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Abstract4

The synergy between the spread of infectious diseases and individual behavior is widely recognized. Our pioneering
methodology introduces a model based on agents embedded within adaptive temporal networks, providing a nu-
anced portrayal of daily interactions through an agent-based paradigm. Each agent encapsulates the interactions of
individuals, with external stimuli and environmental cues influencing their conduct. Comprising three intertwined
elements—individual behavior, social dynamics, and epidemiological factors—the model has been validated against
real-world influenza outbreaks, demonstrating superior performance compared to traditional methodologies. Our
framework exhibits extensive versatility and applicability by encapsulating individual-level dynamics through ele-
mentary rules and simulating complex social behaviors such as social consciousness.

Keywords: Individual-based models, Self-organized systems, Epidemics model, multi-scale, Behavior, awareness,5

FCM6

1. Introduction7

The probability of large-scale disease outbreaks, such as epidemics and pandemics, increases with global connec-8

tivity. The Severe Acute Respiratory Syndrome (SARS) outbreak in 2003 (cdc, b), Ebola outbreaks (cdc, a), Asian9

influenza in 2017 (https://www.facebook.com/WebMD), and COVID-19 (Kilbourne, 2006) are among the most severe10

outbreaks in recent history.11

Death and illness are the immediate impacts of disease outbreaks, although their socioeconomic effects can be12

substantial (Barrett et al., 2011a). Depending on the overall state, short-term conditions can induce trends that lead to13

new social situations. For example, poor economic situations and disease prevalence can lock society into persistent14

states of poor health and wealth (Bonds et al., 2010). Decease outbreaks and prevalence can also affect government15

instability. Letendre et al. (2010) analyzed the effects of disease outbreaks on social health and wealth, and their16

impact on political systems. Persistent disease threats can lead to closing business (Bartik et al., 2020), educational17

impacts (Rosenthal et al., 2020), disproportionate burden of racial minorities and poor people (Fortuna et al., 2020),18

general heightened anxiety levels (Vigo et al., 2020) and domestic violence (Kofman and Garfin, 2020).19

The essence of epidemic modeling resides in the intricate web of human interactions, influenced by diverse fac-20

tors including economic conditions, social norms, cultural practices, and individual behaviors. Epidemiologists and21

healthcare experts employ an array of methodologies to comprehend the complexities of disease transmission dynam-22

ics (Barrett et al., 2011b), enabling them to predict and respond effectively to outbreaks. Traditional epidemiological23

models utilize ordinary differential equations to delineate disease dynamics, categorizing individuals into distinct24

compartments based on shared characteristics and computing the aggregate movement between these compartments25

over time (Hethcote, 2000). A plethora of literature offers insights into the application and interpretation of these26

classical models (Bjørnstad et al., 2020; Cutts et al., 2020; Epstein et al., 2008; Giordano et al., 2020).27

Agent-based models (ABM) represent a distinct category of epidemic modeling, where individuals are depicted28

as agents endowed with unique attributes and behaviors. These agents interact within a simulated environment,29

generating opportunities for disease transmission. Local interactions give rise to outcomes such as the number of30

cases, enabling the assessment of outbreak intensity while considering localized characteristics and transmission31

routes. ABMs offer granularity, allowing the integration of factors like seasonal migrations, spatial distributions,32
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demographics, cultural practices, and individual behaviors (Railsback and Grimm, 2019). Research exploring the33

application of agent-based models spans various domains Adiga et al. (2018); Chen et al. (2016); Hoertel et al. (2020);34

Kuylen et al. (2020); Yeom et al. (2014).35

The spread of diseases within populations underscores the importance of models representative down to the indi-36

vidual level, a crucial aspect of ABMs. These models define the characteristics of individuals including age, gender,37

marital status, and household income—as well as their activities, such as starting times, duration, and locations, along38

with their behaviors. Interactions between agents are simulated using contact networks, each imbued with properties39

that reflect specific circumstances. Disease dynamics unfold on these networks, evolving in response to changes in40

agents’ health status, behaviors, and public policies. Subsequently, alterations in the network feedback into agents’41

behavior and health. Incorporating this co-evolution is essential for accurately modeling disease spread (Barrett et al.,42

2008). However, it introduces complexity, as individuals’ schedules may vary based on the health status of those they43

interact with, as well as their demographics, health conditions, needs, social values, and preferences.44

Dignum et al. (2020) proposed an ABM based on social simulation tools to analyze the social, economic, and health45

consequences of policy interventions during COVID-19 pandemic. The agent’s behavior is determined by a balance46

of the agent’s needs over a set of possible social contexts, given that the agent’s social value system is consistent with47

the social context.48

Bissett et al. (2021) proposed an integrated multi-dimensional approach to simulating epidemics, addressing not49

only outbreak control but also related social issues like instability and inequality. It includes a theoretical framework,50

synthetic population generation, social network construction, and disease evolution simulation. This framework does51

not contemplate adaptive temporal networks or focuses on individual and social behaviors influenced by environmental52

cues explicitly. On the other hand, is not able to capture individual-level dynamics and complex social behaviors.53

López et al. (2020) addressed the co-evolution problem using an adaptive dynamic networks framework where the54

disease dynamic results from the aggregation of the agents’ behavior over a social network. It is modeled in a modular55

fashion such that results from aggregating three blocks: i) individual behavior, ii) social interactions, and iii) disease56

dynamics. In this way, the behavior of each agent is determined by external stimuli, as well as its perceptions and57

health state. The framework allows modeling different situations (quarantines, multiple strains and public policies,58

heterogeneity). The novelty of this framework lies on modeling a complex system through the logic of self-organized59

systems applied to a social network.60

Palomo-Briones et al. (2022) proposed an ABM model that includes the cultural orientation of agents to determine61

their behavior. It models the double causality between individual behaviors, influenced by cultural orientation, and62

the evolution of a disease. They used the theory of planned behavior and Bayesian inference to model the decision-63

making processes implicit in an agent’s behavior. A set of simulation experiments was developed to demonstrate the64

role that cultural orientation plays in the management of an epidemic.65

Ventura et al. (2022) proposed a model for epidemic spreading in temporal networks of mobile agents that in-66

corporates local behavioral responses. Susceptible agents are allowed to move away from infected agents in their67

neighborhood. Recently, Gu et al. (2024) used this model to simulates the spread of the disease in the gathered pop-68

ulation by combining the susceptible–infected–susceptible epidemic process with human motion patterns, described69

by moving speed and gathering preference.70

Our focus is the development of an ABM spatial framework for computational epidemiology using mobile agents71

to provide a quantitative understanding of the factors. The proposed model is a development of the one introduced by72

López et al. (2020). It is based on a self-organized logic with a model of the behavior of individuals that elucidates73

the relationships between individual behavior, activities, and their location with groups and social dynamics. The74

structure of this work unfolds as follows: In Section 2, we explore the motivation that underlies our model. Section 375

offers a general description of the model, introducing the conceptual framework. The model is designed as an ABM76

where the behavior of each agent is determined by external stimuli and its perceptions of the environment. The model77

includes four interacting blocks: i) individual behavior, ii) activities, iii) social behavior, and iv) health state, providing78

a comprehensive representation of daily life interactions and their impact on epidemic dynamics. Section 4 explores79

the implementation details explaining how the model was translated into a computational framework to simulate the80

