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Data Exploration

cIMT SDS across patients and visits followed a normal distribution (Figure S1A). Linear Locally
Estimated Scatterplot Smoothing (LOESS) revealed an average quadratic, concave-down evolution of
cIMT SDS with a more pronounced increase within the first 4 years of follow-up for patients with S-
CKD compared to patients with P-CKD (Figure S1B). Patients dropped out disproportionally often due
to start of kidney replacement therapy during the first 4 years of follow-up (Figure S1C). The last visit
of patients with progressive CKD occurred on average 244 days (SD = 228 days) prior to RRT onset
with a mean eGFR = 14.616 (SD = 6.153) at their last included visits. The last included visit of patients
with stable CKD within the first 4 years of follow-up showed a mean eGFR = 30.494 (SD = 12.839)
corresponding to CKD stage 4.

A quadratic decline in cIMT SDS LOESS trajectories after 4 years of follow-up (Figure S1B) was
equally present for P-CKD and S-CKD patients and coincided with decreasing numbers of patients
who contributed data at longer follow-up times (Figure S1C). Patients with total 4C participation
durations > 5 years showed decreased cIMT SDS at their last visit compared to the last visits of
patients with total 4C participation durations < 5 years (Figure S1D). The correlation of longer follow-
up times with lower cIMT SDS at last visits may be indicative for an informative drop-out mechanism
(Missing Not At Random, MNAR) resulting in missing data® increased cIMT SDS are predictive for
patient drop-out. If higher values on cIMT SDS are more likely to be missing, LMM fixed effect
estimates are biased downwards because they are based on the lower values that are more likely to
be observed. The impact of a MNAR underestimation bias was assumed to be small as informative
dropout appeared to be a temporally confined issue of follow-up durations > 5 years where relatively
few data remained to impose bias on fixed effect estimates (Figure S1D).

The empirical variance of cIMT SDS was dependent on patients” time of follow-up with
greatest observed cIMT SDS variance at baseline and continuously decreasing variance for longer
follow-up durations (see Figure S1B). The greatest decrease in cIMT SDS variance occurred between
patients” 1% (baseline) visit and patients’ first annual follow-up visit (see Figure S1B & Table 1).

Individual longitudinal patient profiles showed non-linear (quadratic) time trends (Figure S1E).
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Figure S1: Visual exploration of cIMT SDS. A: Frequency distribution of cIMT SDS with overlayed normal density function
(blue line). B: Scatterplot of cIMT SDS over time (in years) since baseline visit with linear LOESS trends separately for
patients with PRF and SRF (span = 2, shading indicates +/- 1 SE). C: Count of patients with specific total number of visits
(visit 1 = baseline visit) separately for patients with progressive CKD (differentiated by categories for patient inclusion) and
stable CKD. D: cIMT SDS at patients” last visit for patients” with different total numbers of visits. Linear LOESS trend (span =
2) of this relationship is plotted separately for patients with PRF and SRF (shading indicates +/- 1 SE). E: cIMT SDS over
time (in years) since baseline visit for single patients (black lines) and different groups of starting age at baseline (separate
panels) with linear average LOESS trend (span = 2, shading indicates +/- 1 SE).



Multiple Imputation of Missing Values

The percentage of missing values was below 10% for most explanatory variables and there
was only 1 single missing cIMT measurement (Figure S2A). Missing values of all explanatory
covariates and of cIMT SDS were imputed to generate twenty complete (imputed) datasets (m = 20).
The Imer.ml function (from the mice®® and miceadds®® R packages) with predictive mean matching
(PMM) method specification was applied to the preprocessed 4C dataset to conduct multiple
imputation in R Studio v. 4.2.21%'> | To generate each imputed dataset, Imer.ml fitted a linear mixed
model for each variable with missingness, by including all remaining covariates in the fixed effect
predictor set. Only covariate main effects were estimated. The LMM was specified with center-level
random intercepts and patient-level random intercept and random slopes. Based on the LMM
predicted patient-level profiles, Imer.ml applied the PMM method. PMM substitutes each missing
covariate value for a particular visit and patient with a non-missing and randomly drawn observed
value (donor value) in close distance to the prediction for the missing value. The utilized PMM
default hyperparameter value k = 5 limited the candidate pool for the randomly drawn donor value
to the five closest values available across all visits and patients. PMM ensures that the resulting
imputed values are within the range of the observed non-missing values and no outliers are
generated®? . Figure S2B exemplifies that PMM (k=2) already reliably identifies donor values (red
dots) that maintain the overall shape of a patient-level covariate trajectory. The fixed effect estimates
and estimates of random effect covariance parameters obtained by the final inferential LMM per
patient group on each of the 20 imputed datasets were pooled according to Rubin’s Rule!®* and are

reported in the result section of this paper.
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Figure S2: A: Percent of missing values for cIMT SDS and per explanatory covariate of interest. B: Exemplary results of
PMM-based (k=2) multiple imputation obtained from one (m=1) imputed 4C analysis dataset. Each of the six subpanels
displays observed data (black dots) for one 4C patient and the pool of donor values determined by PMM (2 red dots) out
of which one value is selected for missing value substitution.



