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Abstract 

The unintended biases introduced by optimization and machine learning (ML) models are a 

topic of great interest to medical professionals. Bias in healthcare decisions can cause patients 

from vulnerable populations (e.g., racially minoritized, low-income, or living in rural areas) to 

have lower access to resources and inferior outcomes, thus exacerbating societal unfairness. In 

this systematic literature review, we present a structured overview of the literature regarding 

fair decision making in healthcare until April 2024. After screening 782 unique references, we 

identified 103 articles within the scope of our review. We categorize the identified articles into 

the following three sections: algorithmic bias, fairness metrics, and bias mitigation techniques. 

Specifically, we identify examples of algorithmic, data, and publication bias as they are 
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typically encountered in research and practice. Subsequently, we define and discuss the fairness 

metrics previously considered in the literature, including notions of fairness through 

unawareness, demographic parity, equal opportunity, and equal odds. Lastly, we summarize 

the bias mitigation techniques available in the optimization and ML literature by classifying 

them into pre-processing, in-processing, and post-processing approaches. Fairness in decision 

making is an emerging field, poised to substantially reduce social inequities and improve the 

overall well-being of underrepresented groups. Our review aims to increase awareness of 

fairness in healthcare decision making and facilitate the selection of appropriate approaches 

under varying scenarios.  

 

Keywords: Fairness, Decision making, Optimization, Machine learning, Systematic literature 

review  
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1. Introduction 
An increasing number of healthcare researchers and practitioners are leveraging quantitative 

methodologies to improve decision making. These methodologies aim to achieve desirable 

resource allocation strategies, testing procedures, or treatment protocols. Optimization and 

machine learning (ML) models have been proven to be extremely helpful in medical decision 

making and health policy [1–7]. For example, researchers have been applying optimization 

models to schedule patients based on their predicted no-show rates; and reinforcement learning 

has been used for treatment recommendation to ensure effective prescription and low mortality 

rate [8, 9]. However, such advanced decision-making methods can lead to inequitable 

outcomes as they do not give sufficient attention to underrepresented groups [10], such as those 

who are racially minoritized or low-income. Our survey presents a review of fair decision-

making techniques and concepts in healthcare, revealing how we can leverage optimization 

and ML approaches to ensure equitable access to healthcare.  

 

The unintended biases introduced by optimization and ML algorithms are of special interest to 

practitioners and researchers [11–14]. For example, compared with policies generated for 

White veterans, medical policies generated by reinforcement learning often offer Black 

veterans fewer opportunities to receive cardiovascular screenings. Hispanic patients are  

disproportionately underdiagnosed by convolutional neural networks because they tend to have 

limited access to healthcare resources and the convolutional neural networks cannot perform 

satisfyingly with inadequate data [15]. Such bias may cause decision-makers to distribute fewer 

medical resources to racially minoritized subgroups. Clinicians have utilized machine learning 

models in Warfarin dosing, which shows superior performance in European patients but 

unsatisfying outcome in Asian patients [16, 17].   
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Current literature reviews focus on the biases brought or perpetuated by ML in prediction 

settings. For example, Ahmad and collaborators show that ML-based predictions often yield 

fewer satisfying outcomes in underrepresented groups due to their insufficient data [18]. 

Mishler and coauthors reveal that predictors are sensitive to proportions of different 

populations, and incorporating fairness definitions can help avoid such issues [19]. In contrast 

to previous reviews centering on prediction, we focus on fairness within the context of decision 

making. It is worth noting that our review has some overlaps with Smith et al.’s survey [14]. 

The main differences between our surveys are: 1) their work focuses on fairness in 

reinforcement learning exclusively, while our paper explores other in-processing techniques 

such as mixed-integer programming and stochastic programming; 2) we review different pre-

processing techniques, such as fair data transformers and natural language processing; and 3) 

we consider post-processing methods such as Laplacian smoothing and multi-accuracy 

approaches. The fair reinforcement learning methods cited in Smith et al. are included in our 

review for completion purposes [20–23]. However, we refer the interested reader to their 

review for an in-depth description of these works. 

 

Our review begins by describing our literature search strategy. Then, we portray bias categories 

commonly encountered in decision making, followed by a summary of fairness metrics. Next, 

we present bias mitigation techniques to extend the traditional decision-making framework 

while achieving fair choices. Finally, we outline our survey's contributions and limitations, as 

well as promising future directions. 

 

2. Search Strategies 
For our systematic review, we searched the Google Scholar database for records related to fair 

decision making in healthcare. The electronic search strategy used the terms "decision making" 
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and "healthcare", combined with one of the terms in "bias", "fairness", or "equity", and one of 

the terms in "optimization", "machine learning", "deep learning", "reinforcement learning", 

"game", or "network". The keyword combinations we used are demonstrated in Figure 1. We 

included all records mentioning these keywords in the publication title, abstract, or full text. 

The publication language was restricted to English. The search’s last update was in April of 

2024.  