Spanish flu epidemic in Geneva in 1918. Subsection 4.4 outlines the estimation of its parameters for a specific case.81

It includes a thorough examination of the model’s performance against real influenza epidemic data and a validation82

process. Section 4.5 shows and analyzes the results obtained with the model, demonstrating its efficacy in reproducing83

real data. Section 5 shows the model’s versatility to model complex social behaviors, such as social awareness and84
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heterogeneous spatial distribution of agents. Finally, Section 6 summarizes the conclusions derived from this work85

and suggests potential avenues for future research.86

2. Modeling framework: Scope and Motivations87

Complex systems consist of densely interconnected components with constrained nonlinear feedback. These88

systems have multiple context-dependent relationships with interactions across various scales and domains. They89

exhibit self-organizing behaviors that evolve, leading to characteristics such as trajectory dependence, nonlinearities,90

and emergence. Similar conditions can lead to different outcomes, small inputs can cause large effects, and any91

intervention may result in unintended consequences (Erten et al., 2017; Scarpino and Petri, 2019).92

Figure 1: Model diagram and its components

This type of system can be modeled using adaptive co-evolutionary networks, where nodes represent individuals93

and links represent interactions between them (Gross and Blasius, 2008). Our objective is to develop tools and94

methods for constructing adaptive co-evolutionary networks to gain a quantitative understanding of the factors that95

influence behaviors related to epidemic processes. The methodology includes: i) modeling and generating individuals,96

ii) constructing social networks, and iii) simulating disease transmission. The purpose of this decomposition (Figure97

1) is to simplify the system’s description and clarify the connections between individual behavior (social values,98

preferences, and needs), social practices, and contagion transmission, while employing the most appropriate tools.99

3. Modeling framework100

There are many challenges in developing ABM systems for epidemic modeling. First, we look for a theoretical101

approach to describe, simulate, and analyze disease dynamics. For this purpose, we use graph dynamical systems102

(Mortveit and Reidys, 2007). Second, we seek tools to model populations and the dynamics associated with the103

disease. They need to represent different features of the behaviors and the activities performed by individuals. They104

are by nature incomplete and, at different levels of granularity, may be contradictory.105

3.1. Evolving graph dynamical systems106

A graph dynamical system (GDS) is an abstract representation of a group of interacting entities (agents) and the107

nature of their interactions (Funke et al., 2019; Mortveit and Reidys, 2007). This representation provides a solid basis108

to develop models of diffusion–reaction processes where contagions (viruses, disease, and opinions, among others)109

are any entity that can propagate through a system.110

An evolving graph dynamical system (EGDS) S (G,V,E,X, FV ,R) describes a GDS that evolve through time.111

Here G(V, Ek) ⊆ G is the set of graphs with vertex V ∈ V and edges Ek ∈ E. We use directed dependency graphs,112

where the direction represent on which vertex the contagion is present. At each sampling time k ∈ N≥0, each agent113

i ∈ V is assigned a state xi,k ∈ X ⊆ X ⊆ Rn is the vertex state set. The system state at time k is given by xk =114
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[
x1,k, · · · , xm,k

]T , where m = |V | is the number of agents in the system such that the system will have |V |m n possible115

states.116

Let Nk[i] ∈ V be the set of all vertices adjacent to node i at time k. It is identified from the connectivity graph117

Gk = G(V, Ek) by searching of all distance-r neighbors. A vertex function fv(xi,k, x j∈Nk[i],k) ∈ FV is assigned to each118

agent i that describes its state transition xi,k+1 = fv(xi,k, x j∈Nk[i],k). The vertex of system agents comprise the sequence119

F =
[
fv(xi,k, x j∈Nk[i],k)

]
∀i ∈ V such that xk+1 = F(xk).120

The vertex functions fv(·) ∈ FV are evaluated in an order determined by R. The most common update schemes are121

synchronous and sequential. In synchronous update scheme fv(·) ∀i ∈ V are executed simultaneously and the system122

state is given by xk+1 = F(xk). In a sequential update scheme, vertex functions are executed one-at-a-time with the123

states of all other vertices remaining unchanged. The order in which vertices are updated is determined using one of124

the possible permutations Π = (π1, · · · , πm) ∀v ∈ V such that the system state is given by xk+1 = FΠ(xk), where FΠ(·)125

is the composition of the local functions FΠ = Fπm ◦ Fπm−1 ◦ · · · ◦ Fπ2 ◦ Fπ1 . The sequence of states (x0, x1, · · · , xt f )126

describes the evolution of the system from initial state x0 to a specified final time t f (xt f ) associated with a sequence127

of configurations Gk ∀k ∈ [1, · · · , t f ].128

Example - Here we now introduce an example to illustrate the ideas described above. Lopez et al. (López et al.,129

2020) modeled the transmission of a decease on an evolving contact network built up from a stochastic automaton130

whose transitions are controlled by a function that determines the transition probability based on the health state,131

environment, and perceptions of individuals. The changes on the social network are a function of simulation variables132

such as the duration of contact between infected and susceptible individuals and number of infected, among others.133

Then, the health component of the vertex function is given by134

• If xv,k = R then xv,k+1 = R independent of the state of vertex’s neighbors;135

• If xv,k = I and k = ti
v + tdI , where ti

v is the time when agent v was infected and tdI is the infection period, then136

xv,k+1 = R otherwise xv,k+1 = xv,k;137

• If xv,k = S and ∀ u ∈ Nk[v] that xu,k = I then xv,k+1 = I with probability pv and xv,k+1 = xv,k with probability138

(1 − pv) then xv,k+1 = R independent of the state of vertex’s neighbors;139

The individual-to-individual contact graph is produced by the agent’s position within the cellular automaton, con-140

sidering a Moore neighborhood of radius r ≥ 0, controlled by the individual behavior module. The behavior of141

agents is determined by factors like perception of the environment, knowledge of the epidemic situation, number of142

infected individuals, assessments of the epidemiological situation, experiences, feelings, and health state. These fac-143

tors determine the mobility and dimension of the neighboring zone r. The agents move randomly through the cellular144

automata.145

The interaction between health and behavior components of the vertex function determines if the individual would146

move or not and its relationship with its environment. Then, these actions modify the group of individuals with whom147

interact, modifying the social network. It is easy to see that the vertex function fv(·) ∀v ∈ V is a composition of its148

components: individual behavior, social behavior, and health state modules.149

3.2. Framework elements150

There has been an increasing interest in understanding how social networks evolve in time. The observation of the151

network at a specific time represents a state of the system, from which meaningful information can be computed. An152

artificial population represents a group of individuals, which can range from a family to the people of a continent.153

Individuals in an artificial population are endowed with demographic traits (age, gender, home location, and habits,154

among others), behaviors and activity patterns where individuals go to particular locations and times.155