An Application-Specific Linear Mixed Model Formulation

Separate LMM were specified for longitudinal modeling of cIMT SDS in all patients, in
patients with progressive CKD (P-CKD), and in patients with stable CKD (S-CKD).

All three LMM were first constructed with a complex mean structure that included all single
explanatory covariates of interest in covariate matrix X for the estimation of time-invariant, and first-
degree time-variant fixed effects (i.e. average population-level effects). LMM fixed effects can be
interpreted as characterizing the longitudinal relationship between explanatory covariates (CVD risk
factors) and cIMT SDS for the “average” patient, given a specific configuration of explanatory
covariate values. In addition to continuous time (i.e. time in years of follow-up after baseline), and
time, explanatory covariates in the complex mean structure included: eGFR, serum albumin, HDL,
LDL, phosphate, albumin-corrected calcium, serum bicarbonate, uric acid, log(ferritin), log(CRP),
log(iPTH), log(albuminuria), hemoglobin, BMI SDS, height SDS, systolic blood pressure SDS, diastolic
blood pressure SDS, baseline age, diagnosis, sex. Right-skewed covariates were added as log-
transformed covariates. Each explanatory covariate was added as a single covariate to the three
initial LMM formulations and in interaction with the continuous covariate time to assess whether the
association between a covariate and cIMT SDS varied over time. Multicollinearity between all
covariates and interaction terms was examined which resulted in the exclusion of the following four
interaction terms due to almost perfect multicollinearity based on Pearson correlation coefficients (r
> .95), and Variance Inflation Factors (VIF > 20): albumin-corrected calcium * time, serum albumin *
time, hemoglobin * time, serum bicarbonate * time. The initial, preliminary complex mean structure
was then kept unchanged during Restricted Maximum Likelihood (REML) estimation of an LMM for
each patient group while systematically varying the specified random effect covariance structure of
each model (Table S1-S3). The selection of an appropriate and best-fitting random effect covariance
structure per LMM, firstly, aimed at explicitly modeling how individual patients and centers deviate
from estimated average longitudinal population-level effects and, secondly, took into account
longitudinal covariance (dependence) of cIMT SDS measurements within patients, and between
patients from the same treating center. The set of probed random effect covariance structures was
informed by the general knowledge about the 4C registry data (i.e. allowing centers’ individual mean
cIMT SDS at baseline to deviate from the overall population-level mean seemed reasonable) and by
results of the data exploration (quadratic patient-level random effects were supported by
visualizations of patient-specific longitudinal profiles; see supplemental method sections). The
decision about the best LMM random effect structure was then guided by Likelihood Ratio Tests
(LRT) during model comparison and by the Akaike Information Criterion (AIC) which penalizes

improved LMM fit by a model’s parameter complexity!? . Table SI-Slll show that a random effect



covariance structure specification with center-level random intercepts, and patient-level random
intercepts, patient-level linear random slopes, and patient-level quadratic random slopes resulted in
the best model fit as indicated by AIC and LRT for LMM of cIMT SDS in all three patient groups (see
LMM Model #7 in Tables SI-Slll). Figure 2.1 exemplifies that especially patients” whose longitudinally
observed cIMT SDS profile (black dots) diverged more distinctly from the estimated longitudinal
average population-level trend (red line) can be predicted more accurately by LMM if, additionally to
a standard inclusion of patient-level random intercepts and center-level random intercepts (see
green lines in Figure 2.1 A-D), patient-level random linear slopes (see green lines in Figure 3 E-H), or,
patient-level random linear slopes and random quadratic slopes (see green lines in Figure 2.1 I-L) are
modeled by the LMM. The LMM Model #7 random effect covariance structure was therefore

selected for the longitudinal LMM of cIMT SDS in all three patient groups (see Tables SI-SllI).

