

− µj
SNNRTI

· Sjkl
DTG(t),

Ḟ jkl
recent(t) = + γj

TDTG→FDTG
· T jkl

DTG(t)

+ γj
SDTG→FDTG

· Sjkl
DTG(t)

+ νFNNRTI ,j−1
CD4 · F (j−1)kl

recent (t)1j≥2 − νFNNRTI ,j
CD4 · F jkl

recent(t)1j≤3

−
∑

x∈PDTG

Al,x · ρDTGdetect
· F jkx

recent(t) +
∑

x∈PDTG

Ax,l · ρDTGdetect
· F jkl

recent(t)

−
∑

x/∈PDTG

Rx,l · F jkx
recent(t) +

∑
x/∈PDTG

Rl,x · F jkl
recent(t)

− (γjl
FDTG→SDTG

+ γj
FDTG→TPI

+ γFDTG→O + γFDTGrec→FDTGint
) · F jkl

recent(t)

− µj
FNNRTI

· F jkl
recent(t),
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Ḟ jkl
int (t) = + γFDTGrec→FDTGint

· F jkl
recent(t)

+ νFNNRTI ,j−1
CD4 · F (j−1)kl

int (t)1j≥2 − νFNNRTI ,j
CD4 · F jkl

int (t)1j≤3

−
∑

x∈PDTG

Al,x · ρDTGdetect
· F jkx

int (t) +
∑

x∈PDTG

Ax,l · ρDTGdetect
· F jkl

int (t)

−
∑

x/∈PDTG

Rx,l · F jkx
int (t) +

∑
x/∈PDTG

Rl,x · F jkl
int (t)

− (γjl
FDTG→SDTG

+ γj
FDTG→TPI

+ γFDTG→O + γFDTGint
→FDTGlong

) · F jkl
int (t)

− µj
FNNRTI

· F jkl
int (t),

Ḟ jkl
long(t) = + γFDTGint

→FDTGlong
· F jkl

int (t)

+ νFNNRTI ,j−1
CD4 · F (j−1)kl

long (t)1j≥2 − νFNNRTI ,j
CD4 · F jkl

long(t)1j≤3

−
∑

x∈PDTG

Al,x · ρDTGdetect
· F jkx

long(t) +
∑

x∈PDTG

Ax,l · ρDTGdetect
· F jkl

long(t)

−
∑

x/∈PDTG

Rx,l · F jkx
long(t) +

∑
x/∈PDTG

Rl,x · F jkl
long(t)

− (γjl
FDTG→SDTG

+ γj
FDTG→TPI

+ γFDTG→O) · F jkl
long(t)

− µj
FNNRTI

· F jkl
long(t). (6)
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