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Supplementary Figures
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Figure S1: SHEPHERD can generalize to heterogeneous phenotypic presentations and novel genetic conditions.
There are few patients with each rare disease, and patients with the same disease can have variable clinical presentations.
SHEPHERD is trained on simulated rare disease patients and can generalize to real-world patients with unique, unseen
phenotypes (left), with novel disease-causing genes (center), and with entirely novel diseases (right).
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Rank of Causal Gene

Figure S2: Generalizability of causal gene discovery performance on EXPERT-CURATED candidate lists. (a) Per-
formance of SHEPHERD in ranking causal genes stratified by evaluation year on the EXPERT-CURATED gene list (b)
Correlation between model performance (i.e., the rank of a disease-driving gene) and the average distance between a
patient’s phenotypes and causal genes in the knowledge graph. (c) Correlation between model performance and the num-
ber of phenotype terms describing each patient’s clinical presentation. (d) Correlation between model performance and
prevalence of the rare genetic disorders. The number of submissions to the database ClinVar for the causal gene is used
as a surrogate for the prevalence of the rare disorders. The x-axis is number of submissions in log-scale.
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Figure S3: Generalizability of causal gene discovery performance on VARIANT-FILTERED candidate lists. (a-c)
Performance of SHEPHERD in ranking causal genes stratified by (a) evaluation year, (b) clinical site, and (c) primary
presenting symptom on the VARIANT-FILTERED gene list (d) Correlation between model performance (i.e., the rank
of a disease-driving gene) and the average distance between a patient’s phenotypes and causal genes in the knowledge
graph. (e) Correlation between model performance and the number of phenotype terms describing each patient’s clinical
presentation. (f) Correlation between model performance and prevalence of the rare genetic disorders. The number of
submissions to the database ClinVar for the causal gene is used as a surrogate for the prevalence of the rare disorders. The
x-axis is number of submissions in log-scale.
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Figure S4: Visualization of rare disease patients by disease category. Two-dimensional UMAP plot of SHEPHERD’s
embedding space of all simulated patients (circles) and two real-world cohorts of UDN patients (up-facing triangles) and
MyGene2 patients (down-facing triangles) grouped by the Orphanet disease category of medical diagnosis. Simulated,
MyGene2 and UDN patients embed nearby other patients whose diagnoses belong to the same disease category.
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Figure S5: SHEPHERD performs patients-like-me identification. Distribution of SHEPHERD embedding distance
between UDN and MyGene2 patients with the same vs. different diseases.

Table S1: Non-overlapping disorders between all phenotyped patients in the Undiagnosed Diseases Network (UDN) and
simulated (SIM) patient cohorts. The names of the 5 most frequently observed diseases that are not in the other patient
cohort are shown. The full list of syndromes found across all cohorts can be found in the Harvard Dataverse Repository
at the following link: https://dataverse.harvard.edu/file.xhtml?fileId=10214709&version=3.0.

Diseases in UDN but not in SIM Diseases in SIM but not in UDN

1. neurodevelopmental disorder with multiple intestinal atresia
regression, abnormal movements,
loss of speech, and seizures

2. TBCK-related intellectual progeroid syndrome, Petty type
disability syndrome

3. dystonia 28, childhood-onset, myofibrillar myopathy 3

4. Rett syndrome, congenital variant GM3 synthase deficiency

5. Bethlem myopathy 1 otospondylomegaepiphyseal dysplasia,
autosomal dominant
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Figure S6: Visualization of the relationship between disease categories. Two-dimensional UMAP plot of SHEPHERD’s
embedding space for the most similar pairs of disease categories. Circles correspond to simulated patients, up-facing
triangles to UDN patients, and down-facing triangles to MyGene2 patients.
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