Title: The novel duodenal isolate Streptococcus salivarius AGIRA0003 promotes barrier 1

- dysfunction and IgG responses in functional dyspepsia. 2
- 3
- 4
- 5
- **Authors:** Grace L. Burns^{1,2,3†}, Jasmine A. Wark^{1,2,3†}, Emily C. Hoedt^{1,2,3}, Kyra Minahan^{1,2,3}, Simonne Sherwin^{1,2,3}, Jessica K. Bruce^{1,3}, Yenkai Lim^{4,5}, Jing Jie Teh⁴, M. Fairuz B. Jamaluddin^{1,6}, Wai Sinn Soh^{1,2,3}, Shandelle Caban^{1,2,3}, Sophie Fowler^{1,2,3}, Juhura G. 6
- Almazi^{1,7}, Ameha S. Woldu^{1,7}, Matthew D. Dun^{1,7}, Pradeep S. Tanwar^{1,6}, Michael D. E. Potter^{1,3}, Erin R. Shanahan^{8§}, Gerald Holtmann^{5,8,9}, Mark Morrison^{4,5,8}, Nicholas J. 7
- 8
- Talley^{1,2,3,‡}, Simon Keely^{1,2,3‡,*}. 9

10

Affiliations: 11

- ¹College of Health, Medicine and Wellbeing, The University of Newcastle; Callaghan, New 12 South Wales, Australia. 13
- ²Immune Health Research Program, Hunter Medical Research Institute; New Lambton 14
- 15 Heights, New South Wales, Australia.
- ³Centre of Research Excellence in Digestive Health, University of Newcastle; Callaghan, 16
- New South Wales, Australia. 17
- ⁴Frazer Institute, Faculty of Medicine, University of Queensland, Saint Lucia, Queensland, 18 Australia. 19
- ⁵Centre of Research Excellence in Digestive Health, University of Queensland, Saint Lucia, 20 Australia. 21
- ⁶Gynaecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, 22
- University of Newcastle, Newcastle, NSW, 2308, Australia. 23
- ⁷Priority Research Centre for Cancer Research, Innovation & Translation, College of Health, 24
- Medicine and Wellbeing, Callaghan, New South Wales, Australia. 25
- 26 ⁸Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane,
- Australia 27
- ⁹Faculty of Medicine, University of Queensland, Saint Lucia, Queensland, Australia. 28
- ^{†, ‡} These authors contributed equally to this work 29
- [§]Current Address: Charles Perkins Centre, School of Life and Environmental Sciences, The 30
- University of Sydney, Sydney, Australia. 31
- *Corresponding author. Email: simon.keely@newcastle.edu.au 32
- 33
- Acknowledgments: We gratefully acknowledge the significant contributions of the late Prof. 34
- Marjorie M. Walker to the conceptualization, supervision, reviewing, and editing of this 35
- manuscript, as well as her profound impact on the fields of DGBI and duodenal pathologies. 36
- We thank the Hunter Medical Research Institute Core Histology Facility for processing, 37
- sectioning, and scanning histological sections. The authors wish to thank the Department of 38
- Gastroenterology at the John Hunter Hospital, New Lambton Heights, Australia and 39
- Newcastle Endoscopy Centre, Charlestown, Australia for their support and assistance with 40
- the collection of biopsy samples. 41

- 42 The authors generously thank Dr. Kurtis Budden (Immune Health Research Program, Hunter
- Medical Research Institute and University of Newcastle) for providing a stock of S. 43
- 44 salivarius ATCC7073.
- 45

Funding: 46

- National Health and Medical Research Council Centre for Research Excellence in Digestive 47
- Health (MMW, GH, MM, NJT, SK) 48
- National Health and Medical Research Council Ideas Grant (SK) 49
- National Health and Medical Research Council Investigator Grant (NJT) 50
- The Translational Research Institute is supported by a grant from the Australian Federal 51
- Government. 52
- 53

54 Author contributions:

- Conceptualization: GLB, MM, GH, MMW, NJT, SK 55
- Methodology: GLB, JAW, ECH, MM, NJT, SK 56
- 57 Investigation: GLB, JAW, ECH, KM, SS, JKB, SF, YL, JJT, MFBJ, WSS, SC, JGA, ASW,
- MDP, ES 58
- Visualization: GLB, JAW 59
- Resources: MDD, PST, GH, MM, NJT, SK 60
- Writing original draft: GLB, JAW, SK 61
- Writing review & editing: All authors 62
- 63

64 **Competing interests:**

- GLB: Patent: "Diagnostic marker for functional gastrointestinal disorders" (Australian Patent 65
- Application PCT/AU2022/050556) via the University of Newcastle and UniQuest 66
- (University of Queensland). 67
- GH: Unrestricted educational support from Bayer Ptd, Ltd and the Falk Foundation. 68
- Research support was provided via the Princess Alexandra Hospital, Brisbane by GI 69
- Therapies Pty Limited, Takeda Development Center Asia, Pty Ltd, Eli Lilly Australia Pty 70
- 71 Limited, F. Hoffmann-La Roche Limited, MedImmune Ltd Celgene Pty Limited, Celgene
- 72 International II Sarl, Gilead Sciences Pty Limited, Quintiles Pty Limited, Vital Food
- 73 Processors Ltd, Datapharm Australia Pty Ltd Commonwealth Laboratories, Pty Limited,
- 74 Prometheus Laboratories, Falk GmbH and Co Kg, Nestle Pty Ltd, Mylan. Patent Holder: A
- 75 biopsy device to take aseptic biopsies (US 20150320407 A1).
- 76 PST: Listed as an inventor on multiple patents filed by the University of Newcastle and
- received funding for unrelated projects from EOFBIO, USA. The University of Newcastle 77
- holds financial interests in EOF-BIO, USA. 78
- MMW: Grant/research support: Prometheus Laboratories Inc (Irritable bowel syndrome 79 [IBS] Diagnostic), Commonwealth Diagnostics International (biomarkers for FGIDs).
- 80
- MM: Patent: "Diagnostic marker for functional gastrointestinal disorders" (Australian Patent 81
- Application WO2022256861A1) via the University of Newcastle and UniQuest (University 82
- of Queensland). Research grants from Atmo Biosciences, Soho Flordis International (SFI) 83
- Australia Research, Bayer Consumer Health, and Yakult-Nature Global Grant for Gut Health; 84
- 85 speakers honoraria, and travel sponsorship from Genie Biome, Janssen Australia; consultancy
- fees from Sanofi Australia and Danone-Nutricia Australia; speaker honoraria and travel 86
- 87 sponsorship from Perfect Company (China), and travel sponsorship from Yakult Inc (Japan).

88 MM also acknowledges funding from NHMRC Australia, Australian Research Council, Princess Alexandra Hospital Research Foundation, Medical Research Futures Fund of 89 90 Australia, Helmsley Charitable Trust via the Australasian Gastrointestinal Research 91 foundation, and United States Department of Defense. MM serves on the science advisory 92 board (non-remunerated) for GenieBiome, Hong Kong. GJH reports to be on the advisory boards Australian Biotherapeutics, Glutagen, Bayer and received research support from 93 Bayer, Abbott, Pfizer, Janssen, Takeda, Allergan. He serves on the Boards of the West 94 95 Moreton Hospital and Health Service, Queensland, UQ Healthcare, Brisbane and the Gastro-Liga, Germany. He has a patent for the Brisbane aseptic biopsy device and serves as Editor of 96 97 the Gastro-Liga Newsletter. 98 NJT: Non-financial support from: Norgine (2021)(IBS interest group), personal fees from Allakos (gastroduodenal eosinophilic disease) (2021), Bayer (IBS) (2020), Planet Innovation 99 100 (Gas capsule IBS) (2020), twoXAR Viscera Labs, (USA 2021) (IBS-diarrhoea), Dr Falk 101 Pharma (2020) (EoE), Sanofi-aventis, Glutagen (2020) (celiac disease), IsoThrive (2021) 102 (esophageal microbiome), BluMaiden (microbiome advisory board) (2021), Rose Pharma (IBS) (2021), Intrinsic Medicine (2022) (human milk oligosaccharide), Comvita Mānuka 103 104 Honey (2021) (digestive health), Astra Zeneca (2022), outside the submitted work. In 105 addition, Dr. Talley has a patent Nepean Dyspepsia Index (NDI) 1998, Biomarkers of IBS licensed, a patent Licensing Questionnaires Talley Bowel Disease Questionnaire licensed to 106 Mayo/Talley, a patent Nestec European Patent licensed, and a patent Singapore Provisional 107 108 Patent "Microbiota Modulation of BDNF Tissue Repair Pathway" issued, "Diagnostic marker 109 for functional gastrointestinal disorders" Australian Patent Application WO2022256861A1via the University of Newcastle and UniQuest (University of 110 111 Queensland). Committees: OzSage; NHMRC Principal Committee (Research Committee) 112 Asia Pacific Association of Medical Journal Editors, Rome V Working Team Member (Gastroduodenal Committee), International Plausibility Project Co-Chair (Rome Foundation 113 funded), COVID-19 vaccine forum member (by invitation only). Community group: 114 115 Advisory Board, IFFGD (International Foundation for Functional GI Disorders), AusEE. 116 Editorial: Medical Journal of Australia (Editor in Chief), Mayo Clinic Proceedings (Assoc Ed), Up to Date (Section Editor), Precision and Future Medicine, Sungkyunkwan University 117 118 School of Medicine, South Korea, Med (Journal of Cell Press). Dr. Talley is supported by funding from the National Health and Medical Research Council (NHMRC) to the Centre for 119 120 Research Excellence in Digestive Health and he holds an NHMRC Investigator grant. SK: Patent: "Diagnostic marker for functional gastrointestinal disorders" (Australian Patent 121 122 Application WO2022256861A1) via the University of Newcastle and UniQuest (University 123 of Queensland). Grants from National Health and Medical Research Council (Ideas Grant and 124 Centre for Research Excellence), grants from Viscera Labs (Research contract), grants from 125 Microba Life Science (Research contract), personal fees from Gossamer Bio, personal fees 126 from Anatara Lifescience, personal fees from Immuron, personal fees from Microba Life 127 Science. JW, ECH, KM, SS, JKB, WSS, SF, SC, JGA, ASW, MDE, ES Authors declare that they 128 129 have no competing interests. 130 Data and materials availability: All data are available in the main text or the supplementary materials, further information is available from the authors upon reasonable request. S. 131 salivarius AGIRA0003 sequence details can be found in E. C. Hoedt, E. R. Shanahan, S. 132 133 Keely, A. Shah, G. L. Burns, G. J. Holtmann, N. J. Talley, M. Morrison, Draft Genome Sequence of Streptococcus salivarius AGIRA0003, Isolated from Functional Gastrointestinal 134 135 Disorder Duodenal Tissue. Microbiol Resour Announc 10, e0075821 (2021).