 

Figure 1: Key words combination for literature review 
 
The titles and abstracts of the articles were screened by one investigator, then the selected 

manuscripts were double-checked by another researcher. Records were excluded if the 

publications: 1) did not address healthcare topics and could not be extended to healthcare easily; 

2) did not focus on decision making (e.g., papers focusing on predictions); or 3) only included 

introductory text or conference abstract. Of the remaining publications on methodology or 

review of bias, fairness metrics, and bias mitigation methods, the full text was screened by 

investigator before the final discussion with researcher. The articles and surveys are 

categorized into three sections: bias in healthcare (section 3.1), fairness metrics (section 3.2), 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placed thisthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.03.16.24304403doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.16.24304403


and fair decision-making models and algorithms (section 3.3). Discordance between authors 

was settled through discussion until the consensus had been achieved.  

 

Fair decision-making concepts (i.e., types of biases, fairness metrics, or bias mitigation 

approaches) were extracted from the full text of the selected works by investigator. To ensure 

the accuracy and completeness of the extracted aspects, the selected concepts were double-

checked by researchers. All chosen concepts were grouped into section 3.1, section 3.2 or 

section 3.3 to reflect their relations.  

 

3. Literature Review Results 
The systematic review led to 782 records; 208 of them were unrelated and could not be easily 

transferred to the healthcare domain, and 212 of them did not focus on decision making. 

Furthermore, 70 records were excluded because they were introductory text or conference 

abstracts. Of the remaining articles, 153 papers discussed fair decision making in healthcare 

without a focus on methodology or specific examples of application. In 139 papers left, we 

excluded 36 additional articles since they did not meet the inclusion criteria described in section 

2. Of the remaining 103 papers, 21 were review papers and 82 were original papers. The flow 

diagram for literature review is shown in Figure 2. 

 

Of the 103 included papers, all concepts related to fair decision-making in healthcare were 

extracted. We created a structured coverage of the key findings in the following sections. 

Section 3.1 categorizes biases into three groups: 1) algorithmic bias, 2) data bias, and 3) 

publication bias. Section 3.2 classifies fairness metrics as one of the following three types: 1) 

fairness through unawareness, 2) demographic parity, and 3) equal opportunity. Section 3.3 
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categorizes bias mitigation techniques into three distinct classes: pre-processing, in-processing, 

and post-processing methodologies. 

 

For the in-processing section, we describe the cutting-edge optimization and ML methods used 

to alleviate bias. At a high level, there are two mainstream approaches to achieving fairness in 

these methods: incorporating fairness in objectives or adding fairness-enhancing constraints. 

 

 

Figure 2: Flow diagram for the systematic literature review of fair decision making in 

healthcare 

 

3.1 Bias in Healthcare Decision Making 
Biases can exist in data and algorithms, which may impede decision-making systems from 

generating equitable outcomes among subgroups. In this section, we summarize some sources 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placed thisthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.03.16.24304403doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.16.24304403


of bias impacting decision making across healthcare domains. These biases can be categorized 

into one of the following classes: algorithmic bias, data bias, and publication bias. Section 3.3 

of our survey will summarize methods addressing these biases. 

 

3.1.1 Algorithmic Bias 

Algorithmic bias stems from computational procedure failing to consider fairness in their 

execution. This type of bias is a result of improper algorithmic design, which consequently 

may influence user behavior [24]. For example, optimization-based vaccine allocation 

algorithms aiming to maximize overall social welfare may exacerbate demographic disparities 

since underrepresented populations may have less access to vaccines under this objective [25]. 

Similarly, ambulance allocation models may fail to consider fairness of unit availability across 

different populations by solely maximizing the overall survival rate. While the survival rate 

may be high among the entire population, it can be low among patients from vulnerable 

populations, such as people with lower socioeconomic status. Algorithmic bias also exists in 

ML models. For instance, Samorani and coauthors have found that ML-based scheduling 

models have a higher likelihood of assigning Black patients to overbooked slots [26], resulting 

in worse service experience and longer waiting time.  

 

3.1.2 Data Bias 

Data bias refers to the unfairness generated by prejudiced data sources. Unbiased datasets are 

often necessary for high-quality decision-making model [27]. However, socioeconomic and 

racial disparities in resource availability may lead to skewed datasets [28]. Two common data 

biases in healthcare are aggregation biases and representation biases. Aggregation bias refers 

to the effect of aggregating data without considering disparities among subgroups [29]. For 

example, hemoglobin A1c level, a widely accepted indicator of diabetes, vary across sex and 
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ethnicity. If we ignore the subgroup differences in the data and draw conclusions for 

subpopulations based on the entire population, we may introduce aggregation biases [10, 11, 

30, 31]. Representation bias occurs when the data cannot represent the characteristics of all 

subgroups [32–36]. For instance, providers may have fewer electronic health records (EHR) 

for people from lower socioeconomic status as they may have limited access to electronic 

healthcare systems. Hence, we can expect more missing data among people from lower 

socioeconomic status, which indicates their data cannot demonstrate their overall 

characteristics. If decision-making models are built with data underrepresenting this 

population, the developed models may be biased against those with lower socioeconomic status 

[37, 38].  

