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Abstract
Experimental evidence confirms that interleukin-10 plays a critical role in clearing acute hepatitis B virus infec-
tion. This paper aims to develops a mathematical model to explore the dynamics of how the immune system
responds to hepatitis B virus (HBV) and coexisting liver cancer within the liver cell population. Unlike previous
models; we categorize liver cells into various stages of infection. We determine the invasion probability for trans-
mission dynamics, specifically the basic reproduction number, R0, for populations of uninfected macrophages
with and without cancer cells. Stability analyses of virus-free and virus equilibrium states are provided, along
with numerical simulations to validate analytical findings. The impact of different branches of the immune re-
sponse on model dynamics is assessed. Simulations predict the time at which T helper-1 cells surpass cytotoxic T
cells (switching time), correlating positively with the proliferation rate of interleukin-10 (ρ3). Further numerical
simulations demonstrate that interleukin-10 contributes to HBV persistence by inhibiting the immune response,
thereby allowing the virus to evade immune surveillance and establish chronic infection through the suppression
of cytotoxic T lymphocytes (CTLs), which are essential for clearing infected cells.

Keywords: Macrophages, Invariant Region, Routh-Hurwitz criterion.

1 Introduction
A viral infection that targets the liver cells called hepatitis B can result in both acute and chronic illnesses. Ac-
cording to [1], this condition kills 750, 000 people per year, roughly 300, 000 of which result in liver cirrhosis and
hepatocellular carcinoma [2]. A third of the world’s population is thought to be infected with the hepatitis B virus,
making it not only one of the oldest but also one of the most dangerous viral dangers to human health [3]. Accord-
ing to the World Health Organisation (WHO) estimates, 1.5 million new cases of hepatitis B are reported annually,
leaving 296 million people living with the virus. WHO estimates again indicated that hepatitis B caused 820000 in
fatalities in 2019, with the majority being caused by cirrhosis and hepatocellular carcinoma, the predominant form
of liver cancer. Every year, millions of individuals worldwide perish from liver cancer, and current trends suggest
that millions more people will do so in the future. Reports from Europe and America shows that the hepatitis B
infection is quite low (i.e., less than 1%). With a chronic infection incidence of 5 to 10 per 100 adults in Asia and
Africa, the disease is still a significant burden in these regions.

The hepatitis B virus, a member of the hepadnaviridae family of viruses, is what causes hepatitis B disease.
Once a person is infected, it is particularly challenging to get rid of the hepatitis B virus due to its largely double-
stranded structure [2]. The incubation periods for the hepatitis B virus range from 30 to 180 days. The virus may
be detected within 30–60 days of infection, and if it is transferred during infancy or childhood, it may persist and
result in chronic hepatitis B. The virus is frequently vertically transferred from mother to child, causing recurrent
infection and, in the majority of instances (approximately 90%), chronic infection [4, 5]. The second potential route
for virus spread is through horizontal adult-to-adult sexual contact, intravenous drug use, unhygienic behavior, and
blood transfusion. Only 5-10% of adults have persistent infections as a result of this sort of transmission, according
to [4] and [5].

When the body generates sufficient immune responses against the infection, these adults recover. Activation
of robust and diversified CD4 (T helper 1) and CD8 (cytotoxic T lymphocytes) T-cells, production of protective,
neutralizing antibodies against HBV surface antigen (HBsAg), and expression of antiviral cytokines in the liver,
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such as gamma interferon (type-2 interferons) and tumor necrosis factor alpha [6, 5], and the creation of refractory
cells, which are immune to reinfection [7, 8] are examples of such responses. However, newborns who are not
immunized and immunosuppressed adults tend to move to chronic HBV infection stage [9]. These people have
humoral and cellular immune systems that are weak and ineffective, which leads to ongoing viral replication and
HBV surface antigenemia [2, 10]. The relative contributions of the immune system’s many components are poorly
understood, particularly the functions of anti-inflammatory cytokines like interleukin-10 in the development and
progression of infection.

The World Health Organization has set a goal of eliminating liver cancer and the hepatitis B virus (HBV) by
2030 [11, 12]. Treatment of sick people as well as immunization of newborns and susceptible adults with the
hepatitis B vaccine are now used as control techniques to lessen the spread of the hepatitis B virus. Campaigns
aimed at educating people about how alcohol and smoking can prevent liver cancer and help slow the spread of
the illness is another way to control the spread of these two diseases. These preventative measures are meant to
stop acute hepatitis B virus infection and prevent people with liver problems from developing liver cirrhosis again.
However, the incidence of hepatitis B and liver cancer is alarmingly high, with millions of cases and deaths each
year. Although there has been progress toward eliminating HBV, the disease still poses a serious threat to public
health. 316 million persons worldwide were living with chronic HBV infection in 2019 [13]. This represents a
prevalence of chronic HBV infection of 4.1%.

The likelihood of clearing liver cancer is decreased when HBV infection coexist with liver cancer. Therefore,
it is essential for the research community to conduct scientific study on hepatitis B and liver cancer in both clinical
and theoretical forms. The development of effective hepatitis B and liver cancer therapies is a vast area of medical
study that will influence our comprehension of tumor-immune dynamics. Although the majority of people (about
90% in adults) assemble a successful and defensive cell-driven mechanism that prevents them from developing
chronic hepatitis B disease, which will eventually result in liver cancer, hepatitis B is still a leading cause of death
globally (about 3 million deaths per year), according to estimates [2].

Numerous researchers have examined different facets of HBV and liver cancer dynamics and the immune
response during infection using mathematical models. In order to investigate acute HBV infection and the sig-
nificance of time lag in effector cell activation and expansion, [3, 14] expanded a standard model of immune
response to incorporate the time delay in recruit naive T cells. Subsequently, they also investigated the function
of pre-existing or vaccine-induced antibodies in containing the HBV infection [1]. Instead of using a mass action
to account for a finite liver size and susceptibility to HBV infection, [15] employed a typical incidence function
in their study of HBV transmission dynamics. A time-delayed version of the model put forth in [15] has been
created by [16]. [17] model was able to more accurately describe the existing data and produce more realistic
results for the basic reproduction number by using a standard incidence and a logistic growth for the hepatocyte
population. [18] have examined potential inadequacies in the synchronization of distinct branches of the adaptive
immune response, particularly the CTLs and antibodies, in the context of HBV infection. Yet, current modeling
studies have not been able to aid in the development of successful HBV total eradication and drug treatments. A
reason for this may lie in the fact that almost all models of HBV and liver cancer ignore the interleukin-10 and the
differentiation of naive T cells aspects of infection which we have determined to be quite important for designing
HBV and liver cancer control strategies.

Moreover, it is impossible to ignore the critical part the immune system plays in the dynamics of the hepatitis B
virus and liver cancer infection. Interleukin-10 (I10) is a cytokine that modulates both innate and adaptive immu-
nity, primarily by exerting anti-inflammatory effects. So, formulating a new model to examine how interleukin-10
and other components of the immune system regulates both cell-mediated (most especially the production of T
helper-1 and cytotoxic T cells) and innate immunity proved beneficial. Thus, we concentrated on limiting the con-
centration of the virus and the damage to the liver. We achieved this goal using different strategies which include
interferon immunity (i.e type-1 and type-2) by removing the substrate that the virus needs for reproduction (i.e.,
the healthy cells), cellular immunity (T cells, NK cells, effector B cells, interleukin-10 cells) by removing the
source of new viruses (i.e., the infected cells), and adaptive immunity (HBV-antibodies) by lowering the effectivity
concentration of the virus. Another innovative part of our model is how it predict when T helper-1 (T1) cells will
outnumber cytotoxic T cells (T2), a period we call the “switching time”. This period predict when acute hepati-
tis B infection transitions to chronic infection and eventually to liver cancer and the conditions that led to these
transitions.

The paper is organized as follows; Section 2 is devoted to the mathematical formulation of the model. The
model basic properties was presented in Section 3. In Section 4 we present the model analysis. Local asymptotic
stability of the virus-free equilibrium and global asymptotic stability of virus-free analysis was presented in Section
5. In Section 6, we study the numerical results and sensitivity analysis of the proposed models and present the
results in the form of plots, and a discussion of the results is presented in section 7.
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2 Materials and methods

2.1 Basic Model Formulation
A compartmental mathematical model for the immune response dynamics to hepatitis B virus and liver cancer in-
fection was constructed in order to comprehend the numerous changes that occur in the immune system’s response
to the coexistence dynamics of these two diseases. The model is based on information obtained from new scientific
explanations of the basic features of infections with the hepatitis B virus and infections that cause liver cancer, as
well as on theoretical and experimental studies conducted by other researchers [5, 19, 14, 12]. The outcome of a
hepatitis B virus infection and the rate at which acute infections lead to liver cancer are significantly influenced
by the roles of antibodies, cell-mediated immune responses, and innate immune system responses as well as the
cytokines. The total number of human liver cells, or hepatocytes, was categorized into two populations: uninfected
macrophages without cancer M0, and those with cancer M1. Both uninfected macrophages with and without can-
cer (i.e M0 and M1) are triggered from the blood stream to the site of infection because the hepatitis B virus is
present in the body cells. Both of the uninfected macrophages then phagocytose the viruses, which causes them to
become infected at time t. These infected macrophages are identified by IM . It is assumed that both uninfected
macrophages are created at constant rates ΛM0 and ΛM1 and die at constant rates µM0 and µM1 per cell. Hepatitis
B virus particles infect them at a rate proportional to the product of M0, M1, and V (i.e., β1VM0 and β2VM1)
with constant proportionality rates of β1 and β2, respectively. Infected macrophages pass away at a steady rate of
µIM per cell. In the class of infected macrophages, some of the individual macrophages develop cirrhosis, pick up
liver cancer, and proceed at a rate of ζ to the liver cancer macrophage population. Through contaminated blood
transfusions and having sex with an infected individual, liver cancer macrophages can get hepatitis. Hepatitis B
virions V are recruited at a rate of ΛV whereas infected macrophages create additional free virions at a rate of ω.
The virus degenerates at a constant rate of µV in each cell. Figure 1 shows interactions between all cell types in
the human liver.

Invading infections are specially recognized by antibodies, which bind to them and render them ineffective.
Sub-viral particles (SVPs), which can occur in quantities up to a thousand to one million times higher than the
infectious virions, are produced in excess by HBV-infected cells during infections. These SVPs may have an
impact on how the immune system of the host responds to the HBV infection. According to [1, 20], the sub-viral
particles serve as immune system spies that tempt antiviral antibodies away from binding to the hepatitis B virus.
They may also promote tolerance during neonatal infection, delaying the development of neutralizing antibodies
and allowing the hepatitis B virus to avoid antibody detection. The creation of macrophages, T cells, and cytokines
triggers a unique immune response that frequently mediates this issue. We assume that in the absence of infection,
HBsAg-specific antibodies A are created over time rate ΛA and degrade at a per capita rate µA. Nevertheless,
throughout an infection, antibodies are created at a rate ψ that is proportionate to the viral load and kill virions
at a rate of δ4 [21]. Macrophages T cells are created at a rate of ΛT0

and perish at a constant rate of µT0
in each

cell. Following internalization by the infected macrophages, the virus continues to spread by feigning an acute
stage (i.e., the stage at which virus reproduction is extremely small) for a predetermined amount of time in order
to evade intracellular killing systems. The virus population in the host liver cells grows as a result of the virus’s
ongoing intracellular replication in an infected macrophages cell. Naive T cells from the bone marrow’s thymus
are induced, triggered, and activated as a result of virus replication inside infected macrophages up to a point.
The pro-inflammatory cytokines actions of the virus cause the naive T cells to differentiate into either T helper 1;
T1 or T helper 2; T2 cells. The number of infected macrophages per unit area and the amount of virus present,
respectively, determine the cellular T1 and T2 immunological responses to HBV infection. While T helper 1 cells
T1 differentiate at a rate ρ1 and die at a per capita constant rate µT1 with each cell specialized in carrying out
a specific task, T helper 2 cells become cytotoxic T lymphocytes T2 at a differentiation rate ρ2 and die at a per
capita constant rate µT2

. While T helper 1 cells; T1 activate the infected macrophages cells to generate additional
cytokines at a rate of π, cytotoxic T cells destroy their targeted virus cells primarily by releasing cytotoxic granules
to kill the virus cell at a rate of δ3.