136 Abstract:

137 138	Background and aims: Functional dyspepsia (FD) is a highly prevalent disorder of gut-brain
139	interaction (DGBI) that is associated with an altered duodenal microbiota, unexplained low
140	grade duodenal inflammation and altered intestinal permeability. This study aimed to
141	investigate if novel FD-derived bacterial isolates elicited immune responses in FD and the
142	capacity of an immune-stimulating isolate, AGIRA0003 to breach the duodenal epithelial
143	barrier.
144	Methods: Bacterial lysates were investigated for immune reactivity using immunoblotting of
145	patient plasma. Immunoblots were probed with plasma from FD patients (n=44, 46.6±17.5
146	years, 79.6% female) or controls (n=30, 48.9±15.7 years, 63.3% female). Peripheral gut-
147	homing T cells were quantified by flow cytometry and histological analysis used to
148	investigate duodenal biopsies. Polarised Caco-2 cells and FD duodenal spheroids (n=4 lines)
149	were exposed to Streptococcus salivarius AGIRA0003 at a multiplicity of infection of 10
150	bacterial cells to 1 mammalian cell for 6 hours.
151	Results: The presence of plasma IgG antibodies against S. salivarius AGIRA0003 was
152	significantly associated with FD (χ^2 15.7, 1, <i>p</i> <0.0001). Patients with these IgG antibodies
153	had increased gut-homing lymphocytes (0.33 \pm 0.77% vs 1.00 \pm 1.46%, p=0.046). Strain
154	AGIRA0003, but not related commensal strains, disrupted tight junction proteins in Caco-2
155	monolayers, and decreased claudin 1 (CLDN1; 0.49±0.11, p=0.03), desmocollin 2 (DSC2;
156	0.64 ± 0.33 , $p=0.03$) and desmogle n 2 (DSG2; 0.30 ± 0.12 , $p=0.03$) in spheroid monolayers. In
157	addition, DSC2 (2.19±0.97 vs 1.48±0.85, <i>p</i> =0.02) and DSG2 (23.22±15.92 vs 12.38±7.34,
158	p=0.04) protein levels were decreased in IgG ⁺ FD biopsies compared to controls.
159	Conclusions: S. salivarius AGIRA0003 is a potential pathobiont capable of impairing
160	duodenal epithelial barrier defences that elicits an immune response in FD patients.

161 Keywords: functional dyspepsia; Streptococcus salivarius AGIRA0003; immune activation;

162 host-microbe interaction; duodenum

163

164 **INTRODUCTION**

165

Functional dyspepsia (FD) is a disorder of gut-brain interaction (DGBI) characterised by 166 167 recurrent upper gastrointestinal (GI) symptoms with no structural changes identifiable at endoscopy¹. Given FD is a symptomatic diagnosis, there are no clear biomarkers and 168 diagnosis is often a prolonged process of exclusions. However, FD patients exhibit mucosal 169 "microinflammation", having greater numbers of duodenal eosinophils², impaired small 170 intestinal barrier integrity and increased mast cell numbers compared to controls^{2, 3}. It is 171 172 thought that microbial and/or dietary antigens interacting with a dysregulated immune system drive FD microinflammation^{4, 5}. The role of the duodenum as a major site of antigen 173 sampling⁶ and microinflammation in FD led us to hypothesise that an impaired relationship 174 175 between the microbiota and immune system would be evident at this site. In that context, FD 176 is associated with compositional changes in the duodenal microbiota, as well as increased 177 bacterial load and altered diversity that can be correlated with meal-related symptoms and reduced quality of life scores^{7, 8}. In the FD duodenal mucosa-associated microbiota (d-178 179 MAM), Streptococcus spp. relative abundance is increased, significantly associated with symptoms^{9, 10} and inversely correlated with *Prevotella* relative abundance⁷. In addition, 180 patients have decreased populations of *Prevotella*, *Veillonella* and *Actinomyces*⁸. 181 182 Collectively, associative studies of the d-MAM and FD symptom profile suggest specific 183 microbial species are associated with homeostatic imbalance and disease initiation in FD. 184 185 Despite these observations, the nature and consequence of duodenal host-microbiota interactions and their relationship to FD symptoms is not well understood. Decreased barrier 186

integrity, which is a feature of FD^{11} , is thought to drive increased translocation of microbes

188 into the mucosa¹¹. This might initiate a humoral response to translocating microbes, and thus

explain the mucosal microinflammation observed in $FD^{2, 12, 13}$. This hypothesis is supported

190	by our previous	work identifying increa	sed intestinal mucosal	lymphocytes	with a T helper
-----	-----------------	-------------------------	------------------------	-------------	-----------------

- 191 17-like phenotype in FD patients compared to controls¹³, however, causal antigens for such a
- response have not yet been identified. As such, this study aimed to investigate
- immunoglobulins specific to novel d-MAM bacterial species cultured from FD patients.
- 194 Given Streptococcus is the dominant reported genus in the FD d-MAM, associated with more
- severe symptom burden in other studies^{7, 9}, we investigated potential interactions between
- this genus and the immune system in FD. We demonstrate for the first time that FD patients
- 197 have plasma IgG responses against S. salivarius AGIRA0003. Further, this strain has
- capacity to alter tight junction and desmosome proteins *ex vivo*, suggesting that *S. salivarius*
- 199 AGIRA0003 may act as a pathobiont in FD, contributing to immune activation in FD.

200

201 MATERIALS AND METHODS

202 Participant selection and recruitment

- 203 Participants were recruited from three outpatient gastroenterology clinics (John Hunter,
- 204 Gosford and Wyong hospitals) in New South Wales, Australia as part of a larger study
- ²⁰⁵ investigating immune activation in FD^{13, 14}. Patients were diagnosed with FD using the Rome
- 206 III criteria. Outpatient control participants were recruited from those undergoing a screening
- 207 endoscopy for iron deficiency anaemia (IDA), a positive faecal occult blot test (FOBT),
- reflux or dysphagia, who exhibited no abnormal pathology. Exclusion criteria and clinical
- workup is as previously described^{13, 14}. During endoscopy, biopsies were collected from the
- second portion of the duodenum (D2) and approximately 36mL of blood was collected in
- 211 lithium heparin for the isolation of plasma and peripheral blood mononuclear cells
- 212 (PBMCs)¹³. Plasma samples from healthy community controls, serum samples from 9
- additional outpatient controls and 10 Crohn's disease (CD) patients with small intestinal
- 214 inflammation were used from the Digestive Health Biobank (https://digestivehealth.org.au/).
- 215 All work was carried out with approval from the Hunter New England Local Health District

216 Ethics Committee (references 2019/ETH03893, 2020/ETH03303).

217

218 Culture of bacterial strains

219 Novel bacterial candidates previously identified through sequencing of the duodenal

microbiota in FD compared to controls^{8, 10} were anaerobically isolated from duodenal

biopsies, as described¹⁵. All strains were cultured in heart infusion broth supplemented with

hemin ($10\mu g/mL$) and vitamin K ($0.5\mu g/mL$), before genome sequencing was performed¹⁵.

- 223 Cultures were centrifuged and resuspended in sterile PBS at an optical density (OD)₆₀₀ of
- 224 ~0.5. Cells were homogenised in Radio ImmunoPrecipitation Assay (RIPA) buffer (Sigma-

225 Aldrich) containing protease and phosphatase inhibitors (HALT cocktail, Thermo Fischer

226 Scientific) to obtained soluble protein lysates.

227

228	Probiotic strains S. salivarius M18 and K12 (recovered from a commercially available
229	lozenge from Life Extension Florassist®), S. salivarius ATCC7073 (glycerol stock provided
230	from Immune Health Research Program, Hunter Medical Research Institute; GenBank:
231	FJ154807b) and S. salivarius AGIRA0003 (GenBank: JAHCVC000000000.1) were
232	inoculated in heart infusion medium supplemented with 7.5% mineral solution 2 and 7.5%
233	mineral solution 3^{16} , 0.5% yeast extract and 0.1% resazurin (0.1% w/v stock solution) and
234	incubated at 37°C. Growth rates were monitored longitudinally until OD_{600} was 1 for use in
235	cell culture models.
236	

237 Immunoblotting for seroreactive immunoglobulin antibodies

238 Bacterial lysates were electrophoresed (120v, ~1 hour) using SDS running buffer (1x tris-

239 glycine with 0.1% SDS), on 4-15% polyacrylamide gels (Mini-PROTEAN TGX, BioRad,

240 Hercules, USA). Every second well contained a protein marker. Proteins were then

transferred to a polyvinylidene difluoride membrane (90v, 90 mins) and blocked using 2.5%

242 BSA/2.5% skim milk powder (1 hour). Plasma or serum samples (1:500, overnight

incubation, 4°C) were used in place of a primary antibody to detect antibodies directed

against bacterial proteins, adapted from Lodes *et al*¹⁷. Blots were incubated for 2 hours with

anti-human horseradish peroxidase (HRP) secondary antibodies directed against IgG, IgM,

IgA or IgE (Sigma-Aldrich) diluted 1:1000 in blocking buffer. Immunoblots were imaged

247 with a ChemiDoc MP System (Bio-Rad, Hercules, USA) and the presence or absence of

banding was recorded for each sample. As there was no way to accurately quantify the

249	specific antibody concentration in the plasma samples, given we did not know the identity of
250	the antigen, absolute quantification of the antibody-antigen relationship was not possible.

251

252 Isolation of seroreactive proteins from total bacterial proteins

253 Electrophoresis of proteins from bacterial species of interest and a sero-negative control

target were conducted as described above. Gel plugs were excised from bands of interest and

255 prepared for liquid chromatography tandem mass spectrometry based on the protocol

published by Shevchenko *et al*¹⁸ (**Supplementary methods**). The peptide sequences obtained

257 were initially compared against the S. salivarius CCHSS3 sequence (due to sequence

availability at the time) and the resulting PROKKA-generated protein coding sequences were

then manually compared by NCBI BLASTp to the S. salivarius AGIRA0003 strain

sequence¹⁵ to identify likely candidates. The complete coding sequence (CDS) for the S.

261 salivarius AGIRA0003 "GBS Bsp-repeat domain protein" was then used as a query sequence

262 for a BLASTp-based comparison against all non-redundant GenBank CDS translations +

263 PDB + SwissProt + PIR + PRF (excluding environmental samples from whole genome

sequencing projects) database curated by the National Centre for Biotechnology Information

265 (NCBI).