Typically, these populations are not one-to-one with targeted populations. Rather, distributions of characteristics156

of an ariticial population match to those ones of the real one. Thus, the construction of an artificial population is157

typically one realization of a family of instances. The generation of an artificial population comprises the definition158

and imputation of the following features:159
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• Characteristic of individuals - Agents have different attributes such as age, gender, income, size, and health160

conditions;161

• Activities of individuals - Each agent is assigned an agenda of activities during a day, week, and month, along162

with their schedule;163

• Locations for activities - A location is assigned to each activity using all the information and data sources164

available like commercial, public buildings, leisure, and industrial locations. In case of having no information,165

a gravity model (locations closer to home) is used;166

• Individual health state - A disease progression model is assigned to each agent to determine its evolution. It167

must include information about the disease states, as well as propagation and contagion mechanisms;168

• Individual behavior - Promotes adaptive responses to problems that individuals face every day (Barrett et al.,169

2011a). Attitudes and reactions to external stimuli like communication, personal circumstances, and social170

norms are assigned to each agent; and171

• Social behavior - Agents interact between them and with the surrounding environment. These interactions are172

modeled using self-organizing behaviors derived from a Lagrangian framework.173

Agents interact with others located in the same places, generating groups with fixed structures (e.g., agents located174

at home, workplaces, or regular activities) or time-varying structures (e.g. agents located in transportation hubs,175

commercial centers, health services, amenity places, or occasional activities). In this context, agents can change their176

health state, due to the presence of infected agents, modifying their perceptions and behavior, and changing the group’s177

structure. The resulting vertex functions fv(·) ∀v ∈ V is a composition of these three blocks in a given surrounding178

neighborhood. At a higher level of aggregation, groups interact between them giving rise to social dynamics. Groups179

behave like agents and aggregate their dynamics at larger time and space scales. The social and group dynamics180

determine the topology and characteristics of the network, whose nodes are the agents, at the local and global levels181

respectively. Its evolution depends on the behavior of agents, creating feedback loops between agents (nodes), groups182

(close networks of other agents), and social (the complete network of agents).183

Individual
behavior

Activities

Activities
locations

Group
dynamics

Social
dynamics Health state

Figure 2: Building blocks of the proposed framework.

Figure 2 shows Basis Model Unit proposed in this framework. The building blocks and their relationships are184

denoted in continuous black while the system emergent blocks and their relationships are denoted in dash blue. The185

social dynamics (time evolution of the network topology) depend on the behavior of agents (dynamic of the nodes),186

regulated by their health state and group (social) dynamic. In turn, the group (social) dynamic is regulated by the187

location of activities performed by the agents, which are determined by their behaviors. Then, the social dynamic188
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emerges from the feedback dynamic loops between agents (network nodes) within groups (local network topology)189

and between groups (global network topology).190

Figure 3 shows the connections between the blocks used to model the behavior of agents and the connections191

with others. The proposed framework links the macro level (populations) with intermediate (group) and micro level192

(agent) using agents aggregation. The group behavior results from the aggregation of agents in the same location.193

Using a similar approach, we derive the behavior of a subset of the population by consolidating smaller groups before194

considering the entire population as a whole.195
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Figure 3: Diagram of the behavior of individuals showing its components and connections

3.2.1. Characteristic of individuals196

A baseline population is comprised of different data sources like national census, polls, and surveys produced197

by the national’s central public statistical services, universities, and international organizations, among others. They198

provide social, demographic, and economic information about the population and its subdivisions. Census and surveys199

usually provide data resolved to geographical region levels. For each region, tables of demographic characteristics200

-like age, gender, and household composition- provide information about their marginal distributions. Then, we must201

formulate a joint distribution from this information to assemble a population of agents. This distribution is sampled202

as many times as the number of agents of the model. A similar procedure is followed to generate the households.203

If no information about this issue is available, a distribution with a priory characteristics is assumed such that204

satisfies the closest modeling hypothesis to the situation.205

3.2.2. Activities of individuals206

Data from different sources produced by central national statistical services, universities, and international orga-207

nizations, among others, are used to set up daily activity sequences for each agent. National census and polls contain208

detailed information on an agent’s activities throughout a period.209

The activity patterns can be modeled with an extended finite state machine (EFSM). It is an extension of a finite210

state machines that includes additional features like parameters, actions, and guards. They provide better modeling211

capabilities that allow EFSMs to handle complex state-based behaviors (Masek et al., 2018). Parameters support212

passing information between states, actions enable the execution of specific tasks during state transitions, and guards213
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provide additional conditions for transitions. Within this framework, states encapsulate the range of activities acces-214

sible to each individual, inputs denote the variables shaping activity choices, and outputs dictate the specific activity215

undertaken by the agent at any given moment, thereby dictating the individual’s temporal whereabouts.216

Formally, an EFSM is defined by the tupleA = (X,U,Y, x0,D,L,H ,Υ,Λ), where X is a finite state set, x0 ∈ X217

is the initial state, U is the input set, Y is the output set, D is an n-dimensional linear space D1 × . . . × Dn, L is218

a set of Boolean functions of input variables li : D → {0, 1} that defines guard conditions, H is a set of update219

functions hi : D → D, Υ is transition function Υ : X × D × U → X and Λ is the output function Λ : X × D → Y.220

The transition function Υ(xk, uk, li(D)) decides what the next state will be xk+1 given the current state xk, input uk221

and guards conditions li(D). This means that a transition not only depends on the current state and input but also222

conditions independent of them. The output function Λ(xk, hi(D)) determines which will be the agent’s outputs.223

EFSMs offer several advantages, compared with other tools for modeling the behaviors of agents:224

• Expressiveness - It provides a modeling framework that allows modeling complex and flexible state and input-225

based behaviors;226

• Flexibility - It can model multiple levels of abstraction and nested behaviors;227

• Complex decision-making - It can handle a wider range of scenarios and dynamic behaviors, based on adapt-228

able and context-aware conditional transitions and specific tasks execution;229

• Model timing and concurrency - Actions can be executed after a certain period or transitions can respond to230

concurrent events.231

Activity routines within a household are often interrelated, with the presence of one member influencing the activities232

of others. For instance, if a child under the age of twelve is at home, there will typically be an adult present. As233

a result, activity sequences are structured within households to maintain these correlations. Essentially, households234

are chosen for survey purposes based on their similarity over individual characteristics: a person within a survey is235

selected that is most similar to a synthetic individual and that survey person’s activities are assigned to the synthetic236

individual.237

3.2.3. Location of activities238

Each activity must be located within the modeling space, therefore, methods for designating (i) residential ad-239

dresses, (ii) public transport stations, (iii) workplaces, (iv) shopping centers, and (v) recreational facilities must be240

implemented.241

Home locations can be assigned using data produced by national and regional statistical services, governmental242

agencies, and private organizations. Similarly to previous Subsections, home locations can be selected by similar-243

ity of individual characteristics between data and synthetic individuals, measured with distribution and set distance244

measures. Web mapping platforms contain information about residential locations, streets, road maps, and public245

transport networks.246

Locations of workplaces, commercial centers, amenities, and businesses for individuals can be assigned combining247

information from data produced by governmental and private organizations, as well as web mapping platforms. If no248

information about their locations, they can be assigned using gravity models or uniformly. The concept involves249

assigning locations for activities based on a probability that is directly relative to the capacities of the buildings and250

inversely related to the distances from the current location..251

3.2.4. Individual health state252

The health status of an agent dictates its epidemiological condition throughout the epidemic process. This aspect253

captures the disease progression within agents (intra-host). Various tools can be employed to model this progression,254

depending on the specific modeling requirements and the type of information available and exchanged. Differential255

equations, automaton, probabilistic models, and immune-response models are among the possible tools.256