The naive T cells undergo additional differentiation to form regulatory T cells, which control the generation
of T1 and T2 cells. It has been discovered that the production of regulatory T cells, which have been found to
perform a lytic activity for the production of interleukin-10; I10, is delayed as a result of the virus’s ability to
appear temporarily inactive during the acute stage in the infected macrophages [22]. Interleukin-10 is a cytokine
that predominantly has anti-inflammatory effects and affects both T1 and T2 adaptive immunity. During HBV
infections, it also coordinates the innate immune system and antibodies. Naive T cells create I10 at a rate of ρ3
and it dies at a constant rate of µI10 in each cell. It alternately suppresses and supports the development of T1
and T2 cells. Antigen-presenting cells (APCs) cannot produce pro-inflammatory cytokines like I12, and they are
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also prevented from up-regulating molecules involved in antigen presentation and lymphocyte activation (i.e. the
minus sign stands for down regulation of cytokines), which is how I10 suppresses T helper 1 cells. Although these
cytokines primarily have suppressive effects on the immune system, they also have certain immune-stimulating
properties, such as increasing the generation of cytotoxic T lymphocytes also known as T helper 2 cells. The plus
sign denotes cytokine up-regulation.

Another method by which the immune system can combat and stop the progression of HBV infection into liver
cancer is through effector B cells, also referred to as plasma cells. These effector cells releases antibodies, heals
infected cells, and primes T cells (including cytotoxic T cells and T helper 1 cells), which trigger cell-mediated
reactions. Effector cell levels are maintained at a certain homeostatic level after viral clearance as a result of long-
lived plasma and memory B cells [6]. When viral peptide MHC class I molecules, which include viral proteins, are
displayed on the cell surface, effector B lymphocytes begin to target those cells as infected cells. In the absence
of infection, we assumed that effector B cells proliferate at a rate of ΛE and perish at a constant rate of µE per
cell. We model these two impacts; killing and curing of infected cells in one reaction, where effector B cells kill
and cure infected macrophages at a rate δ2. This is because it has been demonstrated that cured cells lose their
resistance to productive infection at a slow rate up to the order of 105 per day, and effector cells also kill infected
macrophage cells. When there is an infection, the population of effector cells increases by a factor of σIME,
where σ is the maximum proliferation rate. This happens in a contaminated cell density-dependent manner which
depends on the density of an antigen.

The hepatitis B virus is highly adaptable and has developed ways of stopping MHC molecules from getting
to the cell surface to display viral peptides to avoid being detected by T cells. If this happens, the T cell may not
know that there is a virus inside the infected cell. However, another immune cell specializing in killing cells with a
reduced number of MHC class I molecules on their surface is the natural killer cell or NK cell for short. When the
NK cells finds a cell displaying fewer than normal MHC molecules it releases toxic substances, in a similar way to
cytotoxic T cells to kill the viral-infected cell. Similar to effector B cells, in the absence of infection, natural killer
NK cells, which are the first line of defense against non-self pathogens are considered to grow at a rate ΛNK

, and
die at a per capita constant rate µNK

. When examining the immune response to HBV and liver cancer infection
co-dynamics, the importance of cytokines in immune system dynamics cannot be understated. Interferon, a class
of tiny proteins produced and released by virally infected macrophage cells, is crucial for immunological defense
against hepatitis B virus infection. By directly impeding the ability of the virus to replicate within an infected
macrophages cell, interferon stops viral replication. We refer to the Type-1 interferon (IFNα/β) as F1, which is
created by infected macrophages cells at a rate of ε and destroyed at a per-cell rate of µF1

[2, 8]. Type-2 interferon
IFNγ , on the other hand, is denoted by F2 which is also produced by natural killer cells NK [6, 9, 10] at rate η
and they are lost at a per capita rate µF2

.
IFNγ generates protein-10 that can both energize and enroll NK cells [10], whereas IFNα/β are able to

activate the natural killer NK cells during infection [23]. Therefore, it is assumed that the cumulative action of
interferon on initiating NK cells happens at θ1NKF1 + θ2NKF2; where θ1 represents the rate at which Type-1
interferon activates NK cells and θ2 represents the rate at which Type-2 interferon activates NK cells respectively.
In addition to increasing the number of new NK cells produced, IFNα/β and IFNγ boost the the NK cells’
pathogenicity and effector B cells, respectively [24]. Hence, we assumed that natural killer cells and effector B
cells destroy infected macrophages cells at δ1 (1 + χ1F1) IMNK and δ2 (1 + χ2F2) IME; where χ1 represent the
rate at which Type-1 interferon increase the pathogenicity of NK cells and χ2 represent the rate at which Type-2
interferon increase the pathogenicity of effector B cells respectively. We additionally assume the following in
addition to the presumptions listed above:

• It is assumed that a portion of the liver cells have acquired malignancy from external sources such as ex-
cessive alcohol intake, smoking etc. We now introduce HBV infection and studied the new co-existence
dynamics.

• Time delays in the replication of individual cell components are not taken into account.

• The populations of macrophages cells and virus are assumed to be uniformly distributed over the system at
all times.

The general process of the model is described in Figure 1
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Figure 1: Show the schematic diagram of immune response to HBV and liver cancer co-existence. Yellow rect-
angles indicate host liver cells (uninfected macrophages with and without cancer, and infected macrophages) pop-
ulation, red rectangles denote T cell’s population, blue rectangle represent antibodies population, pink rectangle
represent effector B cells population, green rectangles show cytokines (type-1 and type-2 interferon) population,
the violet rectangle is the innate (NK cells) population, and purple rectangle indicates virus particles (virions)
population. Also, thick lines with arrowheads represent contacts, thick lines with bar heads represent clearance
(destroy) while dash lines represent interactions.

2.2 Model Equations
The following set of differential equations represents the immune response to hepatitis B virus and liver cancer
co-existence model, based on the assumptions stated above. Clonal selection theory, mass-action kinetics, and
the balances between cell and molecular population proliferation and mortality underpin interactions in the model
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system.

dT0

dt = ΛT0
− ρ1IMT0I10 − ρ2V T0I10 − ρ3T0IM

(
1

1+τ1I10

)
− µT0

T0,

dT1

dt = ρ1IMT0I10 − πIMT1 − µT1T1,
dT2

dt = ρ2V T0I10 − δ3T2V − µT2
T2,

dM0

dt = ΛM0
− β1VM0 − µM0

M0,
dM1

dt = ΛM1 − β2VM1 + ζIM − µM1M1,
dIM
dt = β1VM0 + β2VM1 + πIMT1

−δ1 (1 + χ1F1) IMNK − δ2 ( 1 + χ2F2) IME

−σIME − (ω + ε+ ζ + µIM ) IM ,
dV
dt = ΛV + ωIM − δ3T2V − δ4AV − (ψ + µV )V.
dA
dt = ΛA + ψV − δ4AV − µAA,
dE
dt = ΛE − δ2 ( 1 + χ2F2) IME + σIME − µEE,
dNK

dt = ΛNK
− δ1 (1 + χ1F1) IMNK + θ1F1 + θ2F2 − (η + µNK

)NK ,

dI10
dt = ρ3IMT0

(
1

1+τ1I10

)
− µI10I10,

dF1

dt = εIM − (θ1 + µF1)F1,
dF2

dt = ηNK − (θ2 + µF2
)F2.



(1)

The system described in reference 1 is not dimensionless. The term “non-dimensionless" implies that, in the
absence of knowledge regarding the actual values of the variable, we assume these values to be proportional.

3 Basic Model Properties
In this section, we present the positivity and boundedness of solutions of the model system.

3.1 Positivity of Solutions
To ensure the mathematical and epidemiological relevance of system 1, it is essential to ensure that solutions
originating from positive initial conditions remain positive for all t > 0. Therefore, it is necessary to establish that
each state variable is non-negative, as negative cell population densities are illogical. This outcome is achieved
through the lemma provided below.

Lemma 1. If T0(0) > 0, T1(0) > 0, T2(0) > 0, M0(0) > 0, M1(0) > 0, IM (0) > 0, V (0) > 0, A(0) > 0,
E(0) > 0,NK(0) > 0, I10(0) > 0, F1(0) > 0 and F2(0) > 0, then the solutions T0(t) > 0, T1(t) > 0, T2(t) > 0,
M0(t) > 0, M1(t) > 0, IM (t) > 0, V (t) > 0, A(t) > 0, E(t) > 0, NK(t) > 0, I10(t) > 0, F1(t) > 0 and
F2(t) > 0 of model 1 are positive for all t ≥ 0 .

Proof. We define

τ = sup

{
t > 0 : T0(t) > 0,M0(t) > 0,M1(t) > 0, V (t) > 0, A(t) > 0, and

E(t) > 0, NK(t) > 0, T1(t) ≥ 0, T2(t) ≥ 0, IM (t) ≥ 0, I10(t) ≥ 0, F1(t) ≥ 0, F2(t) ≥ 0

}

this implies that

T0(t) > 0,M0(t) > 0,M1(t) > 0, V (t) > 0, A(t) > 0, E(t) > 0, NK(t) > 0, and
T1(t) ≥ 0, T2(t) ≥ 0, IM (t) ≥ 0, I10(t) ≥ 0, F1(t) ≥ 0, F2(t) ≥ 0 ∀ t ∈ [0, τ).
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Considering the first equation in system 1, we have

dT0
dt

= ΛT0
− ρ1IMT0I10 − ρ2V T0I10 − ρ3T0IM

(
1

1+τ1I10

)
− µT0

T0. (2)

It follows from (2) that

dT0
dt

= ΛT0
− ρ1IMT0I10 − ρ2V T0I10 − ρ3T0IM − µT0

T0,

since ρ3T0IM
(

1
1+τ1I10

)
< ρ3T0IM . Hence,

dT0
dt

≥ −µT0
T0 ∀ t ∈ [0, τ) . (3)

Seperating variables and integrating both sides of (3) from 0 to τ gives

T0(τ) = T0(0) exp [−µT0τ ] > 0.

Similarly the remaining equations gives

T1(τ) = T1(0) exp

[
−µT1τ − π

∫ τ

0

IM (t)dt

]
≥ 0,

T2(τ) = T2(0) exp

[
−µT2

τ − δ3

∫ τ

0

V (t)dt

]
≥ 0,

M0(τ) = M0(0) exp

[
−µM0

τ − β1

∫ τ

0

V (t)dt

]
> 0,

M1(τ) = M1(0) exp

[
−µM1τ − β2

∫ τ

0

V (t)dt

]
> 0,

IM (τ) = IM (0) exp [− (ω + ε+ ζ + µIM ) τ ] ≥ 0,

V (τ) = V (0) exp

[
− (ψ + µV ) τ − δ3

∫ τ

0

T2(t)dt− δ4

∫ τ

0

A(t)dt

]
> 0,

A(τ) = A(0) exp

[
−µAτ − δ4

∫ τ

0

V (t)dt

]
> 0,

E(τ) = E(0) exp [−µEτ ] > 0,

NK(τ) = NK(0) exp [− (η + µNK
) τ ] > 0,

I10(τ) = I10(0) exp [−µI10τ ] ≥ 0,

F1(τ) = F1(0) exp [− (θ1 + µF1) τ ] ≥ 0,

F2(τ) = F2(0) exp [− (θ2 + µF2) τ ] ≥ 0.

Clearly, we have shown that T0(t) > 0, M0(t) > 0, M1(t) > 0, V (t) > 0, A(t) > 0, E(t) > 0, NK(t) > 0, and
T1(t) ≥ 0, T2(t) ≥ 0, IM (t) ≥ 0, I10(t) ≥ 0, F1(t) ≥ 0 , F2(t) ≥ 0. Therefore, the solutions T0(t), T1(t), T2(t),
M0(t), M1(t) > 0, IM (t), V (t), A(t), E(t), NK(t), I10(t), F1(t) and F2(t) of the system 1 remains positive for
all t ≥ 0 .

3.2 Boundedness of Solutions
The model population variables and parameters changes in system 1 were studied keenly under certain conditions.
Considering the variables and parameters in the model system to be positive entities for all time values t ≥ 0, we
show that all possible solutions are uniformly bounded.

Lemma 2. The solutions of the system with any non-negative initial conditions are bounded for all t ≥ 0 in the
biologically feasible region defines by the set

Ω0 =

{
(T0, T1, T2,M0,M1, IM , V, A,E,NK , I10, F1, F2) ∈ R13

+ :

T ≤ Γ1,M ≤ Γ2, V ≤ Γ3, A ≤ Γ4, E ≤ Γ5, NK ≤ Γ6, I10 ≤ Γ7,

F2 ≤ Γ8, F2 ≤ Γ9

}
.
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Proof. Considering the various T cells (i.e T0, T1 and T2) and summing them to obtain the total T cells population,
we have

d(T0 + T1 + T2)

dt
= ΛT0

− µT0
T0 − µT1

T1 − µT2
T2 − ρ3IMT0

(
1

1 + τ1I10

)
− πIMT1 − δ3T2V. (4)

It follows from (4) that

dT

dt
≤ ΛT0

− µT, where µ = min{µT0
, µT1

, µT2
}. (5)

Integrating (5) from 0 to t, we obtain

T (t) =
ΛT0

µ
+

(
T (0)− ΛT0

µ

)
exp [−µt] .