266

267 Caco-2 and duodenal spheroid culture

268 Polarised Caco-2 monolayers were cultured and maintained as previously described^{19, 20}.

269 Briefly, cells were seeded at a density of 1×10^5 cells/well on Costar Tranwell permeable

inserts (pore size 0.4µm polycarbonate membrane, catalogue #3470). Caco-2 monolayers

were stimulated in DMEM stimulation media (DMEM high glucose, 1% sodium pyruvate,

272 1% L-glutamine, 10% FCS) in triplicate for 6 hours at 37°C/5% CO2 with S. salivarius

strains AGIRA0003, M18, K12 or ATCC7073 at a multiplicity of infection (MOI) of 10, or

274	$1\mu g/mL LPS.$	Transepithelial	electrical	resistance	(TEER)	was	measured	at b	aseline	and	post	-
-----	------------------	-----------------	------------	------------	--------	-----	----------	------	---------	-----	------	---

- stimulation using an EVOM TEER Measurement device and STX2 handheld chopstick
- 276 electrodes (World Precision Instruments). Basolateral media was sampled, and spot plated
- 277 onto heart infusion agar plates to investigate translocation.
- FD derived duodenal spheroids¹⁴ were seeded at a density of 2.5×10^5 cells/well using in-
- 279 house L-WRN cell-conditioned media as previously described²¹. Spheroids (n=4 lines) were
- stimulated in DMEM stimulation media with S. salivarius AGIRA0003 multiplicity of
- infection (MOI) 10 or 1µg/mL LPS for 6 hours (37°C/5% CO₂) in duplicate. At 6 hours, cells
- were collected in RIPA buffer, centrifuged and soluble protein fractions collected and stored
- at -80°C until use.
- 284

Tight junction protein immunoblotting

286 SDS-Page immunoblotting was used to investigate tight junction protein levels in cell culture

- samples. Protein samples were normalised to 10µg and electrophoresised at 120v for ~1 hour
- before transfer to a PVDF membrane as above. Blots were blocked in 5% BSA for 1 hour,
- 289 before incubation (overnight 4° C) with the following antibodies in 5% BSA: zonula
- 290 occludins 1(ZO-1; Invitrogen #61-7300, 1:2000), desmocollin 2 (DSC2; Abcam ab95967, 1:
- 291 2500), desmoglein 2 (DSG2; ThermoFisher #PA5-21444, 1:2500), occludin (OCLN;
- 292 Abclonal A19657, 1:2000), claudin 1 (CLDN1; Invitrogen #51-9000, 1:2000) or β-actin
- 293 (Abcam #ab8227, 1:10000). Blots were then incubated for 2 hours at room temperature with
- anti-rabbit IgG HRP secondary antibody (R&D systems HAF008, 1:4000) in 5% BSA and
- imaged as described above. Protein levels relative to β -actin were determined using ImageJ
- densitometry analysis and data is presented as fold change to 1.
- 297

298 Immunohistochemical staining of duodenal biopsies.

299	Sodium citrate buffer (pH 6.0) was used for antigen retrieval in FFPE tissues and following
300	blocking with casein, sections were incubated (overnight 4°C) with anti-ZO1 (Invitrogen
301	#61-7300, 1:200), DSG2 (ThermoFisher #PA5-21444. 1:500) or DSC2 (Abcam ab95967,
302	1:200). Slides were then incubated with anti-rabbit secondary antibodies (1:500) conjugated
303	to horseradish peroxidase (HRP). Chromogen 3,3'-Diaminobenzidine (DAB) liquid substrate
304	System (Sigma Aldrich, USA) was used to develop sections, which were counterstained with
305	haematoxylin. Slides were digitalised using Aperio AT2 (Leica Biosystems, Wetzlar,
306	Germany) and the DAB staining intensity in each section was scored using the Halo software
307	area quantification algorithm (Indica Labs USA). The pixel intensity score obtained was used
308	to calculate a H-score: H score = $(3x \% \text{ of pixels with strong stain intensity}) + (2x \% \text{ of})$
309	pixels with moderate stain intensity) + (1x % of pixels with weak stain intensity), allowing
310	for quantitative staining comparison between groups.

311

312 Bioinformatic analysis of AGIRA0003 genome

313 Identification of unique genes for S. salivarius AGIRA0003 was performed with EDGAR

v3.0²² using NCBI genome deposits for *S. salivarius* M18 (ALIF01000007), *S. salivarius*

315 K12 (AGBV0000000) and *S. salivarius* AGIRA0003 (JAHCVC010000078)¹⁵. *S. salivarius*

316 AGIRA0003 singleton amino acid sequences were then blasted against the NCBI

317 refseqprotein database attempt annotation of hypothetical genes.

318

319 Statistical analysis

320 Datasets were analysed and graphed using GraphPad Prism 9 software (GraphPad Software

321 Inc., La Jolla, USA). Data was analysed for normality of distribution using the D'Agostino &

- 322 Pearson test and parametric/nonparametric testing used depending on outcome. Demographic
- 323 characteristics were analysed by *t* tests. Fisher's exact test was used to analyse co-morbidities

- and confounders. Relationships between the seroreactive response and FD were analysed by
- 325 Chi-square testing. Immune parameters and paired cell culture data were evaluated by
- 326 ordinary one-way ANOVA with Holm-Sidak multiple comparison's test or Kruskal-Wallis
- 327 test with Dunn's multiple comparisons testing, t tests with Welch's correction or Mann-
- 328 Whitney t test. Figures are presented as mean \pm SEM, values reported as mean \pm SD, p<0.05 is
- 329 considered significant.

330 **RESULTS**

331 Study cohort

- 332 Thirty controls (48.9±15.7 years, 63.3% female) and 44 FD patients (46.6±17.5 years, 79.6%
- female) were included. Seventeen patients had post-prandial distress (PDS) subtype, 7 met
- the criteria for epigastric pain syndrome (EPS) and 20 had overlapping EPS and PDS
- 335 (EPS/PDS). Controls included individuals asymptomatic for FD referred for outpatient
- endoscopy for symptoms of dysphagia (n=6), unexplained IDA; n=8, unexplained and reflux
- (n=3) or a positive FOBT (n=3). No evidence of organic GI disease was found during
- endoscopy or clinical histological examination. In addition, n=10 healthy community were
- also included. Characteristics of the cohort are presented in Table 1. As expected, the
- 340 proportion of FD patients with co-morbid irritable bowel syndrome (IBS) was significantly
- higher than the controls (3.3% vs 38.6%, p=0.001) and proton pump inhibitor (PPI) use was
- 342 higher in the FD cohort (10.7% vs 40.6%, p=0.02).
- 343

344 S. salivarius AGIRA0003 is associated with a humoral response in FD

345 We selected the most prominent differentially abundant culturable isolates from an FD

biopsy and used immunoblotting to screen participant plasma for interactions¹⁵ (Figure 1A).

- 347 These isolates were taxonomically affiliated with *Streptococcus salivarius* 57.I (hereafter
- referred to as strain AGIRA0001), *Streptococcus gordonii* Challis CH1 (AGIRA0002) and S.
- 349 salivarius CCHSS3 (strain AGIRA0003). We also investigated an isolate taxonomically
- affiliated with Corynebacterium argentoratense DSM 44202, isolated in parallel with the
- 351 Streptococcus strains. Initial screening of 6 controls and 15 FD patients against these four
- 352 strains (Figure 1B) indicated the presence of bands at ~75-100kDa and ~30-35kDa in 3
- 353 (50%) controls and 14 (93.3%) FD patients for either AGIRA0001 or AGIRA0003. The
- 354 presence of any IgG seroreactive banding for either of these *Streptococcus* strains was
- significantly associated with FD ($\chi^2(5.219, 1), p=0.02$) (Figure 1C).

356

550	
357	Given the visual intensity of banding representing an IgG specific interaction between S.
358	salivarius AGIRA0003 and FD plasma upon screening, we focused on this isolate.
359	Representative immunoblots from total cohort are included in Figure 1D. In total, 36
360	(81.8%) FD patients demonstrated a seroreactive response at any molecular weight,
361	compared to 11 (36.7%) controls ($\chi^2(15.7, 1), p < 0.0001$) (Figure 1E). Within this cohort, 33
362	(75.0%) FD patients had a banding pattern located between 75-100kDa (hereafter referred to
363	as Protein 1), in contrast to 11 (36.7%) of controls (χ^2 10.9, 1), <i>p</i> =0.001) (Figure 1F). There
364	was a banding pattern between 30-35kDa (Protein 2) detected in 30 (68.2%) of the FD
365	cohort, compared to 5 (16.7%) of the controls (χ^2 (19.0, 1), <i>p</i> <0.0001) (Figure 1G). These
366	data validate that there is a significant association between IgG antibodies directed against S.
367	salivarius AGIRA0003 and FD. The odds ratio of an IgG response at either molecular weight
368	was 7.8 (95% confidence interval, CI 2.6-20.4), for Protein 1 alone was 5.2 (95% CI 1.9-
369	14.1) and Protein 2 alone was 10.7 (95% CI 3.3-29.7). The sensitivity, specificity, positive
370	and negative likelihood ratios, positive and negative predictive values for an IgG seroreactive
371	response at any molecular weight and each protein individually in FD in included in Table 2.
372	
373	The seroreactive response to S. salivarius AGIRA0003 is not related to symptom sub-
374	type, co-morbidities or other immunoglobulin responses.
375	To ensure the IgG response against S. salivarius AGIRA0003 was not the result of a
376	confounding characteristic, the FD cohort was divided by those who had a detectable IgG
377	response (FD IgG^+ , sero-positive) and those who did not (FD IgG^- , sero-negative).
378	Correlation analysis was performed for both Protein 1 (Supplementary Table 1) and Protein
379	2 (Supplementary Table 2) bands. There was no difference in IgG status for Protein 1 or 2

380 with regards to Helicobacter pylori status, IBS as a co-morbidity, or PPI usage, histamine