One effective tool for modeling health state dynamics is the EFSM, which offers a robust approach for capturing257

the intricate state-based behavior of disease progression. EFSM enables the combination of timed deterministic and258

probabilistic transitions. It supports multiple co-circulating diseases, various strains, disease co-factors, and sophisti-259

cated interventions, such as contact tracing and antiviral reserves. Moreover, EFSM facilitates the modeling of various260
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epidemiological scenarios, including isolation measures, immunization efforts, and multiple strains, by adjusting the261

states and transitions accordingly, all while maintaining computational simplicity.262

3.2.5. Individual behavior263

Human behavior is affected by countless factors including interpersonal communication, emotions, personal be-264

liefs, and perceptions. Responses towards diseases are determined by a combination of these factors, choosing among265

the available alternatives. Different models have been proposed to represent this component of the behavior of indi-266

viduals (Anderson et al., 2004; Carruthers, 2011; Dao-Ping et al., 2007).267

Emotions are mechanisms that allow individuals to respond to stimuli from the environment. They overpower268

the decision-making process to select a suitable reaction when there is too much information to process or too little269

time to react. Emotions evolved to maintain the functional balance of individuals by counteracting the information270

and energy flow by reducing their effect on them. Emotions like pain, anger, nervousness, security, relaxation, and271

excitement, can be seen as self-regulatory homeostatic mechanisms (Kowalczuk and Czubenko, 2016). They are the272

result of a complex chain of connected events with stimuli, including feelings, psychological changes, impulses to273

action, and goal-directed behaviors (Plutchik, 2001).274

There are two main theories to describe the creation (or triggering) of emotions. Appraisal theory gives pre-275

ponderance to cognitive processes over emotions, such that emotions emerge from the analysis of stimuli through276

cognitive processes (Lazarus, 1991). On the other hand, somatic theory gives preeminence to emotions over cognitive277

processes, such that an individual can immediately invoke emotions associated with specific events without analyzing278

the stimuli. Surveys on modeling emotions can be found in (Hieida and Nagai, 2022; Van Haeringen et al., 2023),279

among others.280

Emotional states can characterized in terms of their similarity, intensity, and duration, among other parameters.281

Emotions can be classified into three levels (Xiao-Juan and Wei-Ren, 2007):282

• Primary emotions - are individuals’ intrinsic responses to external stimuli. They are connected with both283

somatic (spontaneous physical feelings, dependent on specific stimulus) and appraisal (associated with objects,284

places, or situations from previous experiences) theories. They last from a few seconds to minutes;285

• Secondary emotions - emerge when primary emotions are linked to both current and past perceptions and286

experiences. These emotions can be consciously recognized and verbalized. They are associated with both287

theories, potentially intertwined with motivational factors. These emotions exhibit slow changes and can persist288

from a few minutes to several weeks; and289

• Senior emotions - are those produced by the course of long-term social contacts in a given environment (Dama-290

sio, 1994). They are based on personality and last years.291

In literature, one can find many works concerning the issue of modeling human emotions: CBI (Marsella, 2003), EMA292

(Gratch and Marsella, 2004), FLAME (El-Nasr et al., 2000), FearNot! (Dias et al., 2014), Thespian (Si et al., 2006),293

Peactidm (Marinier III et al., 2009) and Wasabi (Becker-Asano and Wachsmuth, 2010), among others. However, none294

of these models have being used in the epidemiological modeling context.295

Fuzzy Cognitive Maps (FCM) provide a powerful tool for modeling systems in terms of interacting concepts, that296

represent a state or a characteristic, and linkages, that express their relationship, in a hierarchical structure (Karyotis297

et al., 2018). A FCM incorporates both the experience and the accumulated knowledge of the system, which is derived298

from the expertise of individuals who understand the system’s operation and its components under various conditions,299

often based on statistical analysis. In this model, concepts are represented as nodes, and the connections between these300

nodes depict the causal relationships among them. These maps model a collection of concepts and the cause-effect301

relationships between them. Interconnections between different concepts Ci and C j are characterized by a weight wi j,302

which describes the degree of causality and influence between them (Mei et al., 2014). Weights can take values within303

interval [−1, 1] such that their values quantify the causality and their sign indicates the type: positive when wi j > 0304

(Ci increases then C j increase) and negative when wi j < 0 (Ci decreases then C j decreases).305

3.2.6. Social behavior306

In multi-agents systems, groups of agents interacts and evolve within the environment. Their simulation allows307

direct evaluation of agents’ behaviors and interactions (as well as groups and systems) in response to changes in the308
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agents and the environment (Epstein, 2006). Properties at agent’s level correspond to the characteristics, behaviors,309

health status, and activities of the agent. Group-level (local) properties match to the characteristics, behaviors, health310

state, and activities of a group of agents defined by their neighborhood. They emerge from the aggregation of the311

agents’ properties as a result of the interaction between them and the environment. Finally, system-level properties312

are the global properties of the environment in which agents live and emerge as a result of the interaction between313

groups (Epstein, 2006).314

In his seminal papers, Reynolds (Reynolds, 1987, 1999, 2000) proposed a consensus-based algorithm that has315

been widely studied for modeling multi-agent systems. In this context, agents make use of information exchange316

between them to reach a common value (known as a consensus) for cohesive behavior as a group. Following this317

idea, multi-agent systems can be modeled as a group of m agents with a simple dynamic318

ṙi = − λvi, ri(0) = r0
i i ∈ Z≤m, λ ≥ 0

v̇i =ui, vi(0) = v0
i

(1)

where ri = (xi, yi)T is their position in space, vi = (ẋi, ẏi)T their velocity and ui = (ux
i , u

y
i )T is their input that modifies319

their behavior (Olfati-Saber, 2006). The input ui is given by320

ui = f C
i + f A

i + f R
i i ∈ Z≤m, (2)

where f R
i is a term that model the local behavior of agent i through a short-range random movement, f C

i is a consensus321

term that quantifies the interactions of agent i with agents in its neighborhood322

f C
i =

∑
j∈Ni

ϕC(r j,k, ri,k), (3)

where Ni denotes the group of neighbors and ϕC(r j,k, ri,k) is the consensus term with the agents in the neighboring323

zone (see Figure 4). The term f A
i quantifies the interactions of agent i with the associated locations of activities and324

environment325

f A
i =

∑
j∈Li

gi j,kϕA(r j,k, ri,k), (4)

where Li denotes the set of activities locations for agent i, ϕC(r j,k, ri,k) is the consensus term with activities locations,326

represented as rendezvous points, and gi j,k is an output of the Individual behavior block that indicates which activity is327

performed or not (gi j,k = 1 or gi j,k = 0). Agents representing locations and obstacles are configured with predetermined328

behaviors. For instance, stationary agents depict obstacles and fixed locations (Figure 4).329