The standard LMM formulation assumes constant residual variance across all values of
included explanatory covariates (homoscedasticity assumption). Fixed effect estimation precision
decreases if the homoscedasticity assumption is violated. Data exploration showed evidence of
exponentially decreasing cIMT SDS variance for increasing time of follow-up. It was considered that
the observed time-dependent variance function may not be exclusively explainable by longitudinally
converging patient-specific cIMT SDS profiles (patient-level random slopes) but may (additionally) be
evoked by unequal amounts of measurement error (residual variance) over time. Thus, it was tested
if explicit modelling of non-constant residual variance (measurement error) over time improved the
LMM fit. Table I-Ill show that modelling non-constant residual variance over time improved model fit

of LMM #7 in all patient groups. The REML-estimated negative value of the exponential parameter 5
in Tables I-1ll translates into an exponential factor 0 < e%tii < 1 which is multiplied by the estimated
residual variance gires at follow-up times t;; greater than O (baseline). Hence, as expected, the

residual variance estimate Eires was estimated to become smaller for increasing follow-up time by
multiplication with et

After selecting a random effect covariance structure and confirming the need for modeling
non-constant residual variance over time, the complex mean structure of LMM #7 was reduced by p-
value based variable backwards elimination (covariate inclusion threshold; p < .05) to minimize the
risk of fixed effect model overfitting to spurious correlations and random noise. Covariates of primary
interest and covariates for effect adjustment were defined and never removed during variable
backwards elimination. The list of single covariates of primary interest included: eGFR,
log(albuminuria), systolic blood pressure SDS, diastolic blood pressure SDS. The list of single

covariates always kept for fixed effect adjustment included: sex, age at study entry, diagnosis. All

other covariates and interaction terms in the LMM #7 were candidates for removal during variable



backwards elimination. The estimated average cIMT SDS population-level trend (red line) estimated
by the final LMM with reduced fixed effect mean-structure is visualized in Figure 2.2 A-D for the visit-

specific covariate values of four example patients.
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(equation 1)

The final longitudinal LMM per patient group is described by model equation I. In LMM
equation |, the average population-level cIMT SDS intercept at baseline Sy, the linear average
population-level effect B; of time on cIMT SDS, as well as the explanatory time covariate t;; are
removed from the original regressor matrix X and from the original coefficient vector B, respectively,
to better illustrate the LMM formulation. Explanatory covariates with modeled time-invariant (stable)
linear relationships with cIMT SDS of patient i from center m at individual follow-up time j (Y,;;) are
contained in matrix X to estimate the corresponding population-level average effects in vector F
between any times t;(j_1) and t;(j. Time-interacting explanatory covariates are included in matrix X
to estimate the linear rate of change F in the covariates” average linear relationship with cIMT SDS
(Yinij) between any times t;(;_1) and t;(;). The LMM in equation | models center m’s deviation from
an estimated average longitudinal population-level trajectory, and patient i’s deviation from the
modeled trajectory of his/her treating center m. Allowing for center-level random intercepts ¢y,
and for patient-level random intercepts by;, patient-level random linear slopes b;;, and patient-level
quadratic slopes b,; requires the estimation of random effect variance parameter gqq in the G

matrix, and of 6 random effect (co)variance component parameters in the D matrix (see



doo, d11, d22, dg1, dg2, d1 in equation 1). The estimated covariance components in G and D specify
the predictive distribution for the center-level random effects cy,,, and for all patient-level random

effects by;, respectively.

The final LMM per patient group (all patients, patients with P-CKD, patients with S-CKD) was
fitted to 20 imputed datasets and the estimated LMM parameters were pooled according to Rubin’s
Rule®® . The pooled fixed effect estimates, the pooled center-level and patient-level random effect
covariance parameters, the derived cIMT SDS variability contributions at each hierarchical level of
the model structure (average population-level, center-level, patient-level), and the derived intra-
patient-level correlations for specific time intervals of follow-up are reported in the result section of
this paper for the final LMM per patient group. The Ime function from the nime package® was utilized

in R Studio vs 4.2.2%%1>  for longitudinal linear mixed modeling.