381	type 2 receptor agonist (H2RA), or non-steroidal anti-inflammatory drug (NSAIDs) usage.
382	We also screened the serum of 10 Crohn's disease (CD) patients (40.7 ± 13.8 years, 50.0%
383	female) and 9 additional controls (62.2±13.2 years, 44.4% female). There was no significant
384	relationship between the presence of any IgG response (Supplementary Figure 1),
385	suggesting this phenomenon may be intrinsic to FD. There was no difference in the presence
386	of IgG antibodies against Streptococcus salivarius AGIRA0003 between FD patients with a
387	PDS or EPS±PDS subtype, nor did the IgG response prevalence differ between controls
388	recruited from the community compared to the outpatient population. Finally, there was no
389	difference in IgG seroreactivity between FD and FD with concomitant IBS (Supplementary
390	Figure 2).
391	
392	We also screened a subset of the plasma samples for IgA or IgE antibodies specific to the S.
393	salivarius AGIRA0003 strain (Supplementary Figure 3). Probing of 6 controls and 13 FD
394	patients with IgM identified interactions with bacterial proteins between 50-200kDa in 2
395	(33.33%) controls and 8 (61.54%) FD patients, which were not of statistical significance.
396	There was no significant relationship between IgA seroreactivity against S. salivarius
397	AGIRA0003 and FD status and screening for IgE antibodies failed to identify any banding in
398	either group.
399	
400	Identification of candidate seroreactive proteins from S. salivarius AGIRA0003
401	Multiple tryptic peptides recovered from the IgG Protein 1 band were matched with the
402	presumptive "GBS Bsp-repeat domain protein" coding sequence predicted from the
403	PROKKA annotation (loci AGIRA0003_00585; NCBI loci equivalent loci MBW4819708.1)
404	of the AGIRA0003 genome (ExPASy bioinformatics resource portal theoretical molecular
405	weight=85.04kDa, theoretical pI=6.49). Additionally, multiple tryptic peptide masses

406	produced from the Protein 2 band were matched with the presumptive "30S ribosomal
407	subunit S2 protein" predicted from the PROKKA annotation (loci AGIRA0003_01557;
408	NCBI equivalent loci MBW4818971.1) of the AGIRA0003 genome (ExPASy bioinformatics
409	resource portal theoretical molecular weight=28.35kDa, theoretical pI=5.04)
410	(Supplementary Table 3).
411	
412	Specific d-MAM species are associated with AGIRA0003 seroreactivity in FD.
413	We also investigated if there was any link between d-MAM profile (Supplementary
414	Methods) and the presence or absence of IgG antibodies against S. salivarius AGIRA0003 in
415	a subsample irrespective of control/FD status (n=20 total, n=4 IgG ⁻ , n=16 IgG ⁺)
416	(Supplementary Figure 4). There were no statistically significant differences in alpha or
417	beta diversity. Spearman's correlation revealed positive associations with the presence of IgG
418	antibodies against Protein 1 and the relative abundances of Salmonella, Pseudomonas,
419	Microbacterium, Leifsonia, Klebsiella, Gemella, Fusobacteriaum and Denitratisoma spp. in
420	FD but not control. These data suggest that while overall there is not a specific d-MAM
421	profile generated via 16S rRNA amplicon sequencing associated with S. salivarius
422	AGIRA0003 reactivity, there are relationships with specific commensal populations.
423	
424	Gut-homing T cells are increased in S. salivarius AGIRA0003 reactive FD patients
425	We investigated if known microinflammatory features we previously reported in a subset of
426	this cohort ^{12, 13} were associated with a sero-positive response to the <i>S. salivarius</i> AGIRA0003
427	strain. Duodenal eosinophil counts, gut-homing and duodenal effector lymphocyte profiles
428	were available for 15, 12 and 11 outpatient controls; 36, 33 and 33 FD patients respectively.
429	There was no difference in duodenal eosinophil count (Figure 2A) and IgG seroreactive
430	status in controls or FD for Protein 1 (p >0.9 for all comparisons) (Figure 2B), or for Protein

431	2 (p >0.9 for all comparisons) (Figure 2C). IgG ⁺ Protein 1 FD patients had a significantly
432	higher proportion of peripheral CD4 ⁺ gut-homing T cells, compared to controls (0.33 ± 0.77 vs
433	1.00±1.46, <i>p</i> =0.046) (Figure 2D,E). For Protein 2, the proportion of gut-homing T cells was
434	approaching significance in IgG ⁺ FD patients compared to controls (0.33 ± 0.77 vs 0.89 ± 1.39 ,
435	p=0.057) (Figure 2F). There was no difference in duodenal CD4 ⁺ effector Th2-like or Th17-
436	like cells between seroreactive FD patients or controls (Supplementary Figure 5). These
437	data suggest an association between the presence of a seroreactive response to S. salivarius
438	AGIRA0003 and increased proportions of gut-homing T cells in FD patients when compared
439	to controls.
440	
441	S. salivarius AGIRA0003 disrupts barrier integrity in Caco-2 monolayers and duodenal
442	spheroids monolayers
443	To assess the impact of AGIRA0003 on the small intestinal barrier, Caco-2 cell Transwell
443 444	To assess the impact of AGIRA0003 on the small intestinal barrier, Caco-2 cell Transwell monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic
	•
444	monolayers were exposed for 6hrs to S. salivarius AGIRA0003, as well as related probiotic
444 445	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro-
444 445 446	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro-inflammatory control strain isolated from blood. Barrier integrity was assessed using delta
444 445 446 447	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro- inflammatory control strain isolated from blood. Barrier integrity was assessed using delta transepithelial electrical resistance (Δ TEER) and was significantly decreased in the LPS
444 445 446 447 448	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro- inflammatory control strain isolated from blood. Barrier integrity was assessed using delta transepithelial electrical resistance (Δ TEER) and was significantly decreased in the LPS group (-110.3±12.5 vs -23.99±7.9, <i>p</i> =0.004) and AGIRA0003 stimulated cells compared to
 444 445 446 447 448 449 	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro- inflammatory control strain isolated from blood. Barrier integrity was assessed using delta transepithelial electrical resistance (Δ TEER) and was significantly decreased in the LPS group (-110.3±12.5 vs -23.99±7.9, <i>p</i> =0.004) and AGIRA0003 stimulated cells compared to media (-83.9±27.5, <i>p</i> =0.046) (Figure 3B). Spot-plating of basolateral media at 3hrs
 444 445 446 447 448 449 450 	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro- inflammatory control strain isolated from blood. Barrier integrity was assessed using delta transepithelial electrical resistance (Δ TEER) and was significantly decreased in the LPS group (-110.3±12.5 vs -23.99±7.9, <i>p</i> =0.004) and AGIRA0003 stimulated cells compared to media (-83.9±27.5, <i>p</i> =0.046) (Figure 3B). Spot-plating of basolateral media at 3hrs demonstrated greater CFU/mL for AGIRA0003 (<i>p</i> =0.02 compared to media) exposed
 444 445 446 447 448 449 450 451 	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro- inflammatory control strain isolated from blood. Barrier integrity was assessed using delta transepithelial electrical resistance (Δ TEER) and was significantly decreased in the LPS group (-110.3±12.5 vs -23.99±7.9, <i>p</i> =0.004) and AGIRA0003 stimulated cells compared to media (-83.9±27.5, <i>p</i> =0.046) (Figure 3B). Spot-plating of basolateral media at 3hrs demonstrated greater CFU/mL for AGIRA0003 (<i>p</i> =0.02 compared to media) exposed samples in contrast with preparations exposed to the M18, K12 and ATCC7073 strains which
 444 445 446 447 448 449 450 451 452 	monolayers were exposed for 6hrs to <i>S. salivarius</i> AGIRA0003, as well as related probiotic M18 and K12 strains (Figure 3A). Additionally, ATCC7073 was included as a pro- inflammatory control strain isolated from blood. Barrier integrity was assessed using delta transepithelial electrical resistance (Δ TEER) and was significantly decreased in the LPS group (-110.3±12.5 vs -23.99±7.9, <i>p</i> =0.004) and AGIRA0003 stimulated cells compared to media (-83.9±27.5, <i>p</i> =0.046) (Figure 3B). Spot-plating of basolateral media at 3hrs demonstrated greater CFU/mL for AGIRA0003 (<i>p</i> =0.02 compared to media) exposed samples in contrast with preparations exposed to the M18, K12 and ATCC7073 strains which

455 functional epithelial barrier, we assessed the level of ZO-1, CLDN-1, OCLN, DSC2 and

456	DSG2 (Figure 3D)	.ZO-1	was non-significantly	decreased in	the S.	salivarius	AGIRA0003

- 457 group compared to control (0.55 ± 0.03 AGIRA0003, p=0.058) and decreased in the
- 458 ATCC7073-treated cells $(0.51\pm0.05, p=0.01)$ (Figure 3E). CLDN1 was also decreased after
- 459 exposure to AGIRA0003 compared to control $(0.64\pm0.05, p=0.04)$ (Figure 3F), and
- 460 proinflammatory control strain ATCC7073 decreased OCLN in Caco-2 cells (0.66±0.08,
- 461 p=0.04) (Figure 3G). Cleaved DSC2 was decreased in Caco-2 monolayers exposed to
- 462 ATCC7073 (0.58±0.02, *p*=0.03) and AGIRA0003 (0.58±0.07, *p*=0.04) (**Figure 3H**), while
- 463 DSG2 level was unchanged across all groups (Figure 3I). Collectively, these data suggest
- 464 AGIRA0003 has potential to compromise the epithelial integrity.
- 465 Given tight junction dysfunction is also repeatedly reported in FD, we examined levels of
- 466 DSC2, DSG2 and ZO-1 in duodenal biopsies from IgG⁺ FD patients. Immunohistochemical
- staining demonstrated lower levels of mucosal DSC2 (2.19 ± 0.97 vs 1.49 ± 0.85 , p=0.02)

468 (Figure 4A) and DSG2 (23.22 \pm 15.92 vs 12.38 \pm 7.34, p=0.04) in IgG⁺ FD compared to

- 469 controls (**Figure 4B**). ZO-1 was not significantly changed in IgG^+ FD compared to control
- 470 (32.96±19.30 vs 22.77±11.10, *p*=0.08) (Figure 4C). A reduction in mucosal DSG2 in FD
- 471 patients IgG⁺ for Protein 2 was the only difference between IgG⁺ and IgG⁻ FD (21.6 \pm 15.1 vs

472 10.1 ± 6.2 , p=0.04) for any of the 3 targets (Supplementary Figure 6).

473

- 474 We next exposed duodenal spheroids from FD patients with IgG seroreactivity (n=4) to
- 475 AGIRA0003 for 6 hours and assessed tight junction and desmosomal protein levels by

476 immunoblot (Figure 5A). While ZO-1 was unchanged in spheroids exposed to AGIRA0003

477 (Figure 5B), DSG2 was decreased following AGIRA0003 exposure compared to both media

478 $(0.30\pm0.12, p=0.03)$ and LPS $(0.99\pm0.10, p=0.03)$ (Figure 5C). CLDN1 was also decreased

- 479 after AGIRA0003 exposure compared to media alone $(0.49\pm0.11, p=0.03)$ and LPS
- 480 $(0.76\pm0.23, p=0.03)$ (Figure 5D). We also observed a reduction in DSC2 after AGIRA0003

481	exposure compared to media (0.64 \pm 0.33, p =0.03) (Figure 5E). Collectively, these findings
482	suggest that S. salivarius AGIRA0003 actively impairs duodenal barrier defences.
483	
484	S. salivarius AGIRA0003 may have virulent capacity based on genome interrogation.
485	Given we demonstrated the capacity of S. salivarius AGIRA0003 to impact tight junction
486	integrity, we investigated potential pathogenic capacity through in silico analysis.
487	Comparative genomics identified 81 unique AGIRA0003 genes when aligned to the probiotic
488	M18 and K12 strains that did not disrupt tight junctions (Supplementary Table 4). Within
489	this list of singletons, 4 genes with virulent properties (e.g., LPS, flagella, pilus, toxins) ²³
490	were annotated as type II toxin-antitoxin system death-on-curing family toxin, FliM/FliN
491	family flagellar motor switch protein/ type III secretion system (T3SS) cytoplasmic ring
492	protein SctQ [from Lysobacter enzymogenes], O-antigen ligase family protein [Lysobacter
493	sp. K5869] and sigma 54-interacting transcriptional regulator/type 4 pilus PilR [Lysobacter
494	enzymogenes].

