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Data Explora+on 

cIMT SDS across pa-ents and visits followed a normal distribu-on (Figure S1A). Linear Locally 

Es-mated ScaDerplot Smoothing (LOESS) revealed an average quadra-c, concave-down evolu-on of 

cIMT SDS with a more pronounced increase within the first 4 years of follow-up for pa-ents with S-

CKD compared to pa-ents with P-CKD (Figure S1B). Pa-ents dropped out dispropor-onally oPen due 

to start of kidney replacement therapy during the first 4 years of follow-up (Figure S1C). The last visit 

of pa-ents with progressive CKD occurred on average 244 days (SD = 228 days) prior to RRT onset 

with a mean eGFR = 14.616 (SD = 6.153) at their last included visits. The last included visit of pa-ents 

with stable CKD within the first 4 years of follow-up showed a mean eGFR = 30.494 (SD = 12.839) 

corresponding to CKD stage 4. 

A quadra-c decline in cIMT SDS LOESS trajectories aPer 4 years of follow-up (Figure S1B) was 

equally present for P-CKD and S-CKD pa-ents and coincided with decreasing numbers of pa-ents 

who contributed data at longer follow-up -mes (Figure S1C). Pa-ents with total 4C par-cipa-on 

dura-ons > 5 years showed decreased cIMT SDS at their last visit compared to the last visits of 

pa-ents with total 4C par-cipa-on dura-ons < 5 years (Figure S1D). The correla-on of longer follow-

up -mes with  lower cIMT SDS at last visits may be indica-ve for an informa-ve drop-out mechanism 

(Missing Not At Random, MNAR) resul-ng in missing data49 increased cIMT SDS are predic-ve for 

pa-ent drop-out. If higher values on cIMT SDS are more likely to be missing, LMM fixed effect 

es-mates are biased downwards because they are based on the lower values that are more likely to 

be observed. The impact of a MNAR underes-ma-on bias was assumed to be small as informa-ve 

dropout appeared to be a temporally confined issue of follow-up dura-ons > 5 years where rela-vely 

few data remained to impose bias on fixed effect es-mates (Figure S1D). 

The empirical variance of cIMT SDS was dependent on pa-ents´ -me of follow-up with 

greatest observed cIMT SDS variance at baseline and con-nuously decreasing variance for longer 

follow-up dura-ons (see Figure S1B). The greatest decrease in cIMT SDS variance occurred between 

pa-ents´ 1st (baseline) visit and pa-ents´ first annual follow-up visit (see Figure S1B & Table 1). 

Individual longitudinal pa-ent profiles showed non-linear (quadra-c) -me trends (Figure S1E). 

 



  
 

 

 

 

 

 

 

 

 
Figure S1: Visual explora.on of cIMT SDS. A: Frequency distribu.on of cIMT SDS with overlayed normal density func.on 
(blue line). B: ScaDerplot of cIMT SDS over .me (in years) since baseline visit with linear LOESS trends separately for 
pa.ents with PRF and SRF (span = 2, shading indicates +/- 1 SE). C: Count of pa.ents with specific total number of visits 
(visit 1 = baseline visit) separately for pa.ents with progressive CKD (differen.ated by categories for pa.ent inclusion) and 
stable CKD. D: cIMT SDS at pa.ents´ last visit for pa.ents´ with different total numbers of visits. Linear LOESS trend (span = 
2) of this rela.onship is ploDed separately for pa.ents with PRF and SRF (shading indicates +/- 1 SE). E: cIMT SDS over 
.me (in years) since baseline visit for single pa.ents (black lines) and different groups of star.ng age at baseline (separate 
panels) with linear average LOESS trend (span = 2, shading indicates +/- 1 SE). 



Mul+ple Imputa+on of Missing Values 

The percentage of missing values was below 10% for most explanatory variables and there 

was only 1 single missing cIMT measurement (Figure S2A). Missing values of all explanatory 

covariates and of cIMT SDS were imputed to generate twenty complete (imputed) datasets (m = 20). 