 

Another source of data bias is response bias. Response bias occurs when data are labeled 

inconsistently or collected by unreliable methods. Response bias frequently happens in self-

reported data or surveys due to participants’ inaccurate answers. For instance, when medical 

students rate their mental health conditions in surveys, they tend to provide socially acceptable 

answers. However, such answers often do not align with their true mental conditions as students  

[39]. Since policymakers may harness data to make public health decisions, response bias can 

skew decision making [40]. Therefore, models built from data with response bias may 

underestimate the seriousness of medical students’ mental health problems [28]. 

 

3.1.3 Publication Bias 

Publication bias happens when the researchers’ decision to publish a paper depends on the 

study results. Compared with studies without positive results, publishing medical studies with 

positive results is generally easier [41]. This phenomenon may lead to the overestimation of 

certain clinical treatments as evidence against a treatment is not made available. Medical 
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practitioners may then make treatment decisions based on biased outcomes, giving rise to 

degraded treatment effects. 

 

An example of publication bias occurred during the COVID-19 pandemic. The academic 

papers concerning COVID-19 treatment were published rapidly within this period. Most 

publications showed promising outcomes of COVID-19 treatments, while less satisfying 

research results only had a slim chance of being published [42]. When related treatments were 

applied to the general population, many of these treatments produced inferior outcomes 

compared to publication results [42]. Another example comes from the Cochrane Review on 

topical benzoyl peroxide, a widely used acne treatment. In 2019, Yang and coauthors found 

that most benzoyl peroxide studies before 2015 were still unpublished because of their negative 

results [43]. This finding suggests published literature could not reliably reflect the overall 

effect of benzoyl peroxide, and medical practitioners applying benzoyl peroxide may not have 

achieved the desired treatment effects. 
 

3.2 Fairness Metrics 

In this section, we present the evaluation of three types of metrics: fairness through 

unawareness, demographic parity and equal opportunity. To portray the ideas of different 

fairness metrics, we use a vaccine distribution example. For illustration purposes, we restrict 

our attention to only one binary sensitive attribute, denoted by 𝐴. An example of this type of 

attribute may be a dichotomized version of race, which includes White and people of color as 

its categories. The metrics covered by the section are summarized in Table 1. 

Table 1: Definition of fairness metrics 
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 Fairness 

through 

unawareness 

Demographic parity Equal opportunity 

Sensitive 

attribute 

No Yes Yes 

Individual 

qualification 

No No Yes 

Definition 𝑋 ∩ 𝑔 = ∅	 

 

After feeding X to 

decision-making models, 

𝐸)𝑟!!+ = 𝐸(𝑟!") 

After feeding X to 

decision-making models, 

within truly qualified 

patients, 

𝐸)𝑟!!+ = 𝐸(𝑟!")  

 

𝑋 denotes entire characteristics of the population, 𝑔 denotes the sensitive attribute (in our case 

sensitive attribute is race), 𝑋" denotes the characteristics of qualified patients, 𝑟!! denotes the 

cumulated rewards of White patients while 𝑟!" denotes the cumulated rewards of people of 

color. A qualified subgroup represents a subset of the general population that may be of special 

interest to decision makers. For example, certain patients, such as senior citizens and those 

residing in areas with inadequate healthcare resources, are considered qualified patients as they 

may be more susceptible to the disease. 
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3.2.1 Fairness Through Unawareness  

Fairness through unawareness is the base fairness metric [15]. It does not consider any sensitive 

attribute during the decision-making process. Within the context of our vaccination distribution 

example, fairness through unawareness means the model is considered fair if it does not 

consider race while deciding the vaccination distribution. However, simply ignoring sensitive 

attributes may not remove inequity, because other variables can be highly correlated with the 

sensitive traits. This method has been proven to be invalid in many cases [44]. 

 

3.2.2 Demographic Parity  
The demographic parity fairness metric aims to ensure the expected reward of a decision-

making model is independent of sensitive attributes [13]. Independence of sensitive attributes 

indicates the outcomes (i.e., expected cumulative rewards) must be equivalent in privileged 

and unprivileged groups [45]. In our vaccine distribution example, demographic parity ensures 

that, when other information is the same (e.g., age, socioeconomic status), White patients and 

patients of color have the same expected cumulated rewards. The problem with demographic 

parity is that it does not consider the population’s ground-truth qualifications. For example, 

suppose patients of color are more vulnerable to a disease; this indicates that these patients 

have a higher ground-truth qualification and thus should receive a greater expected cumulative 

reward from the vaccine. If we apply demographic parity in this case, we fail to consider the 

varied ground-truth qualification across races in decision making. 