Taking the limit of T at t→ ∞ such that

lim
t→∞

T (t) ≤ ΛT0

µ
= Γ1, which implies that T0 ≤ ΛT0

µ
, T1 ≤ ΛT0

µ
, T2 ≤ ΛT0

µ
.

Hence, the T cells population is bounded. That is

T0 ≤ ΛT0

µ
, T1 ≤ ΛT0

µ
, T2 ≤ ΛT0

µ
= Γ1.

Similarly, the remaining populations give the following

lim
t→∞

M(t) ≤ Λ

µ
= Γ2, which implies that M0 ≤ Λ

µ
,M1 ≤ Λ

µ
, IM ≤ Λ

µ
= Γ2,

lim
t→∞

V (t) ≤ ΛV

µV
= Γ3 which implies that V ≤ ΛV

µV
,

lim
t→∞

A(t) ≤ ΛA

µA
= Γ4 which implies that A ≤ ΛA

µA
,

lim
t→∞

E(t) ≤ ΛE

µE
= Γ5, which implies that E ≤ ΛE

µE
,

lim
t→∞

NK(t) ≤ ΛNK

µNK

= Γ6 which implies that NK ≤ ΛNK

µNK

,

lim
t→∞

I10(t) ≤ ρ3
µI10

= Γ7 which implies that I0 ≤ ρ3
µI10

,

lim
t→∞

F1(t) ≤ ε

µF1

= Γ8 which implies that F1 ≤ ε

µF2

,

lim
t→∞

F2(t) ≤ η

µF2

= Γ9 which implies that F2 ≤ η

µF2

.

We can therefore conclude that for t > 0, any solution of the system is bounded in the region Ω0. Thus, it is
feasible to consider the dynamics and flow of the T cells, macrophages, virus, antibodies, effector B cells, natural
killers and cytokines populations as described by the model system within the invariant region Ω0.

4 Model Analysis
In this section, we determine the virus-free and virus-persistence equilibria of the model system.

4.1 Virus-free Equilibrium and Reproduction Number
It is believed that some liver cells have developed cancer due to external factors like excessive alcohol consumption
and smoking. We have now introduced an HBV infection and examined the resulting co-existence dynamics.
Hence, at the virus-free equilibrium state, no hepatitis B virus is present which implies that there are no infected
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macrophages, since both uninfected macrophages (with and without cancer) would have no virus to swallow-up to
cause them to be infected. That is V ⋆ = 0 which immediately implies I⋆M = 0 and F ⋆

1 = 0. The lack of infected
macrophages indicates that the hepatitis B disease is not being transmitted, which in turn means that naive T cells
will not perform any lytic activity. Therefore, at the virus-free equilibrium, the populations of all cells involved in
the immune interactions are given by

ε⋆0 =

(
ΛT0

µT0

, 0, 0,
ΛM0

µM0

,
ΛM1

µM1

, 0, 0, 0, 0, 0, 0, 0, 0

)
.

Next, we use the Next Generation Matrix technique described by [25] and use in [26] to calculate the reproduction
number of the model system. The number of further HBV and liver cancer infections brought on by a single
infected macrophage placed into a population of liver cells that are completely susceptible to infection is known as
the reproduction number (R0), for an infection. To put it another way, when all liver cells are free of infection, R0

represents the amount of secondary infections that one infected macrophage cell produces. The model system’s
equations describing the generation of fresh infected macrophages and modifications in their states are the first
things we look at. The source of these equations is given by

dIM
dt = β1VM0 + β2VM1 + πIMT1 − δ1 (1 + χ1F1) IMNK

−δ2 ( 1 + χ2F2) IME − σIME − (ω + ε+ ζ + µIM ) IM ,
dV
dt = ΛV + ωIM − δ3T2V − δ4AV − (ψ + µV )V.

 (6)

The set of these equations in system 6 is called infected subsystem. Linearizing the infected subsystem about the
virus-free steady state is the initial stage, according to the existing rule. When we set

X = (T0, T1, T2,M0,M1, IM , V, A,E,NK , I10, F1, F2)
T
;

where T denote the transpose, then the infected subsection can be written in the form:

dX
dt

= F(X)− V(X),

where

F(X) =
(
β1VM0 + β2VM1 + πIMT1

0

)
and

V(X) =
(
δ1 (1 + χ1F1) IMNK + δ2 ( 1 + χ2F2) IME + σIME +BIM

−ΛV − ωIM + δ3T2V + δ4AV + (ψ + µV )V

)
,

where B = (ω + ε+ ζ + µIM )

Taking the Jacobian of F(X) at the virus-free equilibrium state, we have

=

(
0

β1ΛM0

µM0
+

β2ΛM1

µM1

0 0

)
.

Also taking the Jacobian of V(X) at the virus-free equilibrium, we obtain

=

(
(ω + ε+ ζ + µIM ) 0

−ω (ψ + µV )

)
. (7)

It follows from (7) that

V =

(
A 0
−ω B

)
,

where

A = (ω + ε+ ζ + µIM ) ,

B = (ψ + µV ) .

9
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Thus,

V −1 =

(
1
A 0
ω

AB
1
B

)
.

Thus, the next generation matrix which represents the number of secondary infections produced by one infected
macrophages cell when all liver cells are uninfected is given as

FV −1 =

(
ω

AB

[
β1ΛM0

µM0
+

β2ΛM1

µM1

]
1
B

[
β1ΛM0

µM0
+

β2ΛM1

µM1

]
0 0

)
.

Therefore,

R0 = R1 + R2,

where

R1 =
β1ωΛM0

µM0
[(ω + ε+ ζ + µIM ) (ψ + µV )]

,

R2 =
β2ωΛM1

µM1 [(ω + ε+ ζ + µIM ) (ψ + µV )]
.

5 Model Stability Analysis
The local and global stability analysis of the virus-free equilibrium point, ε0, as well as the virus-persistence
equilibria were investigated in this section.

5.1 Local Stability of Virus-free Equilibrium
By calculating the eigenvalues of the linearized Jacobian matrix at the virus-free equilibrium, we are able to
ascertain the local stability of the equilibrium when there is a slight disruption. That is when a small number of
infected cells are injected into the population of susceptible liver cells, it is possible to completely eliminate the
virus infection from the liver cells due to the stability of virus-free equilibrium when R0 < 1.

Theorem 1. The virus-free equilibrium of system 1 is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1.

Proof. We investigate the proof of Theorem 1 by linearization approach. We make used of the Jacobian matrix
associated with system 1 at the virus-free equilibrium and obtain

J0 (ε0)
⋆
=



−µT0 0 0 0 0 −S1 0 0 0 0 0 0 0
0 −µT1

0 0 0 0 0 0 0 0 0 0 0
0 0 −κ1 0 0 0 0 0 0 0 0 0 0
0 0 0 −κ2 0 0 −S2 0 0 0 0 0 0
0 0 0 0 −κ3 ζ −S3 0 0 0 0 0 0
0 0 0 0 0 −κ4 κ11 0 0 0 0 0 0
0 0 0 0 0 ω −κ5 0 0 0 0 0 0
0 0 0 0 0 0 κ6 −κ7 0 0 0 0 0
0 0 0 0 0 0 0 0 −µE 0 0 0 0
0 0 0 0 0 0 0 0 0 −κ8 0 θ1 θ2
0 0 0 0 0 S4 0 0 0 0 −µI10 0 0
0 0 0 0 0 ε 0 0 0 0 0 −κ9 0
0 0 0 0 0 0 0 0 0 η 0 0 −κ10



,

where κ1 = µT2
, κ2 = µM0

, κ3 = µM1
, κ4 = (ω + ε+ ζ + µIM ), κ5 = (ψ + µV ), κ6 = ψ, κ7 = µA,

κ8 = (η + µNK
), κ9 = (θ1 + µF1

), κ10 = (θ2 + µF2
), κ11 = β1M

⋆
0 + β2M

⋆
1 , S1 = ρ3T

⋆
0 , S2 = β1M

⋆
0 ,

S3 = β2M
⋆
1 , S4 = ρ3T

⋆
0 .
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The eigenvaules from the jacobian matrix J0 (ε⋆0) are obtained to be λ1 = −µT0 , λ2 = −µT1 , λ3 = −µT2 ,
λ4 = −µM0 , λ5 = −µM1 , λ6 = −µA, λ7 = −µE , λ8 = −µI10 , λ9 = − (η + µNK

), λ10 = − (θ1 + µF1),
λ11 = − (θ2 + µF2

) with a polynomial equation

λ2 + λ [(ω + ε+ ζ + µIM ) + (ψ + µV )] + 1− R0 = 0. (8)

Since all the coefficients of the characteristics polynomial in (8) are positive when R0 < 1, by the Routh-Hurwitz
criterion the solutions to the characteristic polynomial have negative real parts. Therefore all the eigenvalues of the
Jacobian matrix J0(ε⋆0) have negative real part when R0 < 1. Hence, we can conclude based on Routh-Hurwitz
criterion that the virus-free equilibrium ε⋆0 of system 1 is locally asymptotically stable.

5.2 Global Stability of Virus-free Equilibrium
Theorem 2. From system 1, the virus-free equilibrium

ε0 = (T ⋆
0 , T

⋆
1 , T

⋆
2 ,M

⋆
0 ,M

⋆
1 , I

⋆
M , V

⋆, A⋆, E⋆, N⋆
K , I

⋆
10, F

⋆
1 , F

⋆
2 )

is globally asymptotically stable if R0 < 1 and conditions (G1) and (G2) are satisfied. We apply the approach of
[27], to prove the global stability of the virus-free equilibrium.

Theorem 3. If a model system can be written in the form:

dX

dt
= F (X, 0),

dI

dt
= G(X, I), G(X, 0) = 0,

where X ∈ Rm denotes the number of uninfected macrophages cells and I ∈ Rn denotes the number of infected
macrophages cells including latent, acute and exposed cells. U (X⋆, 0) denotes the virus-free equilibrium of the
system. Then the conditions (G1) and (G2) must be satisfied to guarantee local asymptotic stability.

G1 : For dX
dt = F (X, 0), X⋆ is globally asymptotically stable.

G2 : G(X, I) = AI − Ĝ(X, 0) ≥ 0 for (X, I) ∈ Ω, where A = DiG(X
⋆, 0) is a Metzler matrix ( the off

diagonal elements of A are non- negative) and Ω is the region where the model makes biological sense and
mathematically well posed. Then the fixed point U0 = (X⋆, 0) is globally asymptotically stable equilibrium
of the immune response to hepatitis B virus and liver cancer infection model 1 provided R0 < 1.

Proof. From the model system in 1, we have

X ∈ R11 = (T ⋆
0 , T

⋆
1 , T

⋆
2 ,M

⋆
0 ,M

⋆
1 , A

⋆, E⋆, N⋆
K , I

⋆
10, F

⋆
1 , F

⋆
2 )

and I ∈ R2 = (I⋆M , V
⋆). Hence, for condition (G1), we have

dX

dt
=



ΛT0
− ρ1IMT0I10 − ρ2V T0I10 − ρ3T0IM

(
1

1+τ1I10

)
− µT0

T0

ρ1IMT0I10 − πIMT1 − µT1T1
ρ2V T0I10 − δ3T2V − µT2

T2
ΛM0

− β1VM0 − µM0
M0

ΛM1
− β2VM1 + ζIM − µM1

M1

ΛA + ψV − δ4AV − µAA
ΛE − δ2 ( 1 + χ2F2) IME + σIME − µEE

ΛNK
− δ1 (1 + χ1F1) IMNK + θ1F1 + θ2F2 − (η + µNK

)NK

ρ3IMT0

(
1

1+τ1I10

)
− µI10I10

εIM − (θ1 + µF1
)F1

ηNK − (θ2 + µF2
)F2


and

dI

dt
= G(X, I) =

(
β1VM0 + β2VM1 + πIMT1 − δ1 (1 + χ1F1) IMNK −♣

ΛV + ωIM − δ3T2V − δ4AV − (ψ + µV )V,

)
,

where ♣ = δ2 ( 1 + χ2F2) IME + σIME + (ω + ε+ ζ + µIM ) IM .
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It follows that

F (X, 0) =



−µT0
0 0 0 0 −S1 0 0 0 0 0

0 −µT1 0 0 0 0 0 0 0 0 0
0 0 −ν1 0 0 0 0 0 0 0 0
0 0 0 −ν2 0 0 0 0 0 0 0
0 0 0 0 −ν3 0 0 0 0 0 0
0 0 0 0 0 −ν4 0 0 0 0 0
0 0 0 0 0 0 −µE 0 0 0 0
0 0 0 0 0 0 0 −ν5 0 θ1 θ2
0 0 0 0 0 S4 0 0 −X 0 0
0 0 0 0 0 0 0 0 0 −ν6 0
0 0 0 0 0 0 0 η 0 0 −ν7


,

where ν1 = µT2
, ν2 = µM0

, ν4 = µA, ν3 = µM1
, ν5 = (η + µNK

), ν6 = (θ1 + µF1
), ν7 = (θ2 + µF2

),
X = µI10 .