495 **DISCUSSION**

496	In this study, we demonstrate the presence of IgG antibodies in FD patient plasma directed
497	against proteins from S. salivarius AGIRA0003, a novel isolate from the FD duodenum ¹⁵ ,
498	suggesting that S. salivarius AGIRA0003 is a pathobiont in the FD mucosal
499	microenvironment. Further, IgG^+ FD patients had significantly higher circulating gut-homing
500	T cells and these cells have been previously associated with intensity of pain, cramping,
501	nausea and vomiting in FD ²⁴ . Additionally, we show S. salivarius AGIRA0003 has capacity
502	to disrupt tight junctions and desmosomes in both polarised Caco-2 cells and FD patient-
503	derived duodenal spheroids. These disruptions are mirrored in the pathology of FD patients,
504	suggesting a potential mechanism for a host-microbe interaction that results in the generation
505	of the observed immune response.
506	
507	Approximately 10% of FD cases are thought to have a post-infectious aetiology (PI-FD)
508	arising from an acute GI infection ²⁵ . PI-FD is associated with more severe symptoms,
509	including more weight loss, nausea, vomiting and early satiety ²⁶ , and higher incidence of co-
510	morbid insomnia, depression and anxiety ²⁷ than non-PI-FD. However, it is likely the true
511	prevalence of PI-FD is higher, given the diagnostic reliance on patient recall of infection in
512	the general population. In support of this, anti-cytolethal distending toxin (CtdB) antibodies,
513	produced in response to infection by Gram negative bacteria ²⁸ are increased in FD and other
514	DGBI patient serum compared to controls ²⁹⁻³¹ . DGBI patients also have elevated anti-
515	vinculin antibodies, believed to result from cross reactivity between anti-CtdB antibodies and
516	vinculin proteins ³² , collectively supporting a role for infection in FD onset.
517	
518	Sequence comparison identified cell wall associated tandem repeats (GBS Bsp-like repeat

519 protein) and a ribosome associated protein (30S ribosomal protein S2) as the likely

520	seroreactive candidates. The ribosomal subunit is important for binding of transfer RNA and
521	messenger RNA during translation ³³ . The GBS Bsp-like repeat proteins are implicated in
522	colonisation and interactions of microbes with epithelial cells ³⁴ , including heightened
523	virulence of related <i>Streptococcus</i> spp. for competitive advantage in mucosal infections ³⁵ .
524	This GBS Bsp-like repeat protein exists in a tandem repeat sequence in our isolate, in close
525	proximity to a GH25 muramidase catalytic module (AtlA). This is an autolysin of Gram-
526	positive bacteria that hydrolyses 1,4-beta linkages between N-acetylmuramic acid and N-
527	acetyl-D-glucosamine residues to degrade bacterial cell walls ³⁶ . When this protein was
528	overexpressed in Group B Streptococcus spp., the cellular morphology was observed to
529	become more elongated and lens-shaped, rather than spherical ³⁷ , suggesting that Bsp-like
530	repeat proteins play a role in mediating cellular morphology, and by extension, evading host
531	detection and enabling mucosal colonisation ^{35, 38} .
532	Tight junction proteins are integral in forming the intestinal epithelial barrier and inhibiting
533	the translocation of mucosal antigens through the paracellular space to the lamina propria.
534	Given that our cell culture data demonstrates the capacity of S. salivarius AGIRA0003, but
535	not the related probiotic strains we assessed, to translocate through intestinal monolayers
536	while reducing tight junction and desmosome protein levels in both Caco-2 and FD-derived
537	spheroids, this may represent a pathway for immune sensitisation and activation in FD. Many
538	entero-pathogens, have adapted to target or disorganise tight junction proteins to allow for
539	epithelial translocation via virulence proteins ^{39} . Comparative genomics analysis of the <i>S</i> .
540	salivarius AGIRA0003 genome identified 4 unique genes with potential virulence. Of
541	particular interest was the FliM/FliN family flagellar motor switch protein/Type 3 secretor
542	system (T3SS) cytoplasmic ring protein SctQ. The T3SS is a transmembrane complex that
543	enables protein transport into host cells and is a feature of highly pathogenic bacteria
544	including Enterococcus, Shigella, Vibrio, Salmonella and Pseudomonas ⁴⁰ . This complex is

545	integral to the capacity of such enteropathogens in targeting tight junction proteins ^{41, 42} . The
546	Walkerton, Ontario, Canada outbreak of acute gastroenteritis, due to T3SS complex and/or
547	FliM/FliN proteins ^{43, 44} positive <i>Escherichia coli</i> 0157:H7 and <i>Campylobacter</i> spp. ⁴⁵⁻⁴⁷ ,
548	resulted in a higher prevalence of PI-FD up to 8-years post outbreak in those who contracted
549	gastroenteritis ⁴⁵ . While the complete secretion system was not encoded in the S. salivarius
550	AGIRA0003 genome, if functionally expressed, this protein may act as an antigenic stimulant
551	of the host response in patients with previous history of infection with other bacterium
552	utilising this system, potentially contributing to the onset of PI-FD.
553	
554	Desmosomes (including DSC2, DSG2) are junctions critical for strong adhesion and linking
555	cytoskeletal filaments to cell-ceil contact sites, and as such, disruption to these proteins
556	weakens the epithelial monolayer, a feature leveraged by some pathogens with capacity to
557	disassemble desmosomes ⁴⁸ . For example, proteolytic cleavage of desmoglein proteins by S .
558	pyogenes has been associated with impaired epidermal barrier and the development of
559	cutaneous infection ⁴⁹ . Further, DSC2 is targeted by <i>Giardia duodenalis</i> ⁵⁰ and loss of DSG2
560	has been implicated in Crohn's disease ⁵¹ . Reduction in DSC2 and DSG2 gene expression ⁵² ,
561	and DSG2 protein levels ¹¹ have been shown in duodenal biopsies from FD patients compared
562	to controls. As such, our findings proposition S. salivarius AGIRA0003 as a FD pathobiont
563	capable of disassembling desmosomes and tight junction proteins. This may represent a
564	microbial driven mechanism for the reduced barrier integrity in FD patients that would then
565	permit increased interaction of luminal contents with the host immune system.
566	
567	While we have shown that S. salivarius AGIRA0003 drives barrier dysfunction and that IgG
568	seroreactivity is associated with gut homing T cells, a larger study (incorporating a known
569	and unselected validation cohort) across multiple international sites is required to

570 conclusively establish S. salivarius AGIRA0003 as a causative agent and biomarker for FD. 571 Nevertheless, our cohort was recruited from three sites across New South Wales, Australia 572 spanning well over a 100km radius. Further, we have shown that AGIRA003 seroreactivity is 573 not associated with Crohn's disease, where patients exhibit barrier dysfunction nor outpatient 574 controls. While biomarkers including zonulin, anti-CtdB, and anti-vinculin antibodies have been proposed to distinguish DGBIs^{29, 30, 53, 54}, their translation into standard care is impeded 575 by heterogeneity and marker overlap with other diseases/physiological states⁵⁵. Thus, a larger 576 validation cohort may provide utility for S. salivarius AGIRA0003 as a diagnostic marker 577 discriminating FD from other conditions (including inflammatory bowel diseases and coeliac 578 579 disease). A further limitation is the lack of data on the absolute abundance of S. salivarius 580 AGIRA0003 globally, as most data assessing small intestinal mucosal sites has utilised 16S RNA gene amplicon sequencing, which does not allow for strain level identification⁵⁶ and 581 582 cost and difficulty removing host DNA from duodenal samples limits shotgun metagenomics. 583 To that end, progress has been made with capturing and characterising the MAM by "culturomics' a novel combination of microbe culture with metagenomic sequencing⁵⁷. Here, 584 our findings show that microbe cultivation also represents a meaningful and feasible 585 586 alternative to functionally examine the d-MAM, beyond the widely practised "culture-587 independent" methods. Investigation of the prevalence of this strain in other intestinal niches, 588 in addition to the duodenum, will facilitate further understanding of its role in FD 589 pathophysiology. 590

We have provided evidence of a dysregulated relationship between the novel duodenal *S. salivarius* strain AGIRA0003 and the host immune system in FD. Relationships between GI disease and immune responses involving the commensal microbiota have been previously reported, although to our knowledge, ours is the first study to identify seroreactivity to a

595	specific bacterium in the blood of FD patients. Our comparative genomic analysis of other S.
596	salivarius strains demonstrated that S. salivarius AGIRA0003 contains unique genes
597	putatively implicated with virulence and we have functionally highlighted the capacity of this
598	strain to reduce barrier integrity via disruption of tight junction and desmosome proteins.
599	Importantly, our data show that duodenal pathobionts can cause the epithelial dysfunction
600	previously identified in FD ¹¹ and that immunoreactivity to pathobionts can explain the
601	immunological features of FD ^{13, 24} . Overall, our findings suggest S. salivarius AGIRA0003 is
602	a novel pathobiont that may contribute to FD pathogenesis, and thereby represent a potential
603	biomarker and therapeutic target.