 

3.2.3 Equal Opportunity  
Similar to demographic parity, equal opportunity verifies whether the expected cumulated 

rewards for privileged and unprivileged groups are the same [24]. However, demographic 

parity applies to the entire population, while equal opportunity applies solely to a qualified 
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population [45]. Within our example, this metric requires that within a qualified population, 

the cumulated expected reward of receiving vaccine among the unprivileged group (𝐴	 =

	𝑝𝑒𝑜𝑝𝑙𝑒	𝑜𝑓	𝑐𝑜𝑙𝑜𝑟) is the same as the cumulated expected reward of receiving vaccine among 

the privileged group (𝐴	 = 	𝑊ℎ𝑖𝑡𝑒). However, equal opportunity fails to investigate fairness 

among truly unqualified people. 

  

In summary, fairness through unawareness is the most straightforward metric but is invalid in 

many settings. Demographic parity evaluates if decision making is independent of sensitive 

attributes within the entire population. Equal opportunity measures whether decision making 

is independent of sensitive attributes among a qualified subgroup, which applies to smaller 

populations compared to demographic parity.  

 

3.3 Bias Mitigation 

In this section, we summarize different bias mitigation approaches used across healthcare 

domains. The methods can be categorized into pre-processing, in-processing, and post-

processing. Pre-processing mechanisms clean and manipulate the input data before it is used 

in decision-making models [46]. In-processing methodologies refer to building unbiased 

algorithms directly [47]. Post-processing methods calibrate algorithmic outcomes to achieve 

fairness [48].  

 

3.3.1 Pre-Processing 

Datasets may be biased, which can cause skewed decisions. For instance, when a dataset is 

imbalanced, decisions may be biased toward subpopulations with smaller sizes [49]. Pre-

processing methods can help circumvent possible biases in this setting. There are five 
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commonly used approaches for pre-processing: reweighting the underrepresented populations, 

resampling, natural language processing, post-survey analysis, and fair data transformers. The 

identified pre-processing methods, along with their respective reference, areas of application, 

fairness metrics, and targeted bias categories, are summarized in Table 2.  

 

Table 2: Pre-processing bias mitigation methods 

Method(s) Reference(s) Area of 

application 

Fairness 

metric 

Targeted bias 

Reweighting Nilsson et al. 

[50] 

Medical diagnosis Demographic 

parity 

Representation 

bias 

Kumar et al. 

[51] 

Medical diagnosis Demographic 

parity 

Representation 

bias 

Peacock et al.  

[52] 

Resource 

allocation 

Demographic 

parity 

Representation 

bias 

Resampling Chawla et al. 

[53] 

Clinical treatment Demographic 

parity 

Representation 

bias 

Mohamed et al.  

[54] 

Medical diagnosis Demographic 

parity 

Representation 

bias 

Chawla et al.  

[53] 

Medical diagnosis Demographic 

parity 

Representation 

bias 

Natural language 

processing 

Minot et al. [55] Medical diagnosis Equal 

opportunity 

Representation 

bias 

Post-survey 

analysis 

Serra et al.  [56] Medical diagnosis Demographic 

parity 

Response  

bias 
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Fair data 

transformer 

Biswas et al. 

[46] 

N/A Demographic 

parity 

Aggregation  

bias 

 

Reweighting. Reweighting assigns greater weights to underrepresented instances [50]. Biases 

may be introduced to decision-making tasks if we fail to process underrepresented population’s 

data. Skewed data can also lead to threatening consequences for underrepresented populations. 

For example, African Americans and Asians have fewer instances in genome studies, which 

gives rise to higher misclassification rates for the two subgroups in clinical research [11]. 

Classification methods can investigate the features of each piece of data and use them to decide 

which category or label the data belongs to. Since physicians rely on classification methods for 

diagnosis and treatment design, varying misclassification rates for different subgroups can 

trigger bias in decision making. A remedy for similar issues is to assign greater weights to 

underrepresented instances, hence data from all populations play an equal role in the modeling 

process [50]. Kumar and coauthors have shown distributing more weight to underrepresented 

groups can improve fairness in medical image classification by 8% [51]. However, some 

reweighting methods, such as inverse propensity score weighting, can potentially increase 

biases since they calibrate the distributions of all variables simultaneously [57].  

 

Resampling. Resampling is a technique to ensure the data is balanced (i.e., has an near-equal 

number of instances from each subgroup) by repeatedly drawing samples from the same data 

[49]. In practice, the majority groups may disproportionately outnumber the remaining groups. 

Using imbalanced data directly may favor the majority groups while disregarding the minority 

ones. To avoid this concern, we can resample from the minority groups, so the majority and 

minority groups have approximately the same size. For example, Chawla and collaborators 

deploy a synthetic minority resampling technique to decide whether a patient needs diabetes 
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treatment. Their method successfully shrinks the gap of true positive rates between majority 

and minority groups [53]. However, medical data (such as EHR) are typically complex, and 

resampling may lead to overfitting [57]. Researchers and practitioners may avoid overfitting 

by using cross-validation, which provides a more accurate estimate of a model's performance 

on unseen data. 