The lmer.ml func-on (from the mice50 . and miceadds51 . R packages) with predic've mean matching 

(PMM) method specifica-on was applied to the preprocessed 4C dataset to conduct mul-ple 

imputa-on in R Studio v. 4.2.216,15 .. To generate each imputed dataset, lmer.ml fiDed a linear mixed 

model for each variable with missingness, by including all remaining covariates in the fixed effect 

predictor set. Only covariate main effects were es-mated. The LMM was specified with center-level 

random intercepts and pa-ent-level random intercept and random slopes. Based on the LMM 

predicted pa-ent-level profiles, lmer.ml applied the PMM method. PMM subs-tutes each missing 

covariate value for a par-cular visit and pa-ent with a non-missing and randomly drawn observed 

value (donor value) in close distance to the predic-on for the missing value. The u-lized PMM 

default hyperparameter value k = 5 limited the candidate pool for the randomly drawn donor value 

to the five closest values available across all visits and pa-ents. PMM ensures that the resul-ng 

imputed values are within the range of the observed non-missing values and no outliers are 

generated52 .. Figure S2B exemplifies that PMM (k=2) already reliably iden-fies donor values (red 

dots) that maintain the overall shape of a pa-ent-level covariate trajectory. The fixed effect es-mates 

and es-mates of random effect covariance parameters obtained by the final inferen-al LMM per 

pa-ent group on each of the 20 imputed datasets were pooled according to Rubin’s Rule13 .and are 

reported in the result sec-on of this paper.  

 

 
Figure S2: A: Percent of missing values for cIMT SDS and per explanatory covariate of interest. B: Exemplary results of 
PMM-based (k=2) mul5ple imputa5on obtained from one (m=1) imputed 4C analysis dataset. Each of the six subpanels 
displays observed data (black dots) for one 4C pa5ent and the pool of donor values determined by PMM (2 red dots) out 
of which one value is selected for missing value subs5tu5on. 



An Applica)on-Specific Linear Mixed Model Formula)on 

Separate LMM were specified for longitudinal modeling of cIMT SDS in all pa-ents, in 

pa-ents with progressive CKD (P-CKD), and in pa-ents with stable CKD (S-CKD).  

All three LMM were first constructed with a complex mean structure that included all single 

explanatory covariates of interest in covariate matrix 𝑿 for the es-ma-on of -me-invariant, and first-

degree -me-variant fixed effects (i.e. average popula-on-level effects). LMM fixed effects can be 

interpreted as characterizing the longitudinal rela-onship between explanatory covariates (CVD risk 

factors) and cIMT SDS for the “average” pa-ent, given a specific configura-on of explanatory 

covariate values. In addi-on to con-nuous -me (i.e. -me in years of follow-up aPer baseline), and 

-me, explanatory covariates in the complex mean structure included: eGFR, serum albumin, HDL, 

LDL, phosphate, albumin-corrected calcium, serum bicarbonate, uric acid, log(ferri-n), log(CRP), 

log(iPTH), log(albuminuria), hemoglobin, BMI SDS,  height SDS, systolic blood pressure SDS, diastolic 

blood pressure SDS, baseline age, diagnosis, sex. Right-skewed covariates were added as log-

transformed covariates. Each explanatory covariate was added as a single covariate to the three 

ini-al LMM formula-ons and in interac-on with the con-nuous covariate -me to assess whether the 

associa-on between a covariate and cIMT SDS varied over -me. Mul-collinearity between all 

covariates and interac-on terms was examined which resulted in the exclusion of the following four 

interac-on terms due to almost perfect mul-collinearity based on Pearson correla-on coefficients (r 

> .95), and Variance Infla-on Factors (VIF > 20): albumin-corrected calcium * -me, serum albumin * 