Social behavior is determined by the day-to-day routines of individuals, which is broken down into smaller time330

scales like hours and divided into social activities and non-social activities like staying at home. This behavior is331

modeled through an EFSM whose states represent the activity that the agent is going through. In this sense, the EFSM332

serves as an intermediate layer between the individual behavior and the group dynamics (and the social dynamics),333

affecting how individuals move through the grid (Figure 1). Individual behavior takes into account the influence of334

other agents and the environment; and their objectives through the function gi j,k.335

Then, the behavior of the systems arises from the aggregation of the behaviors of the agents that compose it (self-336

organization). The idea of self-organization rests on the premise of individual rationality (Cristiani et al., 2015; Lee,337

2011), a doctrine in which each agent pursues the best possible outcome for himself. In this way, each agent tries to338

do the best for himself taking into account the effects of the actions of the rest on itself. Then, the behavior of the339

system results from the superposition of the behaviors of agents, the emergent behavior of the system, which is more340

complex than the simple aggregation of the behaviors of agents (Helbing et al., 2011).341

The collective behavior of individuals within groups arises from their individual actions and interactions with342

others. These interactions are modeled using feedback functions, which are governed by finite state automata with343

probabilistic transitions. These transitions, determined by the time variable, dictate the movement or actions of indi-344

viduals. Further elaboration on this topic will be provided in subsequent sections.345
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Figure 4: Illustration of agents’ behavioral components.

4. Epidemiological simulation346

The modeling framework proposed in Section 3 is used to model the Spanish flu epidemic in the Swiss canton347

of Geneva in 1918 (Chowell et al., 2006) and explore the effects of agents behavior on the spread of influenza over348

the population. The interaction network emerges from the aggregation of the behavioral building blocks (individual349

behavior, activities, and health state) of agents interacting between them and with the surrounding environment. The350

agents and locations serve as nodes within the evolving structure of the social network, where interaction patterns351

fluctuate in response to shifts in an agent’s health condition (e.g., opting to stay home when unwell) and behavior352

(e.g., minimizing non-essential activities during an outbreak), alongside public interventions (e.g., school closures,353

vaccination drives). Consequently, this dynamic network influences individual health outcomes, such as minimizing354

exposure to infectious agents outside the home or increasing contact with infected individuals within it.355

The processes of between-host transmission and within-host progression are intricately linked yet computed in-356

dependently. Between-host transmission initiates the within-host disease progression, transitioning the agent’s health357

state from susceptible to infected. The progression of the disease is entirely dictated by the health state (a compo-358

nent of the vertex function) governing within-host progression. It is modeled with a stochastic EFSM that supports359

multiple co-circulating diseases and heterogeneity, among other features. On the other hand, disease transmission360

is determined by the health state of agents within a neighborhood (group dynamic), governed by the aggregation of361

agents’ behavior and locations of activities performed by them (the other two components of the vertex function). The362

agent behavior is modeled using a FCM, which is able of representing their behavior toward the main external stimuli363

of the environment. The sequence of activities is modeled using a stochastic EFSM such that we model agents’ habits364

(deterministic transitions) with unexpected events. All of this is also affected by the demographics of individuals365

(e.g. agent’s income and susceptibility to disease influence their decision on work, and physical needs and confidence366

influence their decision to practice sports).367

4.1. Individual health state368

Agent’s epidemic state is defined as: EFSM A = (X,U,Y, x0,Υ,Λ) where X is a finite set of states, ui ∈ U ⊆369

R[0,1] i ∈ Nv is the probability of contagion between agents v and i ∈ Nv and yv,k ∈ Y ⊆ R[0,1] is the infection370

rate such that yv,k = ui,k ∈ Nv. The set of epidemic states, denoted as X, encompasses six distinct conditions: S371

for susceptible, E for exposed, I for infectious symptomatic, A for infectious asymptomatic, R for recovered, and D372
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for deceased or unoccupied. The initial state vector x0 of each agent is assigned in a probabilistic way such that the373

number of infected (symptomatic and asymptomatic), exposed, and susceptible is equal to the initial conditions of the374

epidemic. The infection process transitions from E to I or I, developing after an incubation period τI . On the other375

side, the recovery process occur after the recovery period τR. The output yv,k = Λ(xv,k) = ωxv,k computes the infection376

rate only if the agent is in state I (ω = β) or A (ω = q), otherwise ω = 0.

Figure 5: State graph of the epidemic states model

377

The diagram presented in Figure 5 illustrates the state transition graph and parameters defining the epidemic state378

within the EFSM. Here, β represents the transmission probability, ρ denotes the proportion of reported infectious379

individuals, γ signifies the recovery rate, α indicates the diagnosis rate, q represents the infection rate among asymp-380

tomatic individuals, Ne represents the initial population of exposed individuals, Ni signifies the initial population of381

infectious individuals, while τI and τR correspond to the incubation and recovery periods, respectively.382

When an agent is in state S , it receives an active input ui ∈ U if agent i ∈ Nv is in either state I or A. This383

input signifies the probability of between-host transmission resulting from interactions between agents v and i. The384

state transition function, denoted as Υ : X → X, is applied to xv,k, probabilistically determining xv,k+1. This function385

operates in two stages: one governing state changes due to infection and recovery, and another governing movement.386

State changes are determined using two probability matrices: one for transitions under no input (Table 1), where µ387

represents the probability of natural death and γ represents the probability of recovery, and another for transitions388

resulting from contact with infectious individuals (Table 2).389

S E I A R
S 1 − µ 0 0 0 0
E 0 1 − (ε + µ) 0 0 0
I 0 0 1 − (γ + µ) 0 γ

A 0 0 0 1 − (γ + µ) γ

R 0 0 0 0 1 − µ
D µ µ µ µ µ

Table 1: Probabilistic transition matrix derived from classical model parameters (López et al., 2020), reflecting an aggregation of individual
probabilities in large populations. The model explores variations in spatial distributions and population sizes.