 

Natural language processing. Natural language processing removes biased information from 

text data before feeding data to decision-making algorithms [58]. Due to the complexity of 

healthcare data, natural language processing is becoming increasingly popular in fair pre-

processing settings. This step ensures the algorithms do not consider sensitive attributes during 

decision making. For example, Minot and coauthors identify and remove gender-related 

languages from EHRs by using bidirectional encoder representations. Then, they deploy 

classification algorithms to evaluate health conditions and give clinical suggestions. Their 

results show that fairness across genders improves with only a mild degradation in performance 

[59].  

 

Post-survey analysis. Post-survey analysis for data bias mitigation refers to the process of 

analyzing survey data after its collection to identify, assess, and correct various types of 

biases that may have been introduced during the data collection phase [27].  For example, 

some respondents might misremember their health history; hence the treatment effect for 

them is likely to be inferior compared to respondents remembering correctly.  Researchers 

can mitigate this by cross-referencing survey responses with medical records or by shortening 

the recall period to mitigate such bias [56]. 

 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placed thisthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.03.16.24304403doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.16.24304403


Fair data transformers. Fair data transformers extract features from the input data in a fair 

way. Such transformers modify the input data to achieve fairness [46]. Data transformers, such 

as principal component analysis, are popular techniques for pre-processing data. In practice, 

multiple transformers are typically evaluated for a specific fairness metric (e.g., demographic 

parity). The transformers achieving the fairest output are used to produce inputs for ML and 

optimization algorithms. Biswas and collaborators have shown that a proper data transformer 

can significantly improve the fairness of outcomes [46]. Researchers have observed that among 

data transformers, selecting a subset of features can introduce unfairness [60]. Feature 

standardization and non-linear transformers are relatively fair transformers, although they can 

be biased under special conditions such as having too many outliers. These observations 

indicate that the appropriate transformer must be selected on a case-by-case basis. Though fair 

data transformers have not been deployed in healthcare to the best of our knowledge, it is easy 

to extend a fair data transformer to healthcare data preprocessing. For example, in the context 

of vaccination distribution, we can collect data such as age, sex, population density, and 

incidence rate in the areas where individuals live. Then, we apply several fair data transformers 

and feed the transformed data into the same decision-making algorithm. After the algorithm 

outputs vaccination distribution decisions, we can evaluate the fairness of policies and choose 

the data transformer that produces the fairest output.   

 

3.3.2 In-Processing 

In-processing methodologies incorporate one or more fairness metrics directly in the design of 

algorithms to lessen biases. These bias mitigation techniques are attracting increased attention 

within domains such as resource allocation, scheduling, and clinical treatment [26, 61]. Overall, 

we find six typically used in-processing methods in the literature: mixed-integer programming, 

stochastic programming, deep reinforcement learning, survival analysis, multi-objective 
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Markov Decision Process, and constrained Markov Decision Process. Table 3 demonstrates 

the methods and the corresponding references and applications.  

 

Table 3: In-processing bias mitigation methods 

Method(s) Reference(s) Area of application Fairness metric 

Mixed-integer 

programming 

Acuna et al. [62] Resource allocation  Demographic 

parity 

Lodi et al.  [63] Resource allocation Equal opportunity 

Radovanović et al.  [64]  Resource allocation Demographic 

parity 

Ala et al.  [65] Scheduling Demographic 

parity 

Zhong et al.  [66] Scheduling Demographic 

Argyris et al.  [67] Resource allocation Equal opportunity 

Neophytou et al.  [68] Resource allocation Demographic 

parity 

Rastegar et al.  [69] Resource allocation Equal opportunity 

Wolbeck et al.  [70] Scheduling Demographic 

parity 

Gunnarsson et al.  [71]  Resource allocation Demographic 

parity 

Sepulveda et al.  [72] Resource allocation Demographic 

parity 

Klyve et al.  [73] Scheduling Demographic 

parity 
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Method(s) Reference(s) Area of application Fairness metric 

Gross et al.  [74] Scheduling Demographic 

parity 

Akshat et al.  [75] Resource allocation Demographic 

parity 

Azizi et al.  [76] Scheduling Demographic 

parity 

Proano et al.  [77] Scheduling Demographic 

parity 

López et al. [25] Resource allocation Equal opportunity 

Stochastic programming Ala et al.  [78] Scheduling Demographic 

parity 

Yin et al.  [79] Resource allocation Demographic 

parity 

Deep reinforcement 

learning 

Budhiraja et al. [80] Scheduling Equal opportunity 

Yang et al. [21]  Clinical treatment Demographic 

parity 

Yu et al. [81]  

 

Clinical treatment Demographic 

parity 

Li et al. [82]  Resource allocation Demographic 

parity 

Atwood et al.  [83] Resource allocation Equal opportunity 

Fair survival analysis Keya et al.  [84] Resource allocation Demographic 

parity 
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a This method may be easily extended to healthcare settings. 