-me, hemoglobin * -me, serum bicarbonate * -me. The ini-al, preliminary complex mean structure 

was then kept unchanged during Restricted Maximum Likelihood (REML) es-ma-on of an LMM for 

each pa-ent group while systema-cally varying the specified random effect covariance structure of 

each model (Table S1-S3). The selec-on of an appropriate and best-fimng random effect covariance 

structure per LMM, firstly, aimed at explicitly modeling how individual pa-ents and centers deviate 

from es-mated average longitudinal popula-on-level effects and, secondly, took into account 

longitudinal covariance (dependence) of cIMT SDS measurements within pa-ents, and between 

pa-ents from the same trea-ng center. The set of probed random effect covariance structures was 

informed by the general knowledge about the 4C registry data (i.e. allowing centers´ individual mean 

cIMT SDS at baseline to deviate from the overall popula-on-level mean seemed reasonable) and by 

results of the data explora-on (quadra-c pa-ent-level random effects were supported by 

visualiza-ons of pa-ent-specific longitudinal profiles; see supplemental method sec-ons). The 

decision about the best LMM random effect structure was then guided by Likelihood Ra-o Tests 

(LRT) during model comparison and by the Akaike Informa-on Criterion (AIC) which penalizes 

improved LMM fit by a model´s parameter complexity12 .. Table SI-SIII show that a random effect 



covariance structure specifica-on with center-level random intercepts, and pa-ent-level random 

intercepts, pa-ent-level linear random slopes, and pa-ent-level quadra-c random slopes resulted in 

the best model fit as indicated by AIC and LRT for LMM of cIMT SDS in all three pa-ent groups (see 

LMM Model #7 in Tables SI-SIII). Figure 2.1 exemplifies that especially pa-ents´ whose longitudinally 

observed cIMT SDS profile (black dots) diverged more dis-nctly from the es-mated longitudinal 

average popula-on-level trend (red line) can be predicted more accurately by LMM if, addi-onally to 

a standard inclusion of pa-ent-level random intercepts and center-level random intercepts (see 

green lines in Figure 2.1 A-D), pa-ent-level random linear slopes (see green lines in Figure 3 E-H), or, 

pa-ent-level random linear slopes and random quadra-c slopes (see green lines in Figure 2.1 I-L) are 

modeled by the LMM. The LMM Model #7 random effect covariance structure was therefore 

selected for the longitudinal LMM of cIMT SDS in all three pa-ent groups (see Tables SI-SIII).  

The standard LMM formula-on assumes constant residual variance across all values of 

included explanatory covariates (homoscedas-city assump-on). Fixed effect es-ma-on precision 

decreases if the homoscedas-city assump-on is violated. Data explora-on showed evidence of 

exponen-ally decreasing cIMT SDS variance for increasing -me of follow-up. It was considered that 

the observed -me-dependent variance func-on may not be exclusively explainable by longitudinally 

converging pa-ent-specific cIMT SDS profiles (pa-ent-level random slopes) but may (addi-onally) be 

evoked by unequal amounts of measurement error (residual variance) over -me. Thus, it was tested 

if explicit modelling of non-constant residual variance (measurement error) over -me improved the 

LMM fit. Table I-III show that modelling non-constant residual variance over -me improved model fit 

of LMM #7 in all pa-ent groups. The REML-es-mated nega-ve value of the exponen-al parameter 𝛿# 

in Tables I-III translates  into an exponen-al factor 0 < 𝑒!"#!" < 1 which is mul-plied by the es-mated 

residual variance 𝜎$)%&'	at follow-up -mes 𝑡()  greater than 0 (baseline). Hence, as expected, the 

residual variance es-mate 𝜎$)%&' was es-mated to become smaller for increasing follow-up -me by 

mul-plica-on with 𝑒!"#!".  

APer selec-ng a random effect covariance structure and confirming the need for modeling 

non-constant residual variance over -me, the complex mean structure of LMM #7 was reduced by p-

value based variable backwards elimina-on (covariate inclusion threshold; 𝑝 ≤ .05) to minimize the 

risk of fixed effect model overfimng to spurious correla-ons and random noise. Covariates of primary 

interest and covariates for effect adjustment were defined and never removed during variable 

backwards elimina-on. The list of single covariates of primary interest included: eGFR, 

log(albuminuria), systolic blood pressure SDS, diastolic blood pressure SDS. The list of single 

covariates always kept for fixed effect adjustment included: sex, age at study entry, diagnosis. All 

other covariates and interac-on terms in the LMM #7 were candidates for removal during variable 



backwards elimina-on. The es-mated average cIMT SDS popula-on-level trend (red line) es-mated 

by the final LMM with reduced fixed effect mean-structure is visualized in Figure 2.2 A-D for the visit-

specific covariate values of four example pa-ents.  