The eigenvaules from the matrix F (X, 0) are obtained to be λ1 = −µT0 , λ2 = −µT1 , λ3 = −µT2 , λ4 =
−µM0

, λ5 = −µM1
, λ6 = −µA, λ7 = −µE , λ8 = − (η + µNK

), λ9 = −µI10 , λ10 = − (θ1 + µF1
), λ11 =

−µF2(η+θ2+µNK )
η+µNK

.
Since all the eigenvalues are real and negative, it follows that X⋆ is always globally asymptotically stable.

Also, applying Theorem 3 to the immune response model system 1 gives

Ĝ(X, I) = AI −G(X, I)

=

(
δ1N

⋆
K − (δ2 + σ)E⋆ −B β1M

⋆
0 + β2M

⋆
1

ω − (δ4A
⋆ + ψ + µV )

)(
IM
V

)
−
(
β1VM0 + β2VM1 + πIMT1 − δ1 (1 + χ1F1) IMNK −♠

ΛV + ωIM − δ3T2V − δ4AV − (ψ + µV )V

)
,

where ♠ = δ2 ( 1 + χ2F2) IME + σIME + [ω + ε+ ζ + µIM ] IM .

Hence,

Ĝ(X, I) =

(
C+ β1M

⋆
0V

⋆ + β2M
⋆
1V

⋆

ωIM − δ4A
⋆V − ψV − µV V

)
−
(
β1VM0 + β2VM1 + πIMT1 − δ1 (1 + χ1F1) IMNK −♠

ΛV + ωIM − δ3T2V − δ4AV − (ψ + µV )V

)
,

where ♠ = δ2 ( 1 + χ2F2) IME + σIME + (ω + ε+ ζ + µIM ) IM ,

C = δ1NKIM − δ2E
⋆IM + σE⋆IM − (ω + ε+ ζ + µIM ) IM .

Therefore,

Ĝ0(X, I) =

(
[β1M

⋆
0V

⋆ − β1VM0] + [β2M
⋆
1V

⋆ − β2VM1]− πIMT1
−ΛV

)
=

(
β1 [V

⋆M⋆
0 − VM0] + β2 [V

⋆M⋆
1 − VM1]

0

)
.

So, A is a Metzler matrix with non-negative off-diagonal elements. We observed that

Ĝ0(X, I) =

(
β1 (1− ϑ) [V ⋆M⋆

0 − VM0] + β2 (1− ϑ) [V ⋆M⋆
1 − VM1]

0

)
≥ 0,

because [V ⋆M⋆
0 − VM0] + [V ⋆M⋆

1 − V ⋆M1] ≥ 0. That is in the absence of infection, the proportional product
of the macrophages with and without cancer at the virus-free equilibrium are obtained to be V ⋆M⋆

1 and V ⋆M⋆
0

respectively while VM1 and VM0 represent the proportion to the product of macrophages with and without cancer
in the population. Therefore, the virus-free equilibrium ε0 is globally asymptotically stable.
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5.3 Virus-persistence Equilibrium (VPE) and Stability Analysis
In this section, we determine the virus-persistence equilibrium points by solving system 1 simultaneously for
the state variables T ⋆

0 , T ⋆
1 , T ⋆

2 , M⋆
0 , I⋆M , V ⋆, A⋆, E⋆, N⋆

K , I⋆10, F ⋆
1 and F ⋆

2 respectively. The virus-persistence
equilibrium points are the steady state solutions where the hepatitis B virus and liver cancer infection cannot be
totally eradicated but remains to invade the total cells populations. It is assumed that a portion of the liver cells
have acquired liver cancer from external sources such as excessive alcohol intake, smoking etc. We now introduce
HBV infection and studied the new co-existence dynamics. For the hepatitis B virus infection to remain in the
host liver cells, the virus compartment does not turn to zero. As a result of this, the system depends on all the
state variables. At the virus present state, uninfected macrophages become infected and this triggers activation of
infected macrophages by cytokines. So, at the virus-persistence equilibrium the following equations are satisfied:

0 = ΛT0
− ρ1I

⋆
MT

⋆
0 I

⋆
10 − ρ2V

⋆T ⋆
0 I

⋆
10 − ρ3T

⋆
0 I

⋆
M

(
1

1+τ1I⋆
10

)
− µT0

T ⋆
0 ,

0 = ρ1I
⋆
MT

⋆
0 I

⋆
10 − πI⋆MT

⋆
1 − µT1T

⋆
1 ,

0 = ρ2V
⋆T ⋆

0 I
⋆
10 − δ3T

⋆
2 V

⋆ − µT2
T ⋆
2 ,

0 = ΛM0
− β1V

⋆M⋆
0 − µM0

M⋆
0 ,

0 = ΛM1
− β2V

⋆M⋆
1 + ζI⋆M − µM1

M⋆
1 ,

0 = β1V
⋆M⋆

0 + β2V
⋆M⋆

1 + πI⋆MT
⋆
1 − δ1 (1 + χ1F

⋆
1 ) I

⋆
MN

⋆
K

−δ2 ( 1 + χ2F
⋆
2 ) I

⋆
ME

⋆ − σI⋆ME
⋆ − (ω + ε+ ζ + µIM ) I⋆M ,

0 = ΛV + ωI⋆M − δ3T
⋆
2 V

⋆ − δ4A
⋆V ⋆ − (ψ + µV )V

⋆,

0 = ΛA + ψV ⋆ − δ4A
⋆V ⋆ − µAA

⋆,

0 = ΛE − δ2 ( 1 + χ2F
⋆
2 ) I

⋆
ME

⋆ + σI⋆ME
⋆ − µEE

⋆,

0 = ΛNK
− δ1 (1 + χ1F

⋆
1 ) I

⋆
MN

⋆
K + θ1F

⋆
1 + θ2F

⋆
2 − (η + µNK

)N⋆
K ,

0 = ρ3I
⋆
MT

⋆
0

(
1

1+τ1I⋆
10

)
− µI10I

⋆
10,

0 = εI⋆M − (θ1 + µF1
)F ⋆

1 ,

0 = ηN⋆
K − (θ2 + µF2

)F ⋆
2 .


Due to the high dimensionality of system 1, it is prudent to look at a significant number of possible boundary
steady states. Hence, in order to systematically find and analyze these steady state, we begin with boundary steady
states characterized by the presence hepatitis B virus particles (i.e V ̸= 0) with different combinations of T ⋆

0 = 0
or T ⋆

0 ̸= 0, E⋆ = 0 or E⋆ ̸= 0 and N⋆
K = 0 or N⋆

K ̸= 0.

Case I: For the first scenario where V ⋆ ̸= 0, T ⋆
0 ̸= 0, E⋆ ̸= 0, N⋆

K ̸= 0, we obtain a boundary steady state of the
form:

ε⋆1 =

{
ΛT0

ρ1I⋆MI
⋆
10 + ρ2V ⋆I⋆10 +

ρ3I⋆
M

1+τ1I⋆
10

+ µT0

,
ρ1I

⋆
MT

⋆
0 I

⋆
10

πI⋆M + µT1

,
ρ2V

⋆T ⋆
0 I

⋆
10

δ3V ⋆ + µT2

,

ΛM0

β1V ⋆ + µM0

,
ΛM1

+ ζI⋆M
β2V ⋆ + µM1

, I⋆M ,
ΛV + ωI⋆M

δ4A⋆ + (ψ + µV )
,
ΛA + ψV ⋆

δ4V ⋆ + µA
,

ΛE

δ2 (1 + χ2F ⋆
2 ) I

⋆
M + µE − σI⋆M

,
ΛNK

+ θ1F
⋆
1 + θ2F

⋆
2

δ1 (1 + χ1F ⋆
1 ) I

⋆
M + (η + µNK

)
,

−µI10 +
√
µ2
I10

+ 4µI10τ1ρ3I
⋆
MT

⋆
0

2µI10τ1
,

εI⋆M
(θ1 + µF1

)
,

ηN⋆
K

θ2 + µF2

}
,

where I⋆M =
β1V

⋆M⋆
0 +β2V

⋆M⋆
1

[δ1(1+χ1F⋆
1 )N⋆

K+δ2(1+χ2F⋆
2 )E⋆+σE⋆+B−πT⋆

1 ]
and B = (ω + ε+ ζ + µIM ).

This equilibrium state ε⋆1 exists when δ2 (1 + χ2F
⋆
2 ) I

⋆
M+µE > σI⋆M , and δ1 (1 + χ1F

⋆
1 )N

⋆
K+δ2 (1 + χ2F

⋆
2 )E

⋆+
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σE⋆ +B > πT ⋆
1 . Using the the parameter values in Table 1, we compute the components of ε⋆1 and obtain

ε⋆1 =

{
1477611.94, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 20, 0.1195, 0, 0, 0

}
Linearized system 1 about the equilibrium state ε⋆1, we obtain a Jacobian matrix of the form:

Jε⋆1 =



−ϖ1 0 0 0 0 −ϖ2 0 0 0 0 ϖ3 0 0
0 −ϖ4 0 0 0 0 0 0 0 0 ϖ5 0 0
0 0 −ϖ6 0 0 0 0 0 0 0 ϖ7 0 0
0 0 0 −ϖ8 0 0 −ϖ9 0 0 0 0 0 0
0 0 0 0 −ϖ10 0.01 −ϖ11 0 0 0 0 0 0
0 ϖ12 0 ϖ13 ϖ11 −ϖ14 ϖ13 0 −ϖ15 −ϖ16 0 −ϖ17 −ϖ18

0 0 −ϖ19 0 0 20 −ϖ20 −ϖ19 0 0 0 0 0
0 0 0 0 0 0 −ϖ20 −ϖ20 0 0 0 0 0
0 0 0 0 0 −3.4 0 0 −ϖ21 0 0 0 −ϖ18

0 0 0 0 0 −ϖ22 0 0 0 −ϖ23 0 −ϖ24 0.6
ϖ25 0 0 0 0 ϖ2 0 0 0 0 −ϖ26 0 0
0 0 0 0 0 1 0 0 0 0 0 −5.7 0
0 0 0 0 0 0 0 0 0 ϖ27 0 0 −ϖ28



,

where

ϖ1 = 0.000022758, ϖ2 = 0.3000, ϖ3 = 51022.3583, ϖ4 = 38.4324,

ϖ5 = 49453.3607, ϖ6 = 0.3687, ϖ7 = 1563.3134, ϖ8 = 0.0110,

ϖ9 = 291.5187, ϖ10 = 0.0100, ϖ11 = 0.00001505 ϖ12 = 38.7657,

ϖ13 = 291.5187, ϖ14 = 44.8165, ϖ15 = 135.0278, ϖ16 = 77.3236,

ϖ17 = 13.8603, ϖ18 = 3092.9451, ϖ19 = 0.0354, ϖ20 = 6.86147× 1012,

ϖ21 = 20.1194, ϖ22 = 0.0801, ϖ23 = 77.8006, ϖ24 = 13.0603,

ϖ25 = 0.00003428, ϖ26 = 5.7212, ϖ27 = 0.057 ϖ28 = 6.2.

The coexisting equilibrium point Jε⋆1 exhibits eigenvalues

λ1 = −6.86147046× 1012, λ2 = −6.86146954× 1012,

λ3 = −73.1330913 + 68.97482403i, λ4 = −73.1330913− 68.97482403i,

λ5 = 57.0575797, λ6 = −77.7704589,

λ7 = −19.9244683, λ8 = −6.19350956,

λ9 = −5.68990401, λ10 = −0.368699996,

λ11 = −0.00317916655, λ12 = −0.00944466683,

λ13 = −0.0110013659;

corresponding to an unstable inward spiral. The production of antibodies, effector B cells, naive T cells, and
natural killers renders the virus persistence equilibrium state irrelevant. This stabilization promotes stability
in the virus-free equilibrium, facilitating viral clearance.

Case II: For the second scenario where V ̸= 0, T ⋆
0 = 0, E⋆ = 0, N⋆

K = 0, we obtain a boundary steady state of the
form:

ε⋆2 =

{
0, 0, 0,

ΛM0

β1V ⋆ + µM0

,
ΛM1 + ζI⋆M
β2V ⋆ + µM1

,
β1V

⋆M⋆
0 + β2V

⋆M⋆
1

(ω + ε+ ζ + µIM )
,

ΛV + ωI⋆M
δ4A⋆ + (ψ + µV )

,
ΛA + ψV ⋆

δ4V ⋆ + µA
, 0, 0, 0,

εI⋆M
(θ1 + µF1)

, 0

}
,
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Considering the initial conditions for the state variables and parameter values in Table 1, we have

ε⋆2 =

{
0, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 0, 0, 0, 0, 0

}
The eigenvalues of ε⋆2 are:

κ1 = −6.86147× 1012, κ2 = −6.86147× 1012,

κ3 = −77.8162, κ4 = −38.4324,

κ5 = −21.2666, κ6 = −20.1194,

κ7 = −6.19946, κ8 = −5.75428,

κ9 = −0.3687, κ10 = −0.037,

κ11 = −0.0115602, κ12 = −0.0100555,

κ13 = −0.000022758.