The derivation of the transition matrix originates from classical model parameters (Chowell et al., 2006). While390

deterministic in nature within the classical model, they manifest as an aggregation of individual probabilities, predi-391

cated on the assumption of a sufficiently large population. Consequently, it is the probabilistic transition that underpins392
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the classical model, rather than vice versa. Direct application of Υ to each agent reveals a diminishing variability with393

population growth, ultimately converging with the deterministic evolution of the classical model. Moreover, the ini-394

tial distribution of individuals within the environment may be random, conforming to the hypothesis of homogeneous395

distribution in large population sizes. Additionally, the model offers exploration into various spatial distributions and396

population sizes.397

S E
S 1 − λ/ν λ/ν

E 0 1

Table 2: Matrix representing transitions between agent states upon contact occurrence

The output function Λ : X → Y ∈ R computes the infection rate based on an individual’s state: I(ρ, β) or398

A(1 − ρ, β), where ρ ∈ R[0,1] denotes the probability of infection upon contact with an asymptomatic individual.399

This probability, distinct from the classic model’s β′, represents the likelihood of transmission through contact. The400

potential number of infectious contacts c is influenced by the neighborhood size, governing connectivity with other401

network nodes, albeit not directly correlating with the contact count. The infection rate for each infectious individual402

arises from the interplay between the β′ probability and the potential number of contacts c. The β value, derived from403

parameter settings, is determined by the neighborhood size selection and the β′ parameter from the classical model,404

computed as β = β′c.405

4.2. Social behavior406

Social behavior plays a pivotal role in shaping individual interactions, exerting a significant influence on the407

dynamics and structure of social networks. Utilizing self-organization principles rooted in Lagrangian concepts408

(Mogilner et al., 2003; Cucker and Smale, 2005; Olfati-Saber, 2006), the social behavior of agents is modeled. Here,409

individual behaviors define the collective behavior of the system, illustrating emergent properties arising from the410

aggregation of individual actions. Consequently, an agent’s actions are not solely influenced by local cues but also411

by the collective information within the system. One approach to defining behavior is through the rules proposed by412

Olfati-Saber (Olfati-saber, 2006).413

• Avoid collision with neighboring agents;414

• Minimize interactions with neighboring agents; and415

• Move to target locations.416

To obtain these behaviors, the consensus terms ϕC i(·) and ϕA i(·) of input ui (equation 2) are given by417

ϕC i =
1

(1 + ∥r j,k − ri,k∥
2)βi

j ∈ Ni,

ϕA i =4ϵi

( σi

(∥r j,k − ri,k∥)

)12

−

(
σi

(∥r j,k − ri,k∥)

)6 j ∈ Li

(5)

where βi = 0.5, σi = 1.0 and ϵi = 1.0. The consensus terms associated with activities ϕA j(·) j ∈ Li are modulated418

by the output of the EFSM that models the activities of the agents through gi j,k.419

Since we have no information about the activities performed by individuals at Geneva in 1918, we will assume420

a simple activity model: agents can move to the nearest social center (SC) (i.e. schools, offices, public transport421

stations, among others) and then come back to home (H), or remain in the same place (R), home or social center. In422

other words, they determine where they move to.423

Figure 6 summarizes the EFSM that models the activities performed by agents. For simplicity, it was decided to424

model the activities of agents at social centers (SC) or their homes (H). When agents move from a state of rest (M),425

they stay in the same place but move randomly in the vicinity (due to f R component of social behavior). The output426
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R M

S C

H

Φ(t0)

dS C , dH ≤ ε

gS C = 1 ∧ dS C > ε

gH = 1 ∧ dH > ε

gS C = 1
dS C > ε

gH = 1
dH ≥ ε

gS C = 1
dS C ≥ ε

∆T ≥ τI

ερ

Φ(t)

Figure 6: Model for agents activities.

of the FCM affects the decision of performing (or not) a given activity, determining if agents move toward a place427

or not (cancel or no contact with other agents). In this way, the activities performed by agents are determined by428

time-dependent transition functions that determine the following states (activity) in the EFSM. These time constraints429

are modeled through the guard, timing, and concurrency conditions of the states.430

4.3. Individual behavior431

Individual behavior is captured using a FCM framework, following the model introduced by Mei et al. (2014). In432

this model, concepts Ci i = 1, · · · , 10 are categorized into three distinct groups:433

i) Input concepts - serve as model inputs, where C1 denotes proximity to infected individuals, C2 represents prox-434

imity to recovered individuals, and C5 signifies awareness of the global epidemic situation, reflecting the envi-435

ronmental cues perceived by the agent (primary emotions).436

ii) Internal concepts - encapsulate the individual’s emotions and feelings, encompassing secondary emotions. Here,437

C3 denotes the individual’s health state (as determined by epidemic behavior), C4 signifies awareness of the local438

epidemiological situation, C6 represents the assessment of both local and global epidemiological conditions, C7439

indicates the level of optimism, C8 denotes memory of similar situations, and C9 encompasses instant reactions.440

iii) Output concept - corresponds to senior emotions (C10), representing the actions undertaken by the agent follow-441

ing a decision-making process.442

C1 C2 C3

C4 C5

C6

C8C7 C9

C10

u1 u2 u3

u4

w14

w24

w210

w34

w46

w56
w610

w69

w75

w74

w78

w79

w89

w87 w98

w96

Figure 7: Diagram of the FCM.
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The inputs of the model are u1 the density of infected agents that have contact with the agent, u2 the density of443

recovered individuals that have contact with the agent, u3 the health state of the agent, and u4 the knowledge of the444

local epidemiological situation. The value of C10 quantifies the individual’s perception of the overall epidemiological445

situation, controlling the size of the neighboring zone (C10 = r) and C11 control the transitions of the activities block446

of the agent.447

Figure 7 illustrates the connections between the concepts Ci and inputs ui, along with their corresponding weights.448

The C10 value constrains the number of contacts an individual can make within the environment, thus influencing449

the control entry ui(t). At each iteration, the values of input concepts C1 and C2 are estimated based on the number450

of infected and recovered individuals in the agent’s vicinity. The value of concept C3 is determined by entry u3 and451

reflects the agent’s health state transition.452

4.4. Model fitting453

To assess the model’s efficacy, we examine the impact of the Spanish flu outbreak in the Swiss canton of Geneva454

in 1918 (Chowell et al., 2006). Our parameter estimation process involves a meticulous two-step approach. Initially,455

a comprehensive global search across the parameter space is conducted to identify promising candidate regions,456

employing stochastic optimization techniques such as simulated annealing (Deb et al., 2002). Subsequently, a local457

search is performed within each candidate region using gradient-based optimization algorithms (Byrd et al., 2000)458

to pinpoint the optimal parameters. Leveraging stochastic optimization methods ensures robust initial points for459

gradient-based optimization techniques. The objective function employed in this process is the normalized square460

error.461

NMS E =
m∑

k=1

∥mI(k) − dI(k)∥22

∥mI(k)∥22 , (6)

The variable mI(k) represents the predicted number of infected agents (i.e., infected individuals) by the model, while462

dI(k) corresponds to the epidemiological data collected during the outbreak. Table 3 presents the estimated parameters463

of the proposed model.464

Table 3: Model parameters

β ρ γ α q τI τR Ne Ni

8.1 0.085 0.246 0.465 0.3 2.3 6.8 207 136

To calibrate the FCM algorithm proposed by Mei (Mei et al., 2014), we utilized training data. The computation of465

each concept Ci takes into consideration the influence of other concepts C j j , i, along with the causal relationships466

between them. Given that our model focuses on a localized outbreak (at the city level), assigning C5 = 0.5 equates467

to a phase 4 alert status as per the World Health Organization guidelines. This phase is characterized by confirmed468

instances of human-to-human transmission within the community.469

In the training of the FCM, another crucial aspect to consider is the choice of threshold function utilized to update470

concepts Ci. While the sigmoid function is a common choice for this purpose, it’s important to note that its domain471

and range are bounded. To ensure consistency across the inference interval, a linear function is employed, preserving472

the same slope throughout. This approach is particularly advantageous for modeling individual behavior during the473