 

Mixed-integer programming. Mixed-integer programming has been widely used to ensure 

fairness in decision making [62–77]. Emergency department overcrowding has become a 

nationwide crisis over the last decade [62]. To resolve the overcrowding issue, researchers have 

applied mixed-integer programming to build fair medical resource distribution models. Mixed-

integer programming is a type of constrained optimization problem that allows for both integer 

and continuous variables in its objective and constraints [86]. For example, Acuna and 

coauthors added equity constraints to ensure that the minimal quality of care for every 

emergency is greater than or equal to a threshold 𝛽 in an ambulance allocation situation [62]. 

These constraints guarantee patients suffering from uncommon diseases still receive necessary 

clinical support. Their equity constraints are demonstrated below:  

 

!𝑞{",$}𝑋{",$}
$∈'

≥  β,   ∀𝑖 ∈ 𝐼, 

 

where 𝐼	denotes the set of all possible diseases and 𝑖 ∈ 𝐼  denotes disease 𝑖 . Moreover, 𝐽 

denotes the set of all emergency departments, 𝑗 ∈ 𝐽 refers to the emergency department 𝑗, 

  𝑞{$,&} is the quality of care for disease 𝑖 offered by emergency department 𝑗, and 𝑋{$,&} is a 

binary decision variable. If department 𝑗  provides the care for disease 𝑖 , then 𝑋{$,&}  =1, 

Method(s) Reference(s) Area of application Fairness metric 

Multi-objective Markov 

Decision Process 

Ge et al. [85] N/Aa Equal opportunity 

Constrained Markov 

Decision Process 

Ge et al. [20] N/Aa Demographic 

parity 
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otherwise 𝑋{$,&} = 0. Lastly, 𝛽 ∈ [0,1] is selected based on domain experts' suggestions, where 

0 denotes the worst quality and 1 the best quality. 

 

Another ubiquitous way to fulfill fairness requirements in healthcare decision making is to 

modify the objective function of an optimization approach. When medical resources are scarce, 

people from vulnerable groups may have lower access to them. To ensure fairness towards 

vulnerable populations, the objective function of an algorithm can be set to maximize the 

smallest number of allocated resources across all population subgroups [25]. This objective 

ensures that each subgroup receives their required medical support. 

 

Stochastic programming. Researchers have also leveraged stochastic programming 

techniques to generate in-processing bias mitigation techniques [78, 79]. These techniques 

optimize an objective function while representing uncertainty through probability distributions 

[87]. To optimize patients’ waiting time, we can add fair constraints in stochastic optimization 

models to limit the expected difference between the maximum waiting time and minimum 

waiting time. The constraint can be formularized as [78]: 

 

max
(,)

E0𝑊{)}
{(}2 − min

(,)
E0𝑊{)}

{(}2 ≤  α.       

  

Here, 𝑘  =  1,2, … 	𝑇 denotes the time slots when decisions are made, 𝑛 denotes the 𝑛-th patient, 

and 𝛼 ≥ 0	is the threshold suggested by domain experts. The expected waiting time of the 𝑛-

th patient scheduled to interval 𝑘 is represented by 𝐸 K𝑊{(}
{)}L. These constraints guarantee the 

expected waiting time among all patients does not vary drastically. 
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Deep reinforcement learning. Reinforcement learning and deep learning play a pivotal role 

in in-processing methods. Reinforcement learning is a type of ML where the algorithms learn 

to make decisions by performing actions and observing the results in an environment of interest 

[88]. Deep learning uses multiple neural network layers and activation functions to extract new 

features from the input data [89], being capable of recapitulating and modeling complex 

patterns in data. Deep reinforcement learning is a combination of deep learning and 

reinforcement learning. Deep reinforcement learning can be used to solve Markov Decision 

Process (MDP) models. An MDP is a mathematical framework used for modeling decision 

making in situations where outcomes are partly random and partly under the control of a 

decision-maker [90]. In practice, an MDP may encompass a massive number of system 

configurations (i.e., states), becoming computationally intractable by traditional reinforcement 

learning methods. However, deep reinforcement learning can take advantage of deep learning 

to represent a policy (i.e., sequence of procedures for decision making at each state) as a neural 

network and learn to find a policy that optimizes model outcomes (i.e., rewards) [80–83]. Yang 

et. al redefine the rewards of deep reinforcement learning to achieve fairness [21]. In their 

approach, the absolute value of rewards of a certain subgroup are smaller if the size of the 

group is large. The reward function is demonstrated below: 

     	

𝑅;𝑠* , 𝑎+, 𝑙+? = 	 A
𝜆+,												𝑖𝑓	𝑎+ = 𝑙+
−𝜆+, 𝑖𝑓	𝑎+ ≠ 𝑙+

 

 

Here, 𝑠* denotes the state at time 𝑡, 𝑎+ denotes the diagnosis of the model for a person in group 

𝑝, and 𝑙+ denotes the ground-truth disease of the patient from group 𝑝. The parameter 𝜆+ is the 

reward of group 𝑝 adjusted by its size. Specifically, a positive reward is given if the agent gives 

the correct diagnosis, and a negative reward is given otherwise. The authors require the 
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absolute reward for minorities becomes greater than the absolute reward of majorities. This 

definition of rewards helps the solution approach give more attention to minority groups.  