This indicates that ε⋆2 is a saddle-type critical point. Therefore, around this point, the system exhibits stable
behavior. This equilibrium is considered a chronic equilibrium because there are no T cells, natural killer
cells, effector B cells, or cytokines that can clear the virus. Thus, the presence of antibodies alone is not
sufficient to clear the viral infection.

Case III: For the third scenario where V ⋆ ̸= 0, T ⋆
0 = 0, E⋆ = 0, N⋆

K ̸= 0, we obtain a boundary steady state of the
form:

ε⋆3 =

{
0, 0, 0,

ΛM0

β1V ⋆ + µM0

,
ΛM1 + ζI⋆M
β2V ⋆ + µM1

,

β1V
⋆M⋆

0 + β2V
⋆M⋆

1

δ1 (1 + χ1F ⋆
1 )N

⋆
K + (ω + ε+ ζ + µIM )

,
ΛV + ωI⋆M
δ4A⋆ + µV

,

ΛA + ψV ⋆

δ4V ⋆ + µA
, 0,

ΛNK
+ θ1F

⋆
1 + θ2F

⋆
2

δ1 (1 + χ1F ⋆
1 ) I

⋆
M + η + µNK

, 0,

εI⋆M
(θ1 + µF1

)
,

ηN⋆
K

(θ2 + µF2
)

}
,

Considering the initial conditions for the state variables and parameter values in Table 1, we have

ε⋆3 =

{
0, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 0, 0.1195, 0, 0, 0

}
The eigenvalues of ε⋆3 are:

ν1 = −6.86147× 1012, ν2 = −6.86147× 1012,

ν3 = −77.5508, ν4 = −38.4324,

ν5 = −21.7251, ν6 = −20.1194,

ν7 = −6.2, ν8 = −5.64092,

ν9 = −0.3687, ν10 = −0.037,

ν11 = −0.0108911, ν12 = −0.00999719,

ν13 = −0.000022758.

Regarding the equilibrium ε⋆3, the eigenvalues indicate that it is a saddle point, and the system is stable
around ε⋆3. As T cells, effector B cells, and other cytokines such as interferon alpha, beta, and gamma are
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absent at this equilibrium, there is no chance of viral clearance. This implies that the presence of antibodies
and natural killer cells alone is not sufficient to destabilize the virus-persistence equilibrium required for
viral clearance.

Case IV: For the fourth scenario where V ⋆ ̸= 0, T ⋆
0 = 0, E⋆ ̸= 0, N⋆

K = 0, we obtain a boundary steady state of the
form:

ε⋆4 =

{
0, 0, 0,

ΛM0

β1V ⋆ + µM0

,
ΛM1

+ ζI⋆M
β2V ⋆ + µM1

,

β1V
⋆M⋆

0 + β2V
⋆M⋆

1

(δ2 + σ)E⋆ + (ω + ε+ ζ + µIM )
,

ΛV + ωI⋆M
δ4A⋆ + (ψ + µV )

,

ΛA + ψV ⋆

δ4V ⋆ + µA
,

ΛE

(δ2 + σ) I⋆M + µE
, 0, 0,

εI⋆M
(θ1 + µF1)

, 0

}
.

Considering the initial conditions for the state variables and parameter values in Table 1, we have

ε⋆4 =

{
0, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 20, 0, 0, 0, 0

}
.

The eigenvalues of ε⋆4 are:

σ1 = −6.86147× 1012, σ2 = −6.86147× 1012,

σ3 = −57.1044, σ4 = −38.4324,

σ5 = −7.43399− 1.31086i, σ6 = −4.75385,

σ7 = −0.037, σ8 = −0.00995658− 0.00138663i,

σ9 = −0.000022758, σ10 = −0.00995658 + 0.00138663i,

σ11 = −77.8317, σ12 = −7.43399 + 1.31086i,

σ13 = −0.3687.

Corresponding to the equilibrium point ε⋆4, the eigenvalues indicate it is a stable inward spiral, and the system
remains stable around this point. In this equilibrium state, the absence of T cells, natural killer cells, and
other cytokines such as interferon alpha, beta, and gamma means there is no possibility of viral clearance.
This indicates that the presence of antibodies and effector B cells alone cannot disrupt the virus-persistence
equilibrium needed for viral clearance.

Case V: For the fifth scenario where V ⋆ ̸= 0, T ⋆
0 ̸= 0, E⋆ = 0, N⋆

K = 0, we obtain a boundary steady state of the
form:

ε⋆5 =

{
ΛT0

ρ1I⋆MI
⋆
10 + ρ2V ⋆I⋆10 +

ρ3I⋆
M

1+τ1I⋆
10

+ µT0

,
ρ1I

⋆
MT

⋆
0 I

⋆
10

πI⋆M + µT1

,
ρ2V

⋆T ⋆
0 I

⋆
10

δ3V ⋆ + µT2

,

ΛM0

β1V ⋆ + µM0

,
ΛM1 + ζI⋆M
β2V ⋆ + µM1

,
β1V

⋆M⋆
0 + β2V

⋆M⋆
1

(ω + ε+ ζ + µIM )
,

ΛV + ωI⋆M
δ4A⋆ + (ψ + µV )

,
ΛA + ψV ⋆

δ4V ⋆ + µA
, 0, 0,

−µI10 +
√
µ2
I10

+ 4µI10τ1ρ3I
⋆
MT

⋆
0

2µI10τ1
,

εI⋆M
(θ1 + µF1)

, 0

}
,

Given the initial conditions for the state variables and parameter values in Table 1, we have

ε⋆5 =

{
1477611.94, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 0, 0, 0, 0, 0

}
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As corresponding to the equilibrium ε⋆5, the eigenvalues are

α1 = −6.86147× 1012, α2 = −6.86147× 1012,

α3 = −63.9457 + 71.08i, α4 = −63.9457− 71.08i,

α5 = −77.8044, α6 = 62.4071,

α7 = −20.1194, α8 = −6.19952,

α9 = −5.69998, α10 = −0.3687,

α11 = −0.0109998, α12 = −0.00968985,

α13 = −0.0025184.

The equilibrium ε⋆5 is an unstable saddle point. Biologically, boosting the production of T cells, aided by
antibodies, is sufficient to disrupt the virus persistence equilibrium and stabilize the virus-free equilibrium.
Consequently, the virus is cleared.

Case VI: For the sixth scenario where V ⋆ ̸= 0, T ⋆
0 ̸= 0, E⋆ ̸= 0, N⋆

K = 0, we obtain a boundary steady state of the
form:

ε⋆6 =

{
ΛT0

ρ1I⋆MI
⋆
10 + ρ2V ⋆I⋆10 + ρ3I⋆M

(
1

1+τ1I⋆
10

)
+ µT0

,
ρ1I

⋆
MT

⋆
0 I

⋆
10

πI⋆M + µT1

,

ρ2V
⋆T ⋆

0 I
⋆
10

δ3V ⋆ + µT2

,
ΛM0

β1V ⋆ + µM0

,
ΛM1 + ζI⋆M
β2V ⋆ + µM1

,
β1V

⋆M⋆
0 + β2V

⋆M⋆
1

(δ2 + σ)E⋆ + (ω + ε+ ζ + µIM )
,

ΛV + ωI⋆M
δ3T ⋆

2 + δ4A⋆ + ψ + µV
,
ΛA + ψV ⋆

δ4A⋆ + µA
,

ΛE

(δ2 − σ)I⋆M + µE
, 0,

−µI10 +
√
µ2
I10

+ 4µI10τ1ρ3I
⋆
MT

⋆
0

2µI10τ1
,

εI⋆M
θ1 + µF1

, 0

}
,

The equilibrium state ε⋆6 will exists provided that δ2 > σ. Given the initial conditions for the state variables
and parameter values in Table 1, we have

ε⋆6 =

{
1477611.94, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 20, 0, 0, 0, 0

}

The eigenvalues of ε⋆6 are

ξ1 = −6.86147× 1012, ξ2 = −6.86147× 1012,

ξ3 = −73.0922 + 68.9353i, ξ4 = −73.0922− 68.9353i,

ξ5 = −77.8044, ξ6 = 57.0944,

ξ7 = −19.9125, ξ8 = −6.1999,

ξ9 = −5.7006, ξ10 = −0.3687,

ξ11 = −0.0109969, ξ12 = −0.00993821,

ξ13 = −0.00255167.

Referring to the eigenvalues of ε⋆6, this equilibrium is an unstable node. The presence of naive T cells and
effector B cells, along with antibody support, is adequate to destabilize the virus persistence equilibrium and
thereby facilitate virus clearance.

Case VII: For the seventh scenario where V ⋆ ̸= 0, T ⋆
0 ̸= 0, E⋆ = 0, N⋆

K ̸= 0, we obtain a boundary steady state of
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the form:

ε⋆7 =

{
ΛT0

ρ1I⋆MI
⋆
10 + ρ2V ⋆I⋆10 + ρ3I⋆M

(
1

1+τ1I⋆
10

)
+ µT0

,
ρ1I

⋆
MT

⋆
0 I

⋆
10

πI⋆M + µT1

,

ρ2V
⋆T ⋆

0 I
⋆
10

δ3V ⋆ + µT2

,
ΛM0

β1V ⋆ + µM0

,
ΛM1

+ ζI⋆M
β2V ⋆ + µM1

,

β1V
⋆M⋆

0 + β2V
⋆M⋆

1

δ1 (1 + χ1F ⋆
1 )N

⋆
K + (ω + ε+ ζ + µIM )− πT ⋆

1

,

ΛV + ωI⋆M
δ3T ⋆

2 + δ4A⋆ + ψ + µV
,
ΛA + ψV ⋆

δ4A⋆ + µA
, 0,

ΛNK
+ θ1F

⋆
1 + θ2F

⋆
2

δ1 (1 + χ1F ⋆
1 ) I

⋆
M + (η + µNK

)
,
−µI10 +

√
µ2
I10

+ 4µI10τ1ρ3I
⋆
MT

⋆
0

2µI10τ1
,

εI⋆M
θ1 + µF1

,
ηN⋆

K

θ2 + µF2

}
.

The equilibrium ε⋆7 will exists if δ1 (1 + χ1F
⋆
1 )N

⋆
K + (ω + ε+ ζ + µIM ) > πT ⋆

1 . Given the initial condi-
tions for the state variables and parameter values in Table 1, we have

ε⋆7 =

{
1477611.94, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 0, 0.1195, 0, 0, 0

}
The eigenvalues of the Jacobian matrix ε⋆7 are

χ1 = −6.86147× 1012, χ2 = −6.86147× 1012,

χ3 = −63.9816 + 71.1177i, χ4 = −63.9816− 71.1177i,

χ5 = −77.771, χ6 = 62.3656,

χ7 = −20.1194, χ8 = −6.19952,

χ9 = −5.7, χ10 = −0.3687,

χ11 = −0.010993, χ12 = −0.00969751,

χ13 = −0.00251918.

The eigenvalues of ε⋆7 indicate that this boundary steady state is an unstable spiral node. The presence
of naive T cells and natural killer cells, along with antibody support, is sufficient to destabilize the virus
persistence equilibrium and consequently lead to virus clearance.

Case VIII: For the eighth scenario where V ⋆ ̸= 0, T ⋆
0 = 0, E⋆ ̸= 0, N⋆

K ̸= 0, we obtain a boundary steady state of the
form:

ε⋆8 =

{
0, 0, 0,

ΛM0

β1V ⋆ + µM0

,
ΛM1 + ζI⋆M
β2V ⋆ + µM1

, I⋆M ,
ΛV + ωI⋆M

δ3T ⋆
2 + δ4A⋆ + ψ + µV

,

ΛA + ψV ⋆

δ4A⋆ + µA
,

ΛE

δ2

(
1 +

χ2ηN⋆
K

θ2+µF2

)
I⋆M + µE − σI⋆M

,

θ1εI
⋆
M

θ1+µF1
+

θ2ηN
⋆
K

θ2+µF2

δ1

(
1 +

χ1εI⋆
M

θ1+µF1

)
I⋆M + η + µNK

− ΛNK

, 0,
εI⋆M

θ1 + µF1

,
ηN⋆

K

θ2 + µF2

}
,

where I⋆M =
β1V

⋆M⋆
0 +β2V

⋆M⋆
1

[δ1(1+χ1F⋆
1 )N⋆

K+δ2(1+χ2F⋆
2 )E⋆+σE⋆+B−πT⋆

1 ]
, and B = (ω + ε+ ζ + µIM ). This equilib-

rium ε⋆8 will exists if δ2
(
1 +

χ2ηN
⋆
K

θ2+µF2

)
I⋆M + µE > σI⋆M , δ1

(
1 +

χ1εI
⋆
M

θ1+µF1

)
I⋆M + η + µNK

> ΛNK
and
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δ1 (1 + χ1F
⋆
1 )N

⋆
K + δ2 (1 + χ2F

⋆
2 )E

⋆ + σE⋆ + B > πT ⋆
1 . Given the initial conditions for the state

variables and parameter values in Table 1, we obtain

ε⋆8 =

{
0, 0, 0, 28413126.86, 1.4670, 115.4084, 0.0529,

1.0241× 1013, 20, 0, 0, 0, 0

}
.