Spanish flu outbreak. Por supuesto, aquı́ tienes la notación en LaTeX para la ecuación revisada:474

f (x) =
1
2 x

2(ρ1 + ρ2||W ||)
√

n
+

1
2
, (7)

where ρ1 and ρ2 represent values within the range of [0, 1], n denotes the total number of concepts, and W denotes475

the weight matrix defined as476
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W =



0 0 0 0.34 0 0 0 0 0 0
0 0 0 −0.14 0 0 0 0 0 −0.34
0 0 0 0.44 0 0 0 0 0 0
0 0 0 0 0 0.52 0 0 0 0
0 0 0 0 0 −0.05 0 0 0 0
0 0 0 0 0 0 0 0 0.85 0.37
0 0 0 −0.13 −0.27 0 0 −0.03 −0.25 0
0 0 0 0 0 0 −0.21 0 −0.07 0
0 0 0 0 0 −0.14 0 0.09 0 0
0 0 0 0 0 0 0 0 0 0


477

4.5. Model validation478

Figure 8 shows the simulation results provided by the SEIR model developed by Chowell et al. (Chowell et al.,479

2006), the ABM model proposed by Lopez et al. (López and Rodó, 2020) and the one proposed in this work. The480

average behaviors of both ABM models are estimated from 1000 numerical simulations. Figure 9 shows the residuals481

of the models along the epidemic process (Figure 9.a) and their distributions (Figure 9.b), allowing to evaluate their482

ability to reproduce the epidemic dynamic.483

Figure 8 shows the results for each model. Only the proposed model captures the epidemic dynamic along the484

entire process. The number of infected agents grows rapidly until reaches the peak (day 23), then it decreases until485

vanished with two different velocities: In the period after the peak (days 30 to 50) the number of infected falls from486

228 to 22, and then it falls from 22 to 10 (days 50 to 70) in similar periods.487

Figure 8: Average responses of the models and real data.

The ABM model proposed by López et al. (2020) captures the initial phase up to the peak (days 0 to 30), estimating488

correctly the time and magnitude of the peak. However, it fails to reproduce the epidemic data in the final phase (days489

30 to 70). Finally, the SEIR model only captures the end phase of the epidemic process (days 35 to 70). It fails to490

reproduce the epidemic behavior in its initial phase (days 0 to 35) and to estimate the time and magnitude of the peak491

(see Figure 9.a).492
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(a) (b)

Figure 9: (a) Residuals of the model and (b) distribution of residuals.

Figure 9.a shows the residual distribution of overtime. The larger residuals occur around the peak (15 ≤ k ≤ 35493

days), while the initial (0 ≤ k ≤ 15 days) and final (35 ≤ k ≤ 70 days) phases have smaller magnitudes. During494

this period, the data show higher variability due to the irregularity of reporting cases. The magnitude of the residuals495

generated by the proposed model is lower than the ones generated by the other models. Only 10% of its samples are496

larger than ±25 and 3% larger than ±50. The ABM model of Lopez et al. (López and Rodó, 2020) generates 20% of497

residuals larger than ±25 and 6% larger than ±50. Finally, the SEIR model generates 25% of residuals larger than ±25498

and 10% larger than ±50.499

Table 4: Statistics of residuals

Model X̄ Md std S Kurtosis Skewness
S EIR −19.57 −9.15 54.75 −0.57 +1.51 +0.84

Social network +1.63 −4.89 46.41 +0.42 +1.08 +0.77
Explicit space −2.03 −1.83 10.24 −0.06 +2.12 −0.12

Figure 9.b shows the residual distribution of each model. Their statistical parameters are shown in Table 4,500

where x̄ denotes the mean, Md the mode, std the standard deviation and S the bias coefficient computed using the501

second Pearson coefficient formula S = 3(x̄ − Md)/std. The distribution of the proposed model has a similar mean502

(x̄ = −2.03) and mode (Md = −1.83) with a nil bias coefficient (S = −0.06). The skewness coefficient shows a503

symmetric distribution of the residuals (skew = −0.12) although it is peaky (kurt = 2.12). On the other hand, the504

residuals distribution of the SEIR and ABM model of Lopez et al. (López and Rodó, 2020) are biased and offsetting505

in different directions: the SEIR residuals are biased toward the left, while the ABM of Lopez et al. towards the right506

of the distributions mean.507

The model was also numerically validated using the Akaike information criterion508

AIC = log(det(
1
m

m∑
1

ε(t,Θ)(ε(t,Θ))T )) +
2n
m
, (8)

where Θ is the set of n uncertainty parameters, m is the number of simulations or samples, and ε(t,Θ) is the error509

measure. It measures the model quality considering accuracy and complexity simultaneously. It is widely used to510

measure the quality of models and validate them (Symonds and Moussalli, 2011), being equivalent to a cross k-leave-511

one-out method in longitudinal data models validation (Fang, 2011). The resulting coefficients are AIC = 7.5 for the512

SEIR model, AIC = 6.1 for the networked ABM model, and AIC = 3.8 for the proposed model.513

The residuals of the models were computed using NMS E function defined in (6), resulting in a NMS E = 3.3 for514

the SEIR model, a NMS E = 1.6 for the ABM model of Lopez et al. (López et al., 2020) and a NMS E = 1.05 for the515
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proposed model. These results were computed from the data and the average behavior of 1000 simulations for each516

model.517

Finally, the statistical significance of these results was assessed by comparing the probability of residuals. For518

this test, statistical independence of error adjustment for different data sets is assumed and the errors of binomial519

distributions are approximated with a Gaussian distribution. Three new datasets for each model were generated with520

gaps (data points removed) in the data used to estimate the parameters chosen with uniform probability: i one dataset521

with 10 data points removed, ii the other with 20 data points removed and iii the last one with 30 data points removed.522

The parameters of each model were estimated from each data set following the same procedure like the described in523

Subsection 4.4. Then, 1000 simulations were executed for each parameter set to gather a reliable approximation of the524

average response and the corresponding residuals. Finally, we tested the hypothesis P(Errormodel < ErrorS EIR) > p525

was tested for each parameter set. Table 5 presents the results.