Model Diagnostics

A plot per patient group’s final fitted LMM of the standardized marginal residuals against
time of follow-up showed that modeling non-constant residual variance over time remedied residual
heteroscedasticity during fixed effect estimation (Figure S3 D-E). Overall, the fitted average
population-level longitudinal trends seemed to be free of systematic biases except for a small group
of patients at follow-up durations > 6 years whose cIMT SDS were overestimated (Figure S3 D-E).
Standardized marginal residuals appeared to be normally distributed across the entire range of
average population-level fitted cIMT SDS suggesting that the LMM did not miss any apparent non-
linear fixed-effect relationships between covariates and cIMT SDS in the data (Figure S3 A-C).
Measurement errors within patients were not correlated between follow-up visits as shown by flat
LOESS trend lines in semivariograms constructed for each fitted final LMM per patient group (Figure

S3 G-1).
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Derivations from the longitudinal LMM equation {equation |)

Decomposition of the estimated total cIMT SDS variance 6}_total

The decomposition of the estimated total cIMT SDS variance @?mtal at time j around the

. S . . . o A2 . . . T
average population-level mean X B into inter-center variability (6i,er—center), inter-patient variability
(6/inter—patient), and time-dependent measurement error within patients (67 ¢sigua = 0% e * e&ii) in

the final LMM is represented by equation Il.

V?;r(ymij) = Glnter—center + 0finter—patient + Ofresiaual = Ofrotal
=Var(X B + Com + bo, + by tij + by t?; + &)
=Var(coy) + Var(by, + by, t;j + by, %) + Var(g;)
= Var(com) +
Var(b,) + t2;;Var(by,) + t/;Var(b,,) +
2Cov(bgy, by tij) + 2Cov(bgy, by, t?;) + 2Cov(byt;j, by t?;) +
Var(&,)

= goo + doo + dy1 % + dyotl + 2dgyty; + 2dyt%; + 2dy 5t + 625 * €011,

(equation 1)

Assessment of the proportion of explained total cIMT SDS variance by the average population-level
effects
To assess the proportion of explained total cIMT SDS variance by the average population-

level effects , the standardized generalized variance R,% metric (see equation Ill) proposed by Edwards et
al. (2008)> was calculated for the final fitted LMM per patient group. The RE metric compared the

final fitted LMM per patient group with the null model fit per patient group i.e. an LMM with
identical random effect and residual covariance structures but intercept-only fixed effect mean

structure.

SSEg(Ymij =1Bo+Z;jDij + 1G; + &;5) — SSEg(Ymij =XijB+ZijDij+1G; + &;j)
SSEB(Ymij :1ﬁ0+zijDij+ ]-Gi+£ij) ’

2 _
R,B_

(equation Ill)



Intra-patient correlation (IPC)

The estimated intra-patient correlation (IPC) between any two cIMT SDS measurements of
the same patient j at follow-up time t;(;) and follow-up time &;(;;x; k x0) IS €xpected to decrease with
increasing time k between the two measurements and can be calculated based on the estimated

LMM parameters as shown in equation IV.

Cov(Ymij » Yimi(j+k:k20))
SD (Ymij) * SD(Yimij+k:k20))

IPC (Ymijs Ymicj+k; k#0) =

Goo + doo + do1(tij+ti(j+k)) + dritijtigjek) + do2(Eij+t%i(j+k)) + d12(Pijtiiri) +tijtligek)) + dazt?ijt k)

JVET(YmL‘j) * JVEr(Ymi(j+k))

(equation 1V)

Post-fit correlations of absolute linear patient-level change per year in imt sds with absolute

linear patient-level change per year in blood pressure sds within the first 4.5 years of follow-up

The analysis was conducted to investigate if there is a statistically significant relationship between
estimated linear absolute rate of change in cIMT SDS with estimated linear absolute rate of change in
blood pressure SDS within the first 4.5 years of follow-up. Patient-level absolute change per year is
derived from the longitudinal linear mixed-effects model (LMM with REML estimation) constructed
above and estimated for each of three dependent measures (cIMT SDS, systolic and diastolic BP SDS).
Subsequently, two linear regression models are performed to test the correlation between the linear
absolute change per year in cIMT SDS and either diastolic or systolic BP SDS.

Absolute change per year for patient i in systolic BP sds and in diastolic BP sds is obtained as (abs.

0 .systolic.sdsj= [ 1+ b1 | abs. 0 .diastolic.sdsj = [ 1 + b1j) from estimated parameters of the
corresponding LMM fitted to data from patients with stable renal function and progressive renal
failure (see equation Il).

Absolute change per year for patient i in imt sds is derived as (abs. 0 .imt.sdsj = (last.imt.sds; -
first.imt.sds;)/last.timej) from predicted values of an LMM elaborated for testing risk factor
relationships with imt sds in patients with stable renal function and progressive renal failure (see

equation | in Appendix).



Predicted outcome and slope estimate values visualized in Figures S4-S6 are average-aggregated

values based on repeated LMM fits to each of 20 imputed datasets.



Patient-level absolute change per year in cIMT SDS
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Patient-level absolute change per year in systolic blood pressure SDS
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