 

Fair survival analysis. Fair survival models provide an additional tool for decision making in 

healthcare settings [84]. Traditional survival analysis estimates the time until an event of 

interest [91]. Fair survival models incorporate event probabilities and fairness violations. The 

objective of the fair model is below: 

 

𝑔(𝛽) = 	−;𝐿,(.) + 𝜆𝐹,(.)?, 

 

where 𝐿,(.)	 is the log-likelihood of a Cox proportional-hazards model that measures the 

probability of getting a disease during a certain period and 𝐹,(.)  is the fairness penalty. 

Moreover, 𝜆	is the weight of the fairness penalty in the objective. The difference between the 

highest and lowest probabilities of disease incidence within a cohort is utilized as the metric 

for evaluating fairness. Then, they feed the input data to train the model (i.e., learn the 

parameters 𝛽 to optimize the objective). The outcome is used to generate a waitlist of patients, 

which decides the sequence of resource allocation. Their numerical experiment shows the fair 

survival model can substantially boost the group disease risk range. 

 

Multi-objective Markov Decision Process. While it has not been applied to healthcare 

settings to the best of our knowledge, the multi-objective MDP is a promising approach to 

alleviate the potential effect of bias. This model is an extension of the traditional MDP with 

the difference that the reward function depends on a utility objective and a fairness objective 

[92]. Ge and coauthors have applied the Pareto frontier to identify the policy that optimizes 

both utility and fairness elements [85]. The modified reward function is: 
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𝑓0;𝑅(𝑠, 𝑎)? = 𝑤1𝑅(𝑠, 𝑎) 

 

where 𝑅(𝑠, 𝑎) is a reward vector containing rewards 𝑟 for all objectives after taking the action 

𝑎 at state 𝑠, and 𝑤 is the weight for each objective. They apply reinforcement learning to learn 

the weight 𝑤 . Their result shows that there exists a trade-off between utility and fairness 

performance, and we can choose the final policy based on user preferences [85]. Though multi-

objective MDP has not been applied to fair decision making in healthcare to the best of our 

knowledge, it is possible to deploy these methods to generate fair clinical decisions. For 

example, if we need to guarantee similar vaccination rates between males and females, we can 

add this fairness objective into our model. The Pareto frontier can return optimal policies that 

consider both vaccine utility and distribution fairness. 

 

Constrained Markov Decision Process. The Constrained Markov Decision Process (CMDP) 

is another prospective direction. Compared to traditional MDP, CMDP can accommodate fair 

constraints in decision making [93]. In CMDP, we can formulate the cost function regarding 

fairness, and then choose policies leading to fairness cost less or equal to the threshold [20]. 

The constraint can be formulated as: 

 

𝐸	 N!𝛾 	𝐶*

3

*45

Q ≤ 𝑑, 

 

where 𝐶* denotes the fairness cost at time 𝑡, 𝛾 ∈ (0,1) is a discounted factor representing the 

fairness violations at the current time over the future, and 𝑑  denotes the threshold for 

accumulated discounted fairness cost. This model has not been utilized in fair healthcare 

decision making to the best of our knowledge. However, we can model fairness metrics as 
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constraints, and choose a set of policies that satisfy these constraints. Afterward, we can 

investigate which policy in this set gives the optimal discounted accumulated reward. 

 

3.3.3 Post-processing 

Post-processing methods calibrate algorithmic outcomes to achieve fairness. We identify the 

following post-processing methods relevant to healthcare applications: Laplacian smoothing, 

multi-accuracy approaches, and expert systems. The post-processing bias mitigation methods 

included in this review are shown in Table 4. 

Table 4: Post-processing bias mitigation methods 

Method(s) Reference(s) Area of application Fairness metrics 

Laplacian smoothing Petersen F et al. [48]  N/A Demographic parity 

Multi-accuracy Kim et al. [94] N/A Demographic parity 

Expert systems 

 

Tang et at. [22] Clinical treatment N/A 

Lu et at. [95]  Clinical treatment N/A 

Tang et at.  [22] Clinical treatment N/A 

Yu et al.  [96] Clinical treatment N/A 

 

Laplacian smoothing method. The Laplacian smoothing method is a technique to reduce the 

noise of the data while preserving the important characteristics of the solution technique [97]. 

For instance, we can take advantage of this method to guarantee comparable results among 

similar individuals while preserving the performance (i.e., satisfying loss) of the algorithms 

[48]. Researchers have shown this technique may improve outcome consistency by 

approximately significantly. The Laplacian smoothing method can be extended to healthcare. 