The equilibrium point ε⋆8 has eigenvalues

ω1 = −6.86147× 1012, ω2 = −6.86147× 1012,

ω3 = −77.5182, ω4 = −57.5299,

ω5 = −38.4324, ω6 = −11.3658,

ω7 = −4.0709 + 3.18848i, ω8 = −4.0709− 3.18848i,

ω9 = −0.3687, ω10 = −0.037,

ω11 = −0.0120249, ω12 = −0.00948846,

ω13 = −0.000022758,

indicating that this boundary steady state is a stable saddle node. The absence of naive T cells results in
a stable virus persistence equilibrium. Despite the production of antibodies and effector B cells, they are
insufficient to disrupt the virus persistence equilibrium. This underscores the crucial role that T cells play in
clearing hepatitis B virus infection.

6 Numerical Simulations and Sensitivity Analysis
In this section, we present the numerical simulations and sensitivity analysis of the proposed model. We utilize
values provided in Table 1 for the immune system response to the co-existence dynamics of HBV and liver cancer.
To evaluate the usefulness and functionality of system (1) numerically, we use a set of reasonably approximated
parameter values derived from published HBV article [1]. The following initial conditions: T0(0) = 5 × 105,
T1(0) = 0, T2(0) = 0, M0(0) = 4 × 105, M1(0) = 4 × 105, IM (0) = 0, V (0) = 300, A(0) = 0, E(0) = 0,
Nk(0) = 0, I10(0) = 0, F1(0) = 0, and F2(0) = 0 and the parameters used in the numerical simulations are in
Table 1.

6.1 Numerical Results at Virus-free Equilibrium State
To showcase the various types of dynamical behaviors that model 1 can exhibit in different parameter regimes, we
solve this system numerically using the baseline parameter values provided in Table 1. The results are displayed
in Figures 2, 3, and 4.

Figures 2, 3, and 4 depict the immune response dynamics when there is no hepatitis B virus in the liver cell
population. In this scenario, the initial viral growth leads to an increase in the numbers of antibodies (A), effector
B cells (E), natural killer cells (NK), cytotoxic T cells (T2), and both types of interferons. This results in the
successful clearance of the HBV infection, after which type-1 interferons are also eliminated, and the system
reaches a stable virus-free steady state. The absence of infected macrophages suggests that hepatitis B virus is
not being transmitted, which consequently means that naive T cells will not engage in any lytic activity. Thus, the
the T helper-1, cytotoxic T cells, antibodies, effector B cell, natural killer, interleukin-10 and interferon-gamma
populations turns to zero as illustrated in Figures 2, 3 and 4 respectively.
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(a) Naive T cells (T0) (b) T helper-1 (T1) cells

(c) Cytotoxic T cells (T2) (d) Uninfected macrophages without cancer cells (M0)

(e) Uninfected macrophages with cancer cells (M1) (f) Infected macrophages (IM )

Figure 2: Simulation results showing the behaviour of the state variables at the virus-free equilibrium state.
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(a) Hepatitis B virus (HBV ) (b) Antibodies (A) cells

(c) Effector B (plasma) cells (E) (d) Natural killer cells (NK)

(e) Interleukin-10 cells (I10) (f) Interferon alpha and beta (F1)

Figure 3: Simulation results showing the behaviour of the state variables at the virus-free equilibrium state.
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Table 1: Parameters of model and their description

Parameter Values Source Parameter Values Source
ΛT0

0.99 cell/day [28] ρ1 2.9× 10−4 cell/day [28]
ΛM0

4×105 cell/day [3, 29, 30] ρ2 0.02 cell/ ml/day [31]
ΛM1

0.015 cell/day [32] ρ3 2.03× 10−7 cell/day [28]
ΛV 0.3 cell/day [28] δ1 0.67cell/day [1, 21]
ΛA 3.4× 1012cell/day [33] δ2 0.67 cell/day [1, 21]
ΛE 10 cell/day [14] δ3 0.67 cell/day [1, 21]
ΛNK

0.057 cell/day [34, 35] δ4 0.67 cell/day [1]
µT0

6.7 ×10−7 cell/day [28] θ1 0.8 cell/day [21]
µT1

0.3333 cell/day [31] θ2 0.6 cell/day [21]
µT2 0.3333 cell/day [31] χ1 1.5 cell/day [21]
µM0 0.011 cell/day [21, 31] χ2 2.0 cell/day [21]
µM1

0.01 cell/day [36, 37] β1 1.026× 10−5 cell/day [21, 28]
µIM 0.3264 cell/day [21, 28] β2 1.026× 10−5 cell/day [21, 28]
µV 0.67 cell/day [21] τ1 0.1642 cell/day [28]
µA 0.332 cell/day [1, 21] ψ 5 cell/day [21]
µE 0.5 cell/day [14] σ 0.5 cell/day [21]
µNK

0.42 cell/day [38] ω 20 cell/day [21]
µI10 3.70× 10−2 cell/day [31] ε 1 cell/day [21]
µF1

4.9 cell/day [21] π 0.3359 cell/day [28]
µF2

5.16 cell/day [21] ζ 0.01 cell/day [21, 32]

(a) Interferon gamma cells (F2)

Figure 4: Simulation results showing the behaviour of the state variables at the virus-free equilibrium state.
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6.2 Numerical Results at Virus Persistence Equilibrium State
Figures 5, 6, and 7 illustrate the behavior profiles of the state variables of model 1 after infection with a few
hepatitis B viruses, at the virus persistence equilibrium. From Figure 5(a), we observe the dynamics of naive T
cells being fully produced with a total density of approximately 5× 105. However, when HBV is introduced into
the liver cells, the dynamics of naive T cells change. The presence of HBV, whose dynamics are depicted in Figure
6(a), causes a decrease in the total density of naive T cells. This decrease is due to the differentiation process they
undergo to produce T-helper 1 (T1), cytotoxic T cells (T2), and interleukin-10 (I10) cells.

We also observed that HBV and naive T cells have a negative correlation, meaning that a higher and more robust
naive T cell density leads to a decrease in the HBV load. Consequently, with a constantly increasing HBV load, the
rate at which naive T cells decrease accelerates, accompanied by successful production of both pro-inflammatory
and anti-inflammatory cells, as shown in Figures 6(e), 6(f), and 7. From Figures 5(b) and 5(c), we examine the
dynamics of T helper 1 and cytotoxic T cells, respectively. We notice an initial increase in both cell types due to
naive T cell differentiation.

However, we observed that cytotoxic T cells decrease immediately after they are produced within the shortest
possible time due to the presence of HBV, which constantly inhibits their production. T helper 1 cells, on the other
hand, decrease as a result of lytic activity caused by the replication rate of hepatitis B virus inside macrophages,
impacting the overall rate of disease progression. Figures 5(d) and 5(e) show that uninfected macrophages without
cancer cells and uninfected macrophages with cancer cells start with an initial density of approximately 4 × 105

and 7925, respectively, which decreases over time. Their decreasing nature is attributed to the increasing HBV
load.

As the replication rate of hepatitis B virus increases, more macrophages are required at the infection site to
engulf the virus, as illustrated in Figure 5(f). This activity decreases the density of the uninfected macrophage
population. Consequently, the number of infected macrophages increases as more uninfected macrophages engulf
the virus and become infected. However, the rise in infected macrophages stabilizes once they become activated, as
shown in Figure 5(f). Furthermore, the density of infected macrophages, which positively correlates with interferon
gamma, interferon alpha and beta cytokines, antibodies, effector B cells, and natural killer cells, is illustrated in
Figures 6(b), 6(c), and 6(d). As the concentration of interferon gamma increases, as shown in Figure 6(f), it triggers
the activation of more infected macrophages, which in turn increases the population of uninfected macrophages.
Thus, Figures 5, 6, and 7 depict the dynamics when the endemic steady state is feasible and stable. It can be
observed that the initial viral growth is suppressed by the combined effects of different branches of the immune
system.
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(a) Naive T cells (T0) (b) T helper-1 (T1) cells

(c) Cytotoxic T cells (T2) (d) Uninfected macrophages without cancer cells (M0)

(e) Uninfected macrophages with cancer cells (M1) (f) Infected macrophages (IM )

Figure 5: Simulation results showing the behaviour of the state variables at the virus persistence equilibrium state.
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(a) Hepatitis B virus (HBV ) (b) Antibodies (A) cells

(c) Effector B (plasma) cells (E) (d) Natural killer cells (NK)

(e) Interleukin-10 cells (I10) (f) Interferon alpha and beta (F1)

Figure 6: Simulation results showing the behaviour of the state variables at the virus persistence equilibrium state.
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(a) Interferon gamma cells (F2)

Figure 7: Simulation results showing the behaviour of the state variables at the virus persistence equilibrium state.

6.3 Switching Time
The results of HBV infection differ significantly among individuals, highlighting the importance of host genetic
factors in determining susceptibility to HBV persistence and the progression of liver damage to cirrhosis and
HCC. An effective antiviral response, primarily mediated by CD4+ and CD8+ T-cells, natural killer cells, and
monocytes, can lead to immune-controlled HBV replication (functional cure). Conversely, in children and adults
with weakened immune systems, active viral replication may persist.

In its primary function, IL-10 acts as an immunosuppressive cytokine by inhibiting T-cell proliferation and the
functions of antigen-presenting cells (APCs), as well as by modulating the synthesis of cytokines and chemokines
[39]. Recently, a subset of IL-10 producing B-cells, known as regulatory B-cells (Bregs), has been shown to reg-
ulate HBV-specific CD8+ T-cell immunity [40, 41]. Down-regulation of IL-10 restores the function of exhausted
HBV-specific CD8+ T-cells [40]. However, IL-10 may significantly impact the antiviral immune response, as it
inhibits the production of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-1β, and IL-6. In chronic HBV
infection, both the number of regulatory T-cells and the levels of inhibitory interleukin-10 (IL-10) and transforming
growth factor beta (TGF-β) increase, leading to HBV-specific CD8+ T-cell exhaustion and making viral eradi-
cation from the liver impossible [42]. Thus, IL-10 expression is elevated during several chronic viral infections,
serving as a viral strategy to down-regulate the host immune response and allow viral persistence in the host
[43, 44, 45, 46, 47].

Over the past decade, numerous researchers have attempted to use mathematical models to predict when acute
hepatitis B infection transitions to chronic infection and eventually to liver cancer; a period they have termed the
“switching time." We use system 1 to predict when T helper-1 (T1) cells will outnumber cytotoxic T cells (T2).
The goal is to identify the conditions that lead an individual to progress from the acute stage to the chronic stage as
the disease progresses. The period during which T helper-1 (T1) cells surpass cytotoxic T cells (T2) is considered
crucial for an individual’s progression from the acute infection to the chronic stage. In the initial phase of the virus
within infected macrophages, the virus tends to remain dormant while continuing to replicate.