604	Refei	rences
605		
606	1.	Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology,
607		Clinical Features and Rome IV. Gastroenterology 2016;150:1262-1279.e2.
608	2.	Shah A, Fairlie T, Brown G, et al. Duodenal Eosinophils and Mast Cells in Functional
609	2.	Dyspepsia: A Systematic Review and Meta-Analysis of Case-Control Studies. Clin
610		Gastroenterol Hepatol 2022;20:2229-2242 e29.
611	3.	Ji R, Wang P, Kou GJ, et al. Impaired gastric mucosal integrity identified by confocal
612	5.	endomicroscopy in Helicobacter pylori-negative functional dyspepsia.
613		Neurogastroenterology and Motility 2020;32:e13719.
614	4.	Simren M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel
615	ч.	disorders: a Rome foundation report. Gut 2013;62:159-76.
616	5.	Chey WD. The Role of Food in the Functional Gastrointestinal Disorders:
	5.	Introduction to a Manuscript Series. Am J Gastroenterol 2013;108:694-697.
617	6	
618	6.	Schulz O, Pabst O. Antigen sampling in the small intestine. Trends Immunol
619	7	2013;34:155-61.
620	7.	Shanahan ER, Kang S, Staudacher H, et al. Alterations to the duodenal microbiota are
621		linked to gastric emptying and symptoms in functional dyspepsia. Gut 2023;72:929-
622	0	
623	8.	Zhong L, Shanahan ER, Raj A, et al. Dyspepsia and the microbiome: time to focus on
624	0	the small intestine. Gut 2017;66:1168-1169.
625	9.	Fukui A, Takagi T, Naito Y, et al. Higher Levels of Streptococcus in Upper
626		Gastrointestinal Mucosa Associated with Symptoms in Patients with Functional
627	1.0	Dyspepsia. Digestion 2020;101:38-45.
628	10.	Shanahan ER, Zhong L, Talley NJ, et al. Characterisation of the gastrointestinal
629		mucosa-associated microbiota: a novel technique to prevent cross-contamination
630		during endoscopic procedures. Aliment Pharmacol Ther 2016;43:1186-96.
631	11.	Vanheel H, Vicario M, Vanuytsel T, et al. Impaired duodenal mucosal integrity and
632		low-grade inflammation in functional dyspepsia. Gut 2014;63:262-71.
633	12.	Burns G, Carroll G, Mathe A, et al. Evidence for Local and Systemic Immune
634		Activation in Functional Dyspepsia and the Irritable Bowel Syndrome: A Systematic
635		Review. Am J Gastroenterol 2019;114:429-436.
636	13.	Burns GL, Bruce JK, Minahan K, et al. Type 2 and type 17 effector cells are
637		increased in the duodenal mucosa but not peripheral blood of patients with functional
638		dyspepsia. Front Immunol 2023;13:1051632.
639	14.	Bruce JK, Burns GL, Sinn Soh W, et al. Defects in NLRP6, autophagy and goblet cell
640		homeostasis are associated with reduced duodenal CRH receptor 2 expression in
641		patients with functional dyspepsia. Brain Behav Immun 2022;101:335-345.
642	15.	Hoedt EC, Shanahan ER, Keely S, et al. Draft Genome Sequence of Streptococcus
643		salivarius AGIRA0003, Isolated from Functional Gastrointestinal Disorder Duodenal
644		Tissue. Microbiol Resour Announc 2021;10:e0075821.
645	16.	Balch WE, Fox GE, Magrum LJ, et al. Methanogens: reevaluation of a unique
646		biological group. Microbiological Reviews 1979;43:260-296.
647	17.	Lodes MJ, Cong YZ, Elson CO, et al. Bacterial flagellin is a dominant antigen in
648		Crohn disease. Journal of Clinical Investigation 2004;113:1296-1306.
649	18.	Shevchenko A, Tomas H, Havlis J, et al. In-gel digestion for mass spectrometric
650		characterization of proteins and proteomes. Nat Protoc 2006;1:2856-60.
651	19.	Keely S, Ryan SM, Haddleton DM, et al. Dexamethasone–pDMAEMA polymeric
652		conjugates reduce inflammatory biomarkers in human intestinal epithelial
653		monolayers. Journal of Controlled Release 2009;135:35-43.

	•	
654	20.	Bolan S, Seshadri B, Keely S, et al. Bioavailability of arsenic, cadmium, lead and
655		mercury as measured by intestinal permeability. Scientific Reports 2021;11.
656	21.	Bruce J, Kaiko GE, Keely S. Isolation and In Vitro Culture of Human Gut Progenitor
657		Cells. In: Joglekar MV, Hardikar AA, eds. Progenitor Cells: Methods and Protocols.
658		New York, NY: Springer New York, 2019:49-62.
659	22.	Dieckmann Marius A, Beyvers S, Nkouamedjo-Fankep Rudel C, et al. EDGAR3.0:
660		comparative genomics and phylogenomics on a scalable infrastructure. Nucleic Acids
661		Research 2021;49:W185-W192.
662	23.	Liu B, Zheng D, Zhou S, et al. VFDB 2022: a general classification scheme for
663		bacterial virulence factors. Nucleic Acids Research 2021;50:D912-D917.
664	24.	Liebregts T, Adam B, Bredack C, et al. Small bowel homing T cells are associated
665		with symptoms and delayed gastric emptying in functional dyspepsia. Am J
666		Gastroenterol 2011;106:1089-98.
667	25.	Futagami S, Itoh T, Sakamoto C. Systematic review with meta-analysis: post-
668		infectious functional dyspepsia. Aliment Pharmacol Ther 2015;41:177-88.
669	26.	Tack J, Demedts I, Dehondt G, et al. Clinical and pathophysiological characteristics
670		of acute-onset functional dyspepsia. Gastroenterology 2002;122:1738-47.
671	27.	Tuteja AK, Talley NJ, Stoddard GJ, et al. Risk factors for upper and lower functional
672		gastrointestinal disorders in Persian Gulf War Veterans during and post deployment.
673		Neurogastroenterology & Motility 2019;31:e13533.
674	28.	Mortensen NP, Schiellerup P, Boisen N, et al. The role of Campylobacter jejuni
675		cytolethal distending toxin in gastroenteritis: toxin detection, antibody production,
676		and clinical outcome. APMIS 2011;119:626-34.
677	29.	Talley NJ, Holtmann G, Walker MM, et al. Circulating Anti-cytolethal Distending
678	27.	Toxin B and Anti-vinculin Antibodies as Biomarkers in Community and Healthcare
679		Populations With Functional Dyspepsia and Irritable Bowel Syndrome. Clin Transl
680		Gastroenterol 2019;10:e00064.
681	30.	Pimentel M, Morales W, Rezaie A, et al. Development and validation of a biomarker
682	50.	for diarrhea-predominant irritable bowel syndrome in human subjects. PLoS One
683		2015;10:e0126438.
684	31.	Rezaie A, Park SC, Morales W, et al. Assessment of Anti-vinculin and Anti-
685	51.	cytolethal Distending Toxin B Antibodies in Subtypes of Irritable Bowel Syndrome.
686		Dig Dis Sci 2017;62:1480-1485.
687	32.	Pimentel M, Morales W, Pokkunuri V, et al. Autoimmunity Links Vinculin to the
688	52.	Pathophysiology of Chronic Functional Bowel Changes Following Campylobacter
689		jejuni Infection in a Rat Model. Dig Dis Sci 2015;60:1195-205.
	33.	Thompson JF, Hearst JE. Structure-function relations in E. coli 16S RNA. Cell
690	55.	1983;33:19-24.
691	24	•
692	34.	Rego S, Heal TJ, Pidwill GR, et al. Structural and Functional Analysis of Cell Wall-
693		anchored Polypeptide Adhesin BspA in Streptococcus agalactiae. J Biol Chem
694	25	2016;291:15985-6000.
695	35.	Rego S, Heal TJ, Pidwill GR, et al. Structural and Functional Analysis of Cell Wall-
696		anchored Polypeptide Adhesin BspA in Streptococcus agalactiae. Journal of
697	<u> </u>	Biological Chemistry 2016;291:15985-16000.
698	36.	Ahn SJ, Burne RA. The atlA operon of Streptococcus mutans: role in autolysin
699	a =	maturation and cell surface biogenesis. J Bacteriol 2006;188:6877-88.
700	37.	Reinscheid DJ, Stosser C, Ehlert K, et al. Influence of proteins Bsp and FemH on cell
701		shape and peptidoglycan composition in group B streptococcus. Microbiology
702		(Reading) 2002;148:3245-3254.

703	38.	Manzer HS, Nguyen DT, Park JY, et al. The Group B Streptococcal Adhesin BspC
704		Interacts with Host Cytokeratin 19 To Promote Colonization of the Female
705		Reproductive Tract. mBio 2022;13:e01781-22.
706	39.	Tafazoli F, Holmstro IM A, Forsberg I, et al. Apically Exposed, Tight Junction-
707		Associated β 1-Integrins Allow Binding and YopE-Mediated Perturbation of Epithelial
708		Barriers by Wild-Type Yersinia Bacteria. Infection and Immunity 2000;68:5335-
709		5343.
710	40.	Notti RQ, Stebbins CE. The Structure and Function of Type III Secretion Systems.
711		Microbiol Spectr 2016;4.
712	41.	Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F. Tight Junction Disruption
713		Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and
714		Enterohemorrhagic Escherichia coli. Frontiers in Cellular and Infection Microbiology
715		2016;6.
716	42.	Coburn B, Sekirov I, Finlay BB. Type III Secretion Systems and Disease. Clinical
717		Microbiology Reviews 2007;20:535-549.
718	43.	Ideses D, Gophna U, Paitan Y, et al. A Degenerate Type III Secretion System from
719		Septicemic Escherichia coli Contributes to Pathogenesis. Journal of Bacteriology
720		2005;187:8164-8171.
721	44.	Gabbert AD, Mydosh JL, Talukdar PK, et al. The Missing Pieces: The Role of
722		Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023;13:135.
723	45.	Ford AC, Thabane M, Collins SM, et al. Prevalence of Uninvestigated Dyspepsia 8
724		Years After a Large Waterborne Outbreak of Bacterial Dysentery: A Cohort Study.
725		Gastroenterology 2010;138:1727-1736.
726	46.	Garg A, Macnab J, Clark W, et al. Long-term Health Sequelae Following E.coli and
727		Campylobacter Contamination of Municipal Water. Canadian Journal of Public
728		Health 2005;96:125-130.
729	47.	Garg AX, Marshall J, Salvadori M, et al. A gradient of acute gastroenteritis was
730		characterized, to assess risk of long-term health sequelae after drinking bacterial-
731		contaminated water. Journal of Clinical Epidemiology 2006;59:421-428.
732	48.	Roxas JL, Vedantam G, Viswanathan VK. Epithelial maturity influences EPEC-
733		induced desmosomal alterations. Gut Microbes 2019;10:241-245.
734	49.	Sumitomo T, Mori Y, Nakamura Y, et al. Streptococcal Cysteine Protease-Mediated
735		Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection.
736		Frontiers in Cellular and Infection Microbiology 2018;8.
737	50.	Maia-Brigagão C, Morgado-Díaz JA, De Souza W. Giardia disrupts the arrangement
738		of tight, adherens and desmosomal junction proteins of intestinal cells. Parasitology
739		International 2012;61:280-287.
740	51.	Spindler V, Meir M, Vigh B, et al. Loss of Desmoglein 2 Contributes to the
741		Pathogenesis of Crohn's Disease. Inflammatory Bowel Diseases 2015;21:2349-2359.
742	52.	Puthanmadhom Narayanan S, O'Brien DR, Sharma M, et al. Duodenal Mucosal
743		Barrier in Functional Dyspepsia. Clinical Gastroenterology and Hepatology
744		2022;20:1019-1028.e3.
745	53.	Lembo AJ, Neri B, Tolley J, et al. Use of serum biomarkers in a diagnostic test for
746		irritable bowel syndrome. Aliment Pharmacol Ther 2009;29:834-42.
747	54.	Talley NJ, Holtmann GJ, Jones M, et al. Zonulin in serum as a biomarker fails to
748		identify the IBS, functional dyspepsia and non-coeliac wheat sensitivity. Gut
749		2020;69:1-3.
750	55.	Ohlsson B, Orho-Melander M, Nilsson PM. Higher Levels of Serum Zonulin May
751		Rather Be Associated with Increased Risk of Obesity and Hyperlipidemia, Than with
752		Gastrointestinal Symptoms or Disease Manifestations. Int J Mol Sci 2017;18:582.