 

 

The final longitudinal LMM per pa-ent group is described by model equa-on I. In LMM 

equa-on I, the average popula-on-level cIMT SDS intercept at baseline 𝛽*, the linear average 

popula-on-level effect 𝛽+	of -me on cIMT SDS, as well as the explanatory -me covariate 𝑡()  are 

removed from the original regressor matrix X and from the original coefficient vector 𝜷, respec-vely, 

to beDer illustrate the LMM formula-on. Explanatory covariates with modeled -me-invariant (stable) 

linear rela-onships with cIMT SDS of pa-ent i from center m at individual follow-up -me j (𝒀𝒎𝒊𝒋) are 

contained in matrix 𝑿3  to es-mate the corresponding popula-on-level average effects in vector 𝜷3 

between any -mes 𝑡(()0+) and 𝑡(()). Time-interac-ng explanatory covariates are included in matrix 𝑿4 

to es-mate the linear rate of change 𝜷4 in the covariates´ average linear rela-onship with cIMT SDS 

(𝑌2()) between any -mes 𝑡(()0+) and 𝑡(()).  The LMM in equa-on I models center m´s devia-on from 

an es-mated average longitudinal popula-on-level trajectory, and pa-ent i´s devia-on from the 

modeled trajectory of his/her trea-ng center m. Allowing for center-level random intercepts 𝑐*2, 

and for pa-ent-level random intercepts 𝑏*(, pa-ent-level random linear slopes 𝑏+(, and pa-ent-level 

quadra-c slopes 𝑏$(  requires the es-ma-on of random effect variance parameter 𝑔** in the G 

matrix, and of 6 random effect (co)variance component parameters in the D matrix (see 

𝒀!"# = 𝛽$ + 𝑐$! + 𝑏$"'((()(((*+	(𝛽% + 𝑏%")'(()((*𝑡"# + (𝛽& + 𝑏&")'(()((* 𝑡&"# 	+ 	𝑿´0 "# 𝜷0⏟ 					+ 	𝑿3 "#𝑡"# 𝜷3⏟ 			+ 	𝜖"#  

 

 

where:   

𝑏( 	= 	 [𝑏*( , 𝑏+( ,𝑏2𝑖]	~	𝑁(0,𝑫), 𝑐2 	 = 	 [𝑐*2]	~	𝑁(0, 𝑮), 𝜖()~	𝑁(0, 𝜮),   

𝑫 = 6
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remaining  
fixed effects 
(Eme variant) 

(equa&on I)  



𝑑$$,𝑑%%, 𝑑&&, 𝑑$%, 𝑑$&, 𝑑%&	in equa-on I). The es-mated covariance components in G and D specify 

the predic-ve distribu-on for the center-level random effects 𝑐*2, and for all pa-ent-level random 

effects 𝑏4(, respec-vely.  

 

The final LMM per pa-ent group (all pa-ents, pa-ents with P-CKD, pa-ents with S-CKD) was 

fiDed to 20 imputed datasets and the es-mated LMM parameters were pooled according to Rubin’s 

Rule13 .. The pooled fixed effect es-mates, the pooled center-level and pa-ent-level random effect 

covariance parameters, the derived cIMT SDS variability contribu-ons at each hierarchical level of 

the model structure (average popula-on-level, center-level, pa-ent-level), and the derived intra-

pa'ent-level correla-ons for specific -me intervals of follow-up are reported in the result sec-on of 

this paper for the final LMM per pa-ent group. The lme func-on from the nlme package9 was u-lized 

in R Studio vs 4.2.216,15  . for longitudinal linear mixed modeling. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Model Diagnos+cs 
 

A plot per pa-ent group´s final fiDed LMM of the standardized marginal residuals against 

-me of follow-up showed that modeling non-constant residual variance over -me remedied residual 

heteroscedas-city during fixed effect es-ma-on (Figure S3 D-E). Overall, the fiDed average 

popula-on-level longitudinal trends seemed to be free of systema-c biases except for a small group 

of pa-ents at follow-up dura-ons > 6 years