However, within the infected macrophages, there is a battle between the immune response and the hepatitis
B virus. For the virus infection to reach the chronic stage, there must be a corresponding increase in viral load.
Additionally, due to the complex nature of the hepatitis B virus, a higher viral load poses a significant threat to
the host, potentially resulting in chronic disease. Therefore, the concept of switching time aims to identify the
minimum time and factors that allow T helper-1 (T1) cells to quickly overcome cytotoxic T cells (T2), enabling
infected macrophages to turn into acute macrophages for the immune response to take effect. Logically, a shorter
switching time should correlate with a lower hepatitis B viral load. In our model, we observed that the parameters
ρ1, ρ2, and ρ3 significantly impact the manipulation of switching time and viral load. These parameters are
involved in the activities of interferon-alpha and beta, as well as interferon-gamma, and the production of pro-
inflammatory cytokines such as IFN-γ, TNF-α, IL-1β, and IL-6. These factors play a significant role in the
progression of the disease from the acute stage to chronic and liver cancer stages. Keeping all the other parameter
values fixed and varying the value of ρ3, we obtained the following switching time:

From Figures 8(a) to 8(d), we observed the various switching times for the model. Initially, the density of
cytotoxic T cells increases in the first few days, after which it begins to decrease and is surpassed by the gradually
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(a) ρ3 = 2.03× 10−7 (b) ρ3 = 2.03× 10−6

(c) ρ3 = 2.03× 10−5. (d) ρ3 = 2.03× 10−4

Figure 8: The simulation graph for switching time.

increasing density of T helper-1 cells. For a parameter value of ρ3 = 2.03 × 10−7, we noticed that it takes over
100 days (approximately 112 days) for T helper-1 cells to surpass cytotoxic T cells. However, when we increase
the parameter value of ρ3 from ρ3 = 2.03×10−7 to ρ3 = 2.03×10−6, ρ3 = 2.03×10−5, and ρ3 = 2.03×10−4,
the switching time increases to 266, 457, and 600 days, respectively. This seems unexpected since one would
usually expect that producing more interleukin-10 cytokines for the same viral load would help eliminate the
infection. However, these findings support the argument that in HBV infection, ongoing antigen presentation by
infected cells and exposure to high antigen levels are associated with CD8+ T cell exhaustion [48]. Biologically,
the continuous production of interleukin-10 cytokines impairs cytotoxic T cells (T2), thus increasing the switching
time. A switching time of approximately 112 days corresponds to the initial period after exposure to a core hepatitis
B virus (i.e., the acute stage of HBV infection), which is the appropriate time for the immune system to respond. To
further investigate and gain more understanding of the dynamics of HBV load as the switching time increases, we
vary the parameter ω in relation to its switching time value and plot the hepatitis B virus compartment to observe
the changes. From Figure 9, we observed that an increase in switching time corresponds to an increase in the viral
load. For an ω value of 20.000000203, the density of the hepatitis B virus population is depicted by the blue line
in the graph. When the value of ω is increased to 20.00000203, 20.0000203, and 20.000203, the density of the
hepatitis B virus population is represented by the green, red, and magma lines, respectively. Generally, a lower
switching time correlates with a lower hepatitis B viral load. Thus, from the graph, we noticed that a decrease in
the value of ω from 20.000000203 to 20.0000000203, 20.00000000203, and 20.000000000203, which represents
a lower switching time, corresponds to a lower hepatitis B viral load as illustrated by the black, cyan, and yellow
dashed lines. This result is not surprising since we did not incorporate a time delay into the dynamics of our naive
T cells. The lack of a time delay in the production of naive T cells allows for their continuous exposure to high
levels of antigens, resulting in their impairment. Hence, the model predicts that a delay in the differentiation of the
naive T cells into T helper 1 cells influences the determination of the switching time.

6.4 Sensitivity Analysis
Due to uncertainties in the collection of data and estimated parameter values, the reproduction number R0 is
usually affected. We carry out sensitivity analysis to determine the relative importance of each epidemic parameter
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Figure 9: Graph illustrating the numerical solution that depicts the variation in HBV load with different switching
times.

for transmission and control of both hepatitis B virus and liver cancer diseases and changes in the structure of
the model. Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC) are employed
to identify model parameters that exert the greatest influence on the model, with the reproduction number (R0)
acting as the dependent function. The main aim of this analysis is to ascertain the effects of parameters on model
results. Parameters that are highly sensitive should be estimated with greater precision, as small changes in these
parameters can lead to significant variations in the results [49, 50, 51]. Conversely, parameters that are not sensitive
require less effort to estimate, since small changes in these parameters do not lead to large variations in the quantity
of interest [50]. Parameters with PRCC values greater than positive 0.50 are considered to be highly positively
correlated with the dependent function, while those with values less than negative 0.50 are considered to be highly
negatively correlated with the dependent function [49, 50, 51]. The parameters included in the PRCC analysis
are the interaction rate between V and M0 (β1), the interaction rate between V and M1 (β2), the supply rate of
uninfected macrophages without cancer (ΛM0), the supply rate of uninfected macrophages with cancer (ΛM1),
the rate at which infected macrophages develop into liver cancer (ζ), the replication rate of new infectious virions
(ω), the decay rate of uninfected macrophages without cancer (µM0

), the decay rate of uninfected macrophages
with cancer (µM1

), the virus decay rate (µV ), the decay rate of infected macrophages (µIM ), the virus lytic effect
rate to release antibodies (ψ), and the lytic effect rate of infected macrophages to release interferon alpha and beta
cytokines (ε). A PRCC analysis was conducted for five different periods; however, the parameters exhibited the
same effect on the dependent function across all five periods. Therefore, we chose to present one plot, as shown
in Figure 10. The results indicate that the twelve parameters that most significantly impact the response function
(R0) are β1, β2, ΛM0

, ΛM1
, ζ, ω, µM0

, µM1
, µV , µIM , ψ, and ε. Base on the PRCC values, the parameters β1, β2,

ΛM0
, ΛM1

, and ω positively influence (R0), meaning that an increase (decrease) in these parameters will increase
(decrease) (R0). In contrast, the parameters ζ, µM0

, µM1
, µV , µIM , ψ, and ε negatively influence (R0), and an

increase in these parameters will decrease (R0). The results from PRCC analysis are summarized in Table 2.

Table 2: Parameters and their relationship with R0

Parameter Sensitivity Index (SI) Parameter Sensitivity Index (SI)
ΛM0

+ 0.1854 µV - 0.5145
ΛM1

+ 0.2282 β1 + 0.2253
µIM - 0.0487 β2 + 0.2850
µM0

- 0.2608 ε - 0.2886
µM1 - 0.2850 ζ - 0.1390
ψ - 0.0060 ω + 0.5038
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Figure 10: Partial rank correlation coefficients (PRCCs) showing the impact of twelve model parameters on the
reproduction number (R0) of the model. Parameter values used are as given in Table 1.

7 Discussion of results
In this paper, we proposed and examined a new model for HBV infection and its coexistence with liver cancer, with
a specific emphasis on the interactions between different branches of the immune system. This model includes the
innate immune response, represented by natural killer cells (NK), and the adaptive immune response, represented
by effector B cells and naive T cells, which differentiate into T helper-1 cells, cytotoxic T cells, interleukin-10,
antibodies, and various cytokines. During infection, cytokines play a crucial role in recruiting both innate and
adaptive immune components, boosting their efficacy, and enabling the non-cytolytic clearance of infected cells.

The stability analysis of the steady states demonstrated how different parameters influence the dynamics of the
immune response. Some findings, like the destabilization of the virus persistence equilibrium due to the presence
of T cells, were intuitively obvious, while others were quite surprising. Naturally, increasing the number of NK
cells, the rate at which antibodies clear free virus, the rate at which effector B cells eliminate infected cells, the
rate at which cytotoxic T lymphocytes clear infected cells, and the rate at which IFN-γ inhibits viral production all
contribute to more effective infection clearance, stabilizing the disease-free steady-state solutions. However, we
noticed that for a very small or a very large rate of free virus clearance by antibodies, NK cells, and effector B cells,
the stability of the endemic steady state is unaffected by how quickly the new antibodies, NK cells, and effector
B cells are produced. But whenever the production of naive T cells increases, the virus-persistence equilibrium
is destabilized. This result is very astonishing, as one would generally presume that a higher production rate of
antibodies, NK cells, and effector B cells would lead to the clearance of the infection rather than the stabilization
of a chronic state. This indicates that it is not the distinct production rates of antibodies, NK cells, and effector
B cells that lead to viral clearance, but rather the ratio between these rates that determines whether the system
maintains a chronic infection, exhibits periodic oscillations, or achieves viral clearance.

Interleukin-10 (IL-10) is a cytokine with anti-inflammatory properties that plays a complex role in the immune
response to hepatitis B virus (HBV) infection. IL-10 is primarily recognized for its ability to suppress the immune
response. It is well known that IL-10 inhibits the production of pro-inflammatory cytokines such as IL-1, IL-
6, TNF-α, and interferon-gamma (IFN-γ). By regulating these cytokines, IL-10 helps to decrease the overall
inflammatory environment in the liver during HBV infection. IL-10 helps maintain a balance between necessary
immune activity to control the virus and the need to limit excessive inflammation that can cause liver damage.
This balance is crucial because excessive immune responses can lead to conditions like fulminant hepatitis, while
inadequate responses can result in chronic infection. During HBV infection, IL-10 can suppress the activity of
various immune cells, including T cells, macrophages, and dendritic cells. This suppression can reduce liver
inflammation and damage, potentially preventing severe liver injury. Despite the significant role interleukin-10
plays in HBV infection, it can potentially contribute to viral persistence by dampening the immune system’s ability
to clear the virus. By inhibiting the immune response, IL-10 may aid in the persistence of HBV. The suppression
of cytotoxic T lymphocytes (CTLs), which are crucial for clearing infected cells, can allow the virus to evade

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2024. ; https://doi.org/10.1101/2024.07.14.24310388doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.14.24310388
http://creativecommons.org/licenses/by-nc-nd/4.0/


the immune system and establish chronic infection as illustrated in Figure 9. Elevated levels of IL-10 have been
associated with poor responses to antiviral therapies in HBV-infected individuals. High IL-10 levels can inhibit
the effectiveness of the immune response needed for successful treatment.

We observed various switching times for the model. Initially, the density of cytotoxic T cells increases in
the first few days, after which it begins to decrease and is surpassed by the gradually increasing density of T
helper-1 cells. However, when we increased the production rate of interleukin-10, the switching time increased.
This seems unexpected since one would usually expect that producing more interleukin-10 cytokines for the same
viral load would help eliminate the infection. Thus, these findings support the argument that in HBV infection,
ongoing antigen presentation by infected cells and exposure to high antigen levels are associated with CD8+ T
cell exhaustion. Biologically, the continuous production of interleukin-10 cytokines impairs cytotoxic T cells (T2),
thus increasing the switching time. A switching time of approximately 112 days corresponds to the initial period
after exposure to the core hepatitis B virus (i.e., the acute stage of HBV infection), which is the appropriate time
for the immune system to respond. However, further production of interleukin-10 beyond this period will lead to
immune impairment. The model further showed that under specific conditions (see Figures 8 and 9), the switching
time can be adjusted. As illustrated in Figure 9, we observed that a reduction in the value of ω, indicating a shorter
switching time, corresponds to a lower hepatitis B viral load, as shown by the black, cyan, and yellow dashed lines.
This outcome is expected since a time delay was not included in the dynamics of our naive T cells. Consequently,
the model suggests that a delay in the differentiation of naive T cells into T helper 1 cells affects the determination
of the switching time. Therefore, it is reasonable to state that a positive lifestyle correlates positively with immune
system functioning and is crucial in determining whether an acute infection progresses to the chronic stage. The
implications of the model align with our expectations; logically, a longer switching time results in a higher viral
load and vice versa.

Minimizing the side effects of IL-10 in HBV infection requires carefully managing the immune response to
ensure effective viral clearance while preventing excessive immune suppression that could lead to chronic infection
or liver damage. Therefore, we recommend developing drugs that selectively inhibit IL-10 activity in specific cell
types or tissues to help minimize systemic side effects. Additionally, using antibodies or small molecules to block
IL-10 receptors on specific immune cells might reduce the suppression of antiviral responses while preserving
the beneficial anti-inflammatory effects in the liver. Combining IL-10 modulation with potent antiviral drugs can
lower the viral load, reducing the need for immune suppression. Furthermore, pairing IL-10 inhibitors with other
immune modulators that enhance T cell activity or other antiviral immune responses can help balance immune
activation and suppression. We have used arbitrary parameter values for simulating the model; it would be better
if clinical data sets were used to fit the model. Time delay in the immune response to HBV infection also plays a
crucial role in immune response dynamics. Thus, future research can extend this work by incorporating the time-
delay factor in the immune response. Another refinement of the model could include different immunotherapy
control techniques, such as antibody therapies currently in clinical trials, CAR-T cell therapy, molecular therapy,
and exhaustion therapy. These therapies are extensively studied in [12, 21, 52, 53, 54] to find optimal treatment
strategies for HBV and liver cancer management.