- 56. Brown G, Hoedt EC, Keely S, et al. Role of the duodenal microbiota in functional dyspepsia. Neurogastroenterology & Motility 2022;34.
- 755 57. Teh JJ, Berendsen EM, Hoedt EC, et al. Novel strain-level resolution of Crohn's
 756 disease mucosa-associated microbiota via an ex vivo combination of microbe culture
 757 and metagenomic sequencing. The ISME Journal 2021.

758

FIGURE LEGENDS

Figure 1: Screening of patient plasma for IgG antibodies against Streptococcus

salivarius AGIRA0003.

Total protein extracted from novel duodenal bacterial lysates was electrophoresed and (A) immunoblotted with patient plasma as the probing antibody to determine interactions between the duodenal microbiota and patient plasma. Figure created with BioRender.com. (B) Representative immunoblots of this screening process, where 1= Streptococcus salivarius strain AGIRA0001, 2= Streptococcus gordoni AGIRA0002, 3= Streptococcus salivarius strain AGIRA0003, 4= Corynebacterium argentoratense. (C) The presence of an interaction with either Streptococcus salivarius strain AGIRA0001 or AGIRA0003 was tested for potential associations with FD in the screening population. n=6 controls n=15 FD. The presence of AGIRA0003 IgG seroreactivity in the total cohort was then investigated. (D) Banding patterns observed in immunoblots where total protein extracted from the bacteria was probed with patient or control plasma. (E) The number of FD patients demonstrating a seroreactive response at any molecular weight was compared to seroreactive controls. The number of FD patients with a banding pattern located (F) between 75-100kDa (Protein 1) and (G) between 30-35kDa (Protein 2) compared to the number of positive controls to determine if there was a relationship between this reaction and FD. n=17 controls, n=40 FD patients. Statistical analysis, Chi-square test, p<0.05 + p<0.001 + p<0.001.

Figure 2: IgG seroreactive status, eosinophils and gut-homing T cells in FD patients.

(A) Eosinophils in haematoxylin and eosin-stained biopsies from a subset of the cohort were numerated as part of a previous study. Scale bar = 50um, yellow arrows identify example eosinophils. Eosinophil numbers were compared between controls, IgG^+ and IgG^- FD patients for (B) Protein 1 and (C) Protein 2 (D) Flow cytometry was used to examine gut-homing

CD4⁺ cell populations in controls and FD patients in a previous study. These populations were examined in IgG⁺ and IgG⁻ FD patients for (E) Protein 1 and (F) Protein 2. (B,C) n=15 controls, n=36 FD (E,F) n=12 controls, n=33 FD. Data presented as mean±SEM. Statistical analysis: Kruskal-Wallis test, *p<0.05.

Figure 3: Tight junction proteins following exposure of Caco-2 cells to *S. salivarius* AGIRA0003, M18, K12 and ATCC7073 strains.

(A) Caco-2 Transwell monolayers were stimulated for 6hrs with either media only, 1µg/mL LPS, or *S. salivarius* AGIRA0003, M18, K12 and ATCC7073 strains in triplicate. Figure created with BioRender.com. (B) The difference in TEER values ($\Omega x cm^2$) of monolayers pre and post 6-hour challenge. (C) Bacterial translocation across the Transwell was assessed by spot-plating from basolateral media at 3 hours post-stimulation and counting resulting colonies. (D) Protein was extracted from Caco-2 cells post- stimulation and tight junction associated proteins (E) ZO-1, (F) CLDN1, (G) OCLN, (H) DSC2 and (I) DSG2 were assessed by immunoblot as fold change to media. Data presented as mean±SEM. Statistical analysis: non-parametric ANOVA with Dunn's correction. **p*<0.05, ***p*<0.01.

Figure 4: Tight junction associated proteins, DSC2, DSG, and ZO-1, in duodenal biopsies from IgG⁺ FD patients.

Formalin fixed, paraffin embedded duodenal biopsies from IgG^+ FD patients compared to outpatient controls were immunohistochemically stained and H score quantified for (A) DSC2, (B) DSG2 and (C) ZO-1. n=13 controls, n=17 FD. Scale bar = 50µM. Top row=10x magnification, bottom=40x. Statistical analysis: (A) non-parametric t test, (B, C) parametric t test. **p*<0.05.

Figure 5: Tight junction proteins following exposure of FD patient-derived duodenal spheroids to *S. salivarius* AGIRA0003.

(A) FD patient-derived duodenal spheroids (n=4 lines) were stimulated for 6hrs with either

media, 1µg/mL LPS, or S. salivarius AGIRA0003 in triplicate. Figure created with

BioRender.com. Protein was extracted from the cells at 6 hours post-stimulation and tight

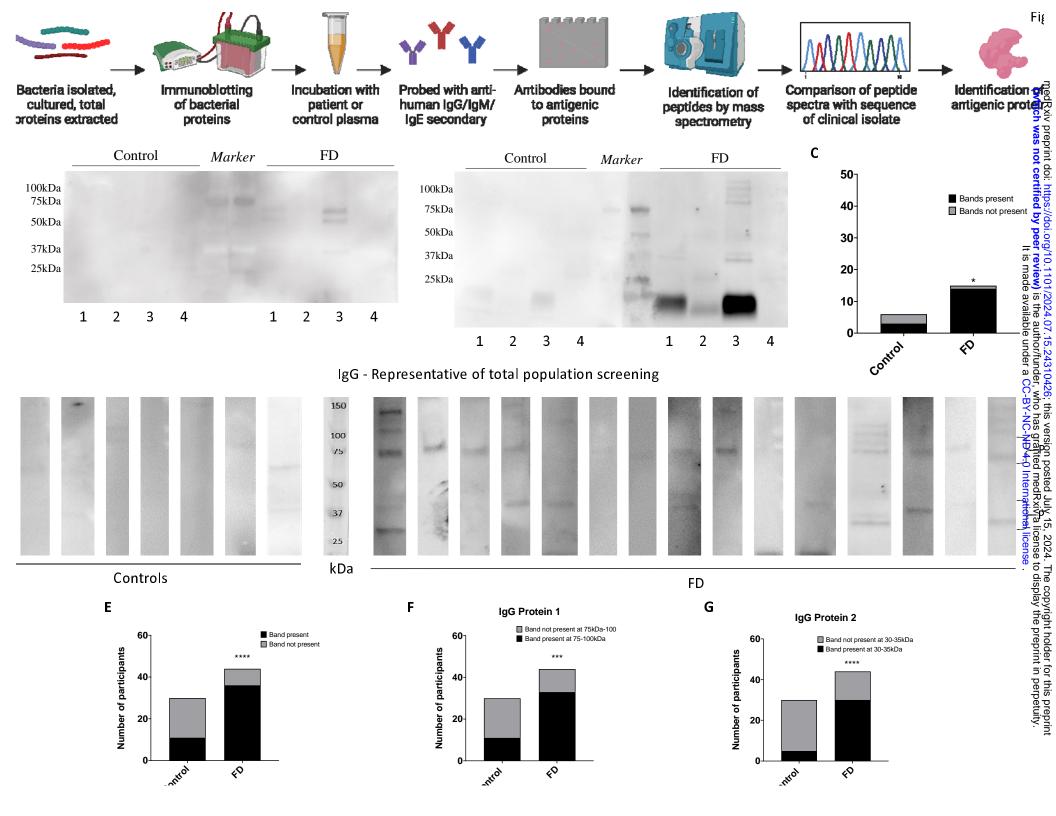
junction associated proteins (B) ZO-1, (C) DSG2 (D) CLDN1 and (E) DSC2 were assessed

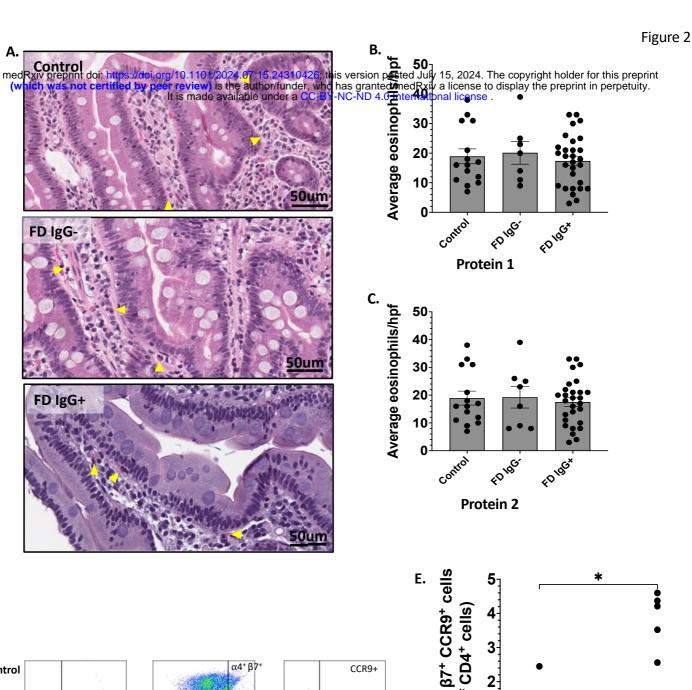
by immunoblot. Data presented as mean±SEM, fold change to 1 (media). Statistical analysis:

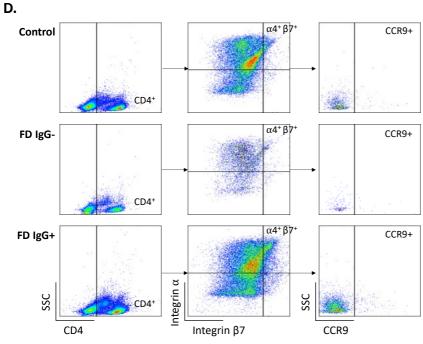
paired non-parametric ANOVA. *p<0.05. M=media only, L=LPS stimulation,

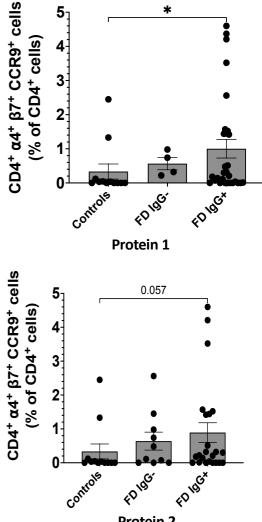
A=AGIRA0003 stimulation.