Table 5: Errors significance for models

10 Data points
Model Error µ σ µ1−µ2

σ
P(p1 < p2)

Explicit space 8.1 0.92 0.0044 3.62 0.986Social network 8.2 0.92 0.0045 3.58 0.985
S EIR 10.04 0.896 0.005

20 Data points
Model Error µ σ µ1−µ2

σ
P(p1 < p2)

Explicit space 4.75 0.95 0.0035 1.85 0.986Social network 5.15 0.95 0.0036 1.85 0.988
S EIR 5.75 0.943 0.0038

30 Data points
Model Error µ σ µ1−µ2

σ
P(p1 < p2)

Explicit space 4.5 0.955 0.0034 2.81 0.99Social network 4.9 0.951 0.0034 2.81 0.99
S EIR 5.88 0.941 0.0038

526

5. Results and discussion527

This section assesses the capabilities of the proposed framework to model different scenarios by analyzing the528

effects of the agent’s epidemiological awareness and initial population distribution on the epidemic dynamic.529

5.1. Perception of epidemic situation530

Interactions are essential for comprehending epidemic development, severity, and progression. The proposed531

model offers valuable insights into the underlying mechanisms driving epidemic spread by shedding light on the532

nuanced dynamics resulting from the interplay between perceptions and actions. To illustrate how the individual be-533

havior block shapes the epidemic dynamics, the agents’ perception of an epidemic is modified through C5, a composite534

measure of the information registered from media channels like television, radio, newspapers, and social platforms.535

The values of C5 for each agent were obtained from a normal distribution for each simulation. Firstly, agents536

indifference to epidemic were modeled using a C5 mean value of 0.15. Then, agents concern about epidemic were537

modeled using a C5 mean value of 0.85. Finally, agents showing a balance between caution and disregard, like in a538

normal scenario, were considered through a C5 mean value of 0.5. Figures 10 show the average behaviors of 500539

simulations for each scenario, where agents were uniformly distributed at the beginning of the simulation.540

Figure 10.a shows the behaviors for an indifference scenario (C5 = 0.15). The peak is significantly higher than541

the real response (see Figure 8) with a delayed start and shorter epidemic process. This behavior is consistent with542

the assumptions since agents show high mobility, amplifying the likelihood of effective contact and the daily tally543

of infections. Figure 10.b shows the collective behavior for a normal scenario. Remarkably, it closely mirrors the544
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Figure 10: Average response and standard deviation for (a) indifferent, (b) normal and (c) concerned agents’ attitude.

dynamic behavior depicted in Figure 8, particularly in the similarity of the peak of cases. This observation emphasizes545

the pivotal role of individual perception in shaping overall epidemic dynamics (Abdulkareem et al., 2020). Finally,546

Figure 10.c shows the average collective behavior for a cautious scenario (C5 = 0.85). As it was anticipated, the peak547

is significantly lower than the real response (see Figure 8) with a similar duration and a small secondary wave after548

day 45. These behaviors are consistent with the assumptions since individuals reduce their mobility, decreasing the549

probability of effective contact.550

5.2. Distribution551

By relaxing the assumption of homogeneity, we uncover behaviors that deviate significantly from the ideal sce-552

nario. Specifically, when initially infected agents occupy a small portion of the interaction region a noticeable decrease553

in the epidemic incidence is observed: the peak happens earlier and its magnitude is lower. However, the epidemic554

process lasts longer, and a secondary wave appears. This phenomenon can be attributed to the heterogeneity of agent555

distribution that slows down the transmission dynamics.556

Figure 11: Average response and standard deviation for (a) full, (b) a 1/4 and (c) 1/8 distribution of initial infected agents.

Figures 11 show the average behaviors of 500 simulations with different initial distributions of infected agents.557

The number of initial infected agents is 0.1% of the population. One set of simulations where performed without558

the individual behavior block (without FSM), such that they move according to daily activities. In this configuration559

simulations show a similar number of infected agents at the peak (around 400 agents), the process begins earlier and560

ends in similar periods (around day 50).561

The other set of simulations where performed including the effect of perceptions on the behavior of the agents562

(with FSM), such that they move combining daily activities with perception. In this configuration simulations show a563

lower number of infected agents, the process begins earlier and ends in similar periods (around day 50). Once again,564

we noted the impact of delayed recovery, attributed to individuals’ tendencies to distance themselves from groups,565

thereby opting for voluntary isolation. This behavior underscores the significance of individuals’ awareness of the566
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epidemic context in their immediate surroundings, leading to a heightened sense of paranoia and social avoidance567

phenomenon facilitated by the integration of FCM into individual behaviors.568

In essence, our model is able of capturing the complex dynamics of individual interactions, ranging from cohesive569

group formations to voluntary isolation, under varying degrees of epidemic awareness. These findings underscore the570

model’s robustness in simulating realistic scenarios of epidemic spread, providing valuable insights into the complex571

interplay between individual behaviors and epidemic dynamics.572

6. Conclusions573

Our study introduces an innovative approach for modeling epidemic dynamics by employing a contact network574

framework that not only captures temporal dynamics but also elucidates the social dimension of outbreaks through575

interactions among network actors. Our framework offers a transparent and straightforward implementation, demon-576

strating its capability to accommodate and to replicate real-world situations with remarkable precision. This multi-577

scale modeling approach facilitates the fitting of epidemic dynamics, akin to classic population-based models. Once578

fitted, epidemiological parameters can be uniformly assigned to individuals, enhancing model consistency across579

different contexts.580

The integration of behavioral aspects via the individual behavior block enhances the model’s ability to capture581

the dispersion of data across epidemic waves, particularly toward the epidemic’s conclusion. Our model accurately582

replicates epidemic outbreaks, effectively reproducing the rapid surge in infected individuals at the epidemic’s onset.583

Notably, it adapts well to varying input distributions for global epidemic perception, as demonstrated in Figures 10584

and 11 showcasing its robust performance under different scenarios.585

The use of a Lagrangian formulation of self-organization to model social behavior significantly enhances effective586

contact between susceptible and infectious individuals, especially in homogeneous distributed environments. Addi-587

tionally, the output of FCM significantly influences individuals’ interactions, capturing both rapid dynamics at the588

epidemic’s onset and the emergence of smaller outbreaks as conditions improve.589

Understanding and incorporating individual behavior and activities are crucial in epidemic modeling, as human590

behavior significantly influences disease dynamics. Our comprehensive approach, considering individual behaviors,591

emotions, and social interactions, contributes to a better understanding of disease spread and aids in the development592

of effective public health interventions. In summary, our study advances epidemiological research by providing a593

versatile modeling framework that improves epidemic predictions and enhances our understanding of the impact of594

individual behaviors on disease transmission dynamics.595

Furthermore, to enhance the model’s realism and reflect real-life scenarios more accurately, future work should596

focus on incorporating mechanisms of individual learning. In reality, individuals learn from previous experiences,597

which significantly influences their behavior and decision-making processes. To address this aspect, various options598

can be explored, such as language models or deep learning techniques, among others. By integrating learning mecha-599

nisms, the model can better capture the adaptive nature of human behavior in response to evolving epidemic situations.600

Additionally, the methodology presented in this study warrants validation with other diseases where behavioral factors601

play a crucial role, such as Tuberculosis. This validation process will provide further theoretical grounding and ensure602

the applicability and robustness of the model across different epidemiological contexts.603
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