References
[1] Ciupe, S.M., Ribeiro, R.M., Perelson, A.S.: Antibody responses during hepatitis b viral infection. PLoS

computational biology 10(7), 1003730 (2014)

[2] Guidotti, L.G., Chisari, F.V.: Noncytolytic control of viral infections by the innate and adaptive immunere-
sponse. Annual review of immunology 19(1), 65–91 (2001)

[3] Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Dusheiko, G., Perelson, A.S.: The role of cells refractory to
productive infection in acute hepatitis b viral dynamics. Proceedings of the National Academy of Sciences
104(12), 5050–5055 (2007)

[4] Babiker, Z.O.E., Hogan, C., Ustianowski, A., Wilkins, E.: Does interferon-sparing tenofovir disoproxil
fumarate-based therapy have a role in the management of severe acute hepatitis delta superinfection? Journal
of medical microbiology 61(12), 1780–1783 (2012)

[5] Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in
hepatitis b virus infection. Proceedings of the National Academy of Sciences 93(9), 4398–4402 (1996)

30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2024. ; https://doi.org/10.1101/2024.07.14.24310388doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.14.24310388
http://creativecommons.org/licenses/by-nc-nd/4.0/


[6] DeVico, A.L., Gallo, R.C.: Control of hiv-1 infection by soluble factors of the immune response. Nature
Reviews Microbiology 2(5), 401–413 (2004)

[7] Su, Y., Wen, Y., Min, L.: Analysis of a hbv infection model with alt. In: 2012 IEEE 6th International
Conference on Systems Biology (ISB), pp. 97–100 (2012). IEEE

[8] Busca, A., Kumar, A.: Innate immune responses in hepatitis b virus (hbv) infection. Virology journal 11, 1–8
(2014)

[9] Guidotti, L.G., Guilhot, S., Chisari, F.V.: Interleukin-2 and alpha/beta interferon down-regulate hepatitis
b virus gene expression in vivo by tumor necrosis factor-dependent and-independent pathways. Journal of
Virology 68(3), 1265–1270 (1994)

[10] Herbein, G., O’brien, W.A.: Tumor necrosis factor (tnf)–α and tnf receptors in viral pathogenesis. Proceed-
ings of the Society for Experimental Biology and Medicine: Minireviews 223(3), 241–257 (2000)

[11] Vos, T., Barber, R.M., Bell, B., Bertozzi-Villa, A., Biryukov, S., Bolliger, I., Charlson, F., Davis, A., De-
genhardt, L., Dicker, D., et al.: Global, regional, and national incidence, prevalence, and years lived with
disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis
for the global burden of disease study 2013. The lancet 386(9995), 743–800 (2015)

[12] Fatehi, F., Bingham, R.J., Stockley, P.G., Twarock, R.: An age-structured model of hepatitis b viral infection
highlights the potential of different therapeutic strategies. Scientific Reports 12(1), 1252 (2022)

[13] Sheena, B.S., Hiebert, L., Han, H., Ippolito, H., Abbasi-Kangevari, M., Abbasi-Kangevari, Z., Abbastabar,
H., Abdoli, A., Ali, H.A., Adane, M.M., et al.: Global, regional, and national burden of hepatitis b, 1990–
2019: a systematic analysis for the global burden of disease study 2019. The lancet Gastroenterology &
hepatology 7(9), 796–829 (2022)

[14] Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Perelson, A.S.: Modeling the mechanisms of acute hepatitis b
virus infection. Journal of theoretical biology 247(1), 23–35 (2007)

[15] Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic virus infection model with application to hbv
infection. The Rocky Mountain Journal of Mathematics, 1573–1585 (2008)

[16] Gourley, S.A., Kuang, Y., Nagy, J.D.: Dynamics of a delay differential equation model of hepatitis b virus
infection. Journal of Biological Dynamics 2(2), 140–153 (2008)

[17] Hews, S., Eikenberry, S., Nagy, J.D., Kuang, Y.: Rich dynamics of a hepatitis b viral infection model with
logistic hepatocyte growth. Journal of Mathematical Biology 60, 573–590 (2010)

[18] Yousfi, N., Hattaf, K., Tridane, A.: Modeling the adaptive immune response in hbv infection. Journal of
mathematical biology 63, 933–957 (2011)

[19] Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: Hiv-1 dynamics in vivo: virion
clearance rate, infected cell life-span, and viral generation time. Science 271(5255), 1582–1586 (1996)

[20] Hu, J., Liu, K.: Complete and incomplete hepatitis b virus particles: formation, function, and application.
Viruses 9(3), 56 (2017)

[21] Chenar, F.F., Kyrychko, Y., Blyuss, K.: Mathematical model of immune response to hepatitis b. Journal of
theoretical biology 447, 98–110 (2018)

[22] Hassuneh, M.R., Nagarkatti, M., Nagarkatti, P.S.: Role of interleukin-10 in the regulation of tumorigenicity
of a t cell lymphoma. Leukemia & lymphoma 54(4), 827–834 (2013)

[23] Pawelek, K.A., Huynh, G.T., Quinlivan, M., Cullinane, A., Rong, L., Perelson, A.S.: Modeling within-
host dynamics of influenza virus infection including immune responses. PLoS computational biology 8(6),
1002588 (2012)

[24] Abbas, A., Lichtman, A., Pillai, S.: Cellular and Molecular Immunology E-book. Elsevier Health Sciences,
??? (2014)

31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2024. ; https://doi.org/10.1101/2024.07.14.24310388doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.14.24310388
http://creativecommons.org/licenses/by-nc-nd/4.0/


[25] Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building,
Analysis and Interpretation vol. 5. John Wiley & Sons, ??? (2000)

[26] Chataa, P., Nyabadza, F., Naandam, S.M.: Mathematical modelling of the transmission dynamics of hepatitis
b virus in the presence of imperfect vaccination. J. Math. Comput. Sci. 11(6), 6949–6979 (2021)

[27] Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Mathematical Bio-
sciences and Engineering 1(2), 361 (2004)

[28] Opoku, N.K.-D.O., Mazandu, G.K.: Modelling the human immune response dynamics during progression
from mycobacterium latent infection to disease. Applied Mathematical Modelling 80, 217–237 (2020)

[29] Goyal, A., Ribeiro, R.M., Perelson, A.S.: The role of infected cell proliferation in the clearance of acute hbv
infection in humans. Viruses 9(11), 350 (2017)

[30] Murray, J.M., Goyal, A.: In silico single cell dynamics of hepatitis b virus infection and clearance. Journal of
Theoretical Biology 366, 91–102 (2015)

[31] Wigginton, J.E., Kirschner, D.: A model to predict cell-mediated immune regulatory mechanisms during
human infection with mycobacterium tuberculosis. The Journal of Immunology 166(3), 1951–1967 (2001)

[32] Agarwal, M., Bhadauria, A.: Correlation between hepatitis and cancer: A mathematical model

[33] Guang, Y., Yuzhong, L., Hui, L.: Establishment of an analysis model based on measurement of hepatitis b
viral infection serum markers. BMC Infectious Diseases 19, 1–5 (2019)

[34] Zhang, Y., Wallace, D.L., De Lara, C.M., Ghattas, H., Asquith, B., Worth, A., Griffin, G.E., Taylor, G.P.,
Tough, D.F., Beverley, P.C., et al.: In vivo kinetics of human natural killer cells: the effects of ageing and
acute and chronic viral infection. Immunology 121(2), 258–265 (2007)

[35] Jamieson, A.M., Isnard, P., Dorfman, J.R., Coles, M.C., Raulet, D.H.: Turnover and proliferation of nk cells
in steady state and lymphopenic conditions. The Journal of Immunology 172(2), 864–870 (2004)

[36] Guedj, J., Dahari, H., Rong, L., Sansone, N.D., Nettles, R.E., Cotler, S.J., Layden, T.J., Uprichard, S.L.,
Perelson, A.S.: Modeling shows that the ns5a inhibitor daclatasvir has two modes of action and yields a
shorter estimate of the hepatitis c virus half-life. Proceedings of the National Academy of Sciences 110(10),
3991–3996 (2013)

[37] Kitagawa, K., Nakaoka, S., Asai, Y., Watashi, K., Iwami, S.: A pde multiscale model of hepatitis c virus
infection can be transformed to a system of odes. Journal of theoretical biology 448, 80–85 (2018)

[38] Schlub, T.E., Sun, J.C., Walton, S.M., Robbins, S.H., Pinto, A.K., Munks, M.W., Hill, A.B., Brossay, L., Ox-
enius, A., Davenport, M.P.: Comparing the kinetics of nk cells, cd4, and cd8 t cells in murine cytomegalovirus
infection. The journal of Immunology 187(3), 1385–1392 (2011)

[39] Saraiva, M., O’garra, A.: The regulation of il-10 production by immune cells. Nature reviews immunology
10(3), 170–181 (2010)

[40] Das, A., Ellis, G., Pallant, C., Lopes, A.R., Khanna, P., Peppa, D., Chen, A., Blair, P., Dusheiko, G., Gill,
U., et al.: Il-10–producing regulatory b cells in the pathogenesis of chronic hepatitis b virus infection. The
Journal of Immunology 189(8), 3925–3935 (2012)

[41] Liu, Y., Cheng, L.-s., Wu, S.-d., Wang, S.-q., Li, L., She, W.-m., Li, J., Wang, J.-y., Jiang, W.: Il-10-producing
regulatory b-cells suppressed effector t-cells but enhanced regulatory t-cells in chronic hbv infection. Clinical
Science 130(11), 907–919 (2016)

[42] Peeridogaheh, H., Meshkat, Z., Habibzadeh, S., Arzanlou, M., Shahi, J.M., Rostami, S., Gerayli, S., Teimour-
pour, R.: Current concepts on immunopathogenesis of hepatitis b virus infection. Virus research 245, 29–43
(2018)

[43] Hyodo, N., Nakamura, I., Imawari, M.: Hepatitis b core antigen stimulates interleukin-10 secretion by both
t cells and monocytes from peripheral blood of patients with chronic hepatitis b virus infection. Clinical &
Experimental Immunology 135(3), 462–466 (2004)

32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2024. ; https://doi.org/10.1101/2024.07.14.24310388doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.14.24310388
http://creativecommons.org/licenses/by-nc-nd/4.0/


[44] Ohga, S., Nomura, A., Takada, H., Tanaka, T., Furuno, K., Takahata, Y., Kinukawa, N., Fukushima, N., Imai,
S., Hara, T.: Dominant expression of interleukin-10 and transforming growth factor-β genes in activated
t-cells of chronic active epstein–barr virus infection. Journal of medical virology 74(3), 449–458 (2004)

[45] Brooks, D.G., Trifilo, M.J., Edelmann, K.H., Teyton, L., McGavern, D.B., Oldstone, M.B.: Interleukin-10
determines viral clearance or persistence in vivo. Nature medicine 12(11), 1301–1309 (2006)

[46] Kaplan, D.E., Ikeda, F., Li, Y., Nakamoto, N., Ganesan, S., Valiga, M.E., Nunes, F.A., Reddy, K.R., Chang,
K.-M.: Peripheral virus-specific t-cell interleukin-10 responses develop early in acute hepatitis c infection
and become dominant in chronic hepatitis. Journal of hepatology 48(6), 903–913 (2008)

[47] Brockman, M.A., Kwon, D.S., Tighe, D.P., Pavlik, D.F., Rosato, P.C., Sela, J., Porichis, F., Le Gall, S.,
Waring, M.T., Moss, K., et al.: Il-10 is up-regulated in multiple cell types during viremic hiv infection and
reversibly inhibits virus-specific t cells. Blood, The Journal of the American Society of Hematology 114(2),
346–356 (2009)

[48] Revill, P.A., Chisari, F.V., Block, J.M., Dandri, M., Gehring, A.J., Guo, H., Hu, J., Kramvis, A., Lamper-
tico, P., Janssen, H.L., et al.: A global scientific strategy to cure hepatitis b. The lancet Gastroenterology &
hepatology 4(7), 545–558 (2019)

[49] Cariboni, J., Gatelli, D., Liska, R., Saltelli, A.: The role of sensitivity analysis in ecological modelling.
Ecological modelling 203(1-2), 167–182 (2007)

[50] Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease trans-
mission: an hiv model, as an example. International Statistical Review/Revue Internationale de Statistique,
229–243 (1994)

[51] Iboi, E.A., Gumel, A.B.: Mathematical assessment of the role of dengvaxia vaccine on the transmission
dynamics of dengue serotypes. Mathematical biosciences 304, 25–47 (2018)

[52] Abernathy, Z., Abernathy, K., Stevens, J., et al.: A mathematical model for tumor growth and treatment using
virotherapy. AIMS Math 5(5), 4136–4150 (2020)

[53] Cho, H., Levy, D.: The impact of competition between cancer cells and healthy cells on optimal drug delivery.
Mathematical Modelling of Natural Phenomena 15, 42 (2020)

[54] Bukkuri, A.: Optimal control analysis of combined chemotherapy-immunotherapy treatment regimens in a
pkpd cancer evolution model. Biomath 9(1), 2002137 (2020)

33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2024. ; https://doi.org/10.1101/2024.07.14.24310388doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.14.24310388
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and methods
	Basic Model Formulation
	Model Equations

	Basic Model Properties
	Positivity of Solutions
	Boundedness of Solutions

	Model Analysis
	Virus-free Equilibrium and Reproduction Number

	Model Stability Analysis
	Local Stability of Virus-free Equilibrium
	Global Stability of Virus-free Equilibrium
	Virus-persistence Equilibrium (VPE) and Stability Analysis

	Numerical Simulations and Sensitivity Analysis
	Numerical Results at Virus-free Equilibrium State
	Numerical Results at Virus Persistence Equilibrium State
	Switching Time
	Sensitivity Analysis

	Discussion of results