Table 1: Demographic and chinical characteristics of study conort			
	Controls	FD	p value
	n=30	n=44	
Age (mean±SD)	48.87 (15.66)	46.59 (17.46)	0.57
Female (%)	19 (63.33)	35 (79.55)	0.18
BMI (mean±SD)	28.16 (5.80)	26.93 (5.70)	0.28
PPI use (%)#	3 (10.71)	13 (40.63)	0.02*
H2RA use (%)#	0	4 (12.50)	0.12
NSAIDS use (%)#	2 (7.14)	3 (9.38)	>0.99
Helicobacter pylori positive (%)#	2 (18.18)	1 (3.57)	0.187
IBS co-morbidity (%)#	1 (3.33)	17 (38.64)	0.001**


Table 1: Demographic and clinical characteristics of study cohort


denotes a factor that was not provided by all participants included in this cohort BMI = body mass index, PPI = proton pump inhibitor, H2RA = H2 receptor antagonist, NSAIDS = nonsteroidal anti-inflammatory drugs, IBS = irritable bowel syndrome


IgG seroreactivity IgG seroreactivity (Protein 1 only) IgG ser		IgG seroreactivity (Protein 2 only)	
	(95% CI)	(95% CI)	(95% CI)
Sensitivity	81.82% (68.04 - 90.49)	75.00% (60.56 – 85.43)	68.18% (53.44 - 80.00)
Specificity	63.33% (45.51 – 78.13)	63.33% (45.51–78.13)	83.33% (66.44 – 92.66)
Positive Likelihood Ratio	2.23 (1.37 - 3.64)	2.05 (1.24 - 3.37)	4.09 (1.79 – 9.34)
Negative Likelihood Ratio	0.29 (0.14 - 0.57)	0.39 (0.22 – 0.70)	0.38 (0.24 – 0.61)
Positive Predictive Value	76.60% (62.78 - 86.40)	75.00% (60.56 – 85.43)	85.71% (70.62 - 93.74)
Negative Predictive Value	70.37% (51.52 – 84.15)	63.33% (45.51 – 78.13)	64.10% (48.42 - 77.26)
Odds Ratio	7.77 (2.64 – 20.39)	5.18 (1.92 – 14.13)	10.71 (3.34 – 29.70)


Table 2: Sensitivity and specificity for IgG antibodies against Streptococcus salivarius AGIRA0003 as a marker of FD.

Wilson/Brown method for 95% confidence interval (CI).

F.

Protein 2

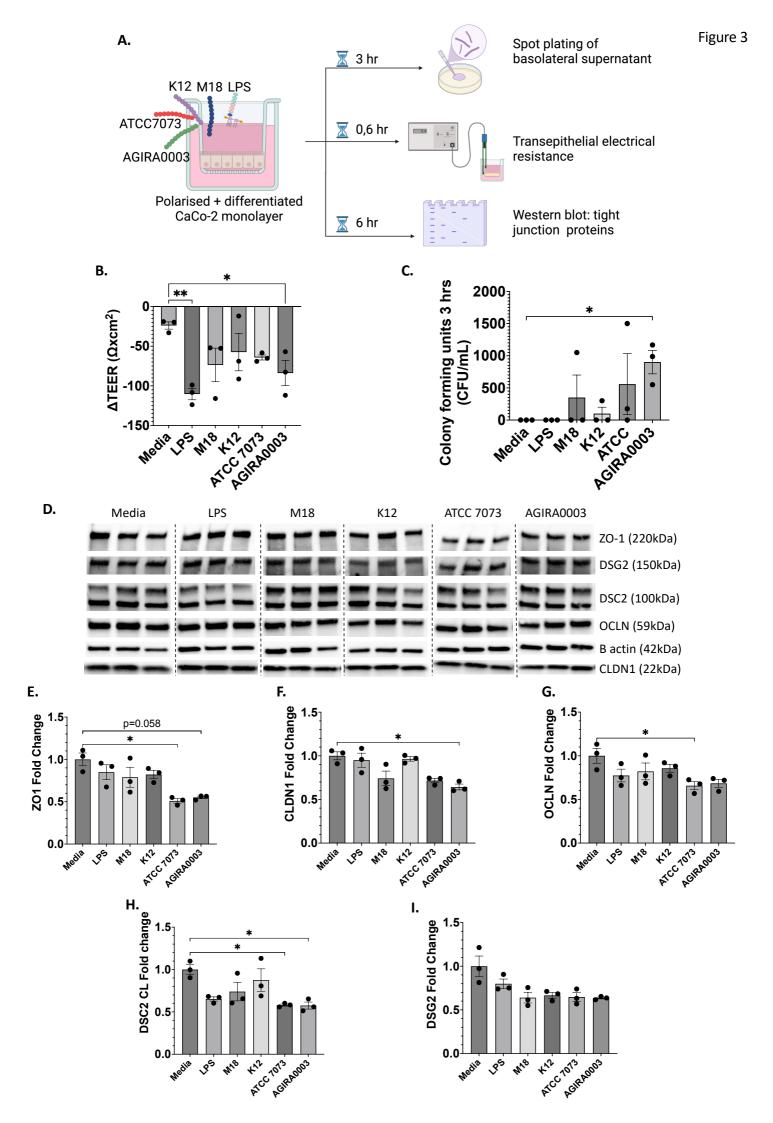
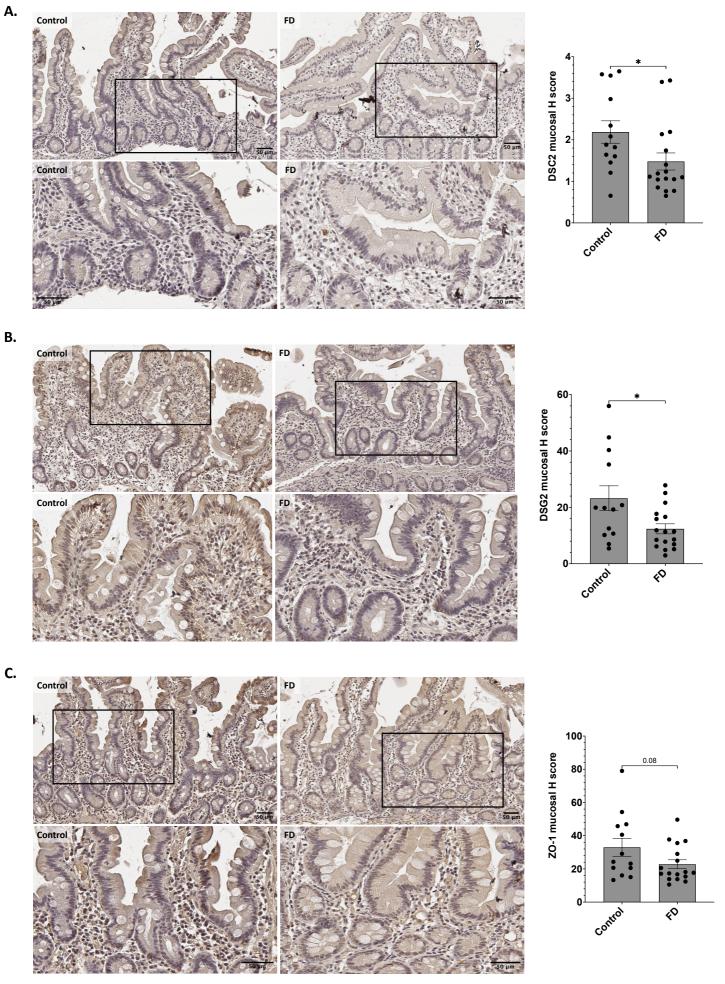



Figure 4

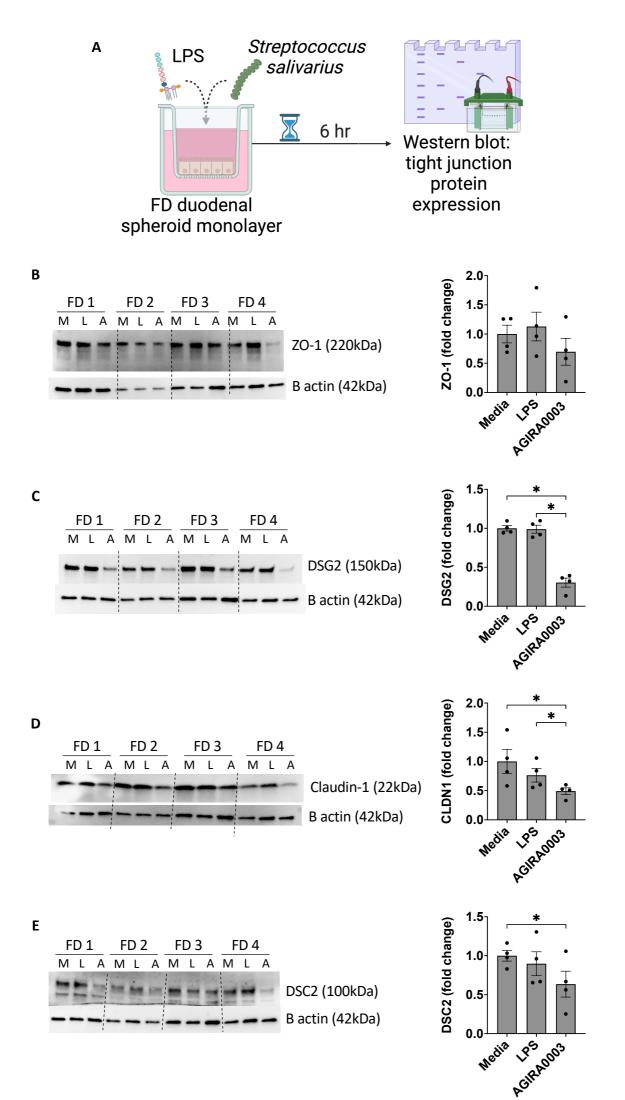


Figure 5