For example, after a reinforcement learning algorithm produces treatment plans, a Laplacian 

smoothing method can guarantee comparable treatment plans are assigned to similar patients.  
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Multi-accuracy approaches. We can also apply multi-accuracy approaches to combine 

several weak learners to achieve high accuracy rates among all subpopulation groups [94]. 

These methods play a vital role in classification techniques by assigning larger weights to 

samples identified incorrectly in weak learners. Subsequently, the following weak learners pay 

extra attention to misidentified samples and adjust their results accordingly [98]. This post-

processing technique can improve the accuracy rate of subgroups with the worst classification 

error, which shows a promising future for complex problems such as population health 

assessment. With accurate and fair classification for target populations, physicians can deploy 

algorithm-based treatment design to achieve desirable medical outcomes.  

 

Expert systems. Lastly, the clinical expertise of medical practitioners may help increase the 

fairness of algorithms [96, 99, 100]. For example, reinforcement learning techniques can 

suggest several near-equivalent actions, then we can rely on clinicians to decide what actions 

can lead to the fairest outcome [22]. This approach may enable improved decisions to 

overcome potential biases while leveraging practitioners’ experience.  

 

The distribution of bias mitigation techniques across the identified papers is demonstrated in 

Figure 3. Moreover, we include the distribution of papers across areas of application in Figure 

4.  
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Figure 3: Distribution of papers in bias mitigation approach 
 
 

 
Figure 4: Distribution of papers across topics 
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4. Conclusion and Future Research Directions 
Compared to traditional decision-making techniques, fair decision-making approaches attempt 

to yield near-optimal and equitable outcomes. This review summarized the state-of-the-art fair 

decision-making approaches in healthcare settings. We found that even though a plethora of 

fairness methods has been proposed, most of them focus on prediction rather than decision 

making, and our survey bridges this gap. First, we presented different categories of biases for 

data and models. Then, we described multiple fairness metrics that have been used in existing 

literature. One of the main contributions of our review is that we categorized the literature on 

decision making in healthcare into pre-processing, in-processing, and post-processing bias 

mitigation methods. We elaborated on the high-level ideas and examples for methodologies 

mentioned in our survey. Another important contribution of this systematic review is that we 

summarized multiple fairness metrics and pointed out their use across applications. Lastly, we 

explored multiple bias mitigation technologies that have not been applied in healthcare and 

illustrated how they may be employed in healthcare settings. 

 

Since the most relevant research projects to this review were conducted in the United States, 

most examples in our paper are cases in this country. Thus, this review may not sufficiently 

reflect the reality in other parts of the world. Additionally, we might have missed keywords 

during our literature review, leading to the omission of works that used excluded terms. Finally, 

we limited our search to articles in English, so we were unable to capture potentially insightful 

publications in other languages. 

 

Several areas are worth exploring for future research directions. The first promising field is 

algorithm explainability. Many decision-making algorithms in healthcare are considered black 

boxes that are hard to understand. The lack of explainability is an obstacle for practitioners to 
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identify if the model is relying on biased features [89]. Explainable models can resolve this 

concern since they can reveal underlying structures in a clear way, contributing to removing 

potential decision biases. Another related emerging field is the combination of interpretability 

and fairness. Fair interpretable models guarantee the algorithmic outputs align with 

professionals’ instincts. While increased interpretability can win more trust among 

practitioners, it may hurt the model’s fairness. Hence, we need to consider how to strike a 

balance between fairness and interpretability [101].  

 

Another promising field is the study of context-aware fairness metrics. Researchers have found 

that different fairness metrics can be incompatible. Thus, we cannot expect a model to satisfy 

all fairness metrics [98].  In such contexts, it is critical to understand which type of metric we 

should consider in a specific circumstance. Identifying the best fairness metric for a specific 

problem will likely require cooperation between modelers and domain experts [102]. Exploring 

the combination of multiple fairness metrics in decision making is also a potential direction, 

allowing algorithms to satisfy multiple fairness requirements simultaneously. 

 

It is also worthwhile to bridge the gap between prediction and fair decision making. Current 

research usually follows a "prediction then optimization” pipeline, but innovative approaches 

can be explored to incorporate the decision error induced by prediction into the objective 

function of optimization [103]. These approaches have the potential to achieve fair prediction 

and optimization simultaneously. 

 

Given the growing importance of decision-making approaches in healthcare, fairness 

considerations and bias-mitigation approaches are increasingly vital. Our survey may aid 

practitioners in 1) understanding potential sources of biases in decision making; 2) choosing 
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the appropriate fairness metric to evaluate decision-making models; and 3) selecting the 

appropriate pre-processing, in-processing, and post-processing techniques to reduce bias. In 

conclusion, this survey sheds light on the current state and challenges of fair decision-making 

in healthcare, highlighting the crucial need for continuous improvement in policies and 

practices to ensure equitable healthcare outcomes for all individuals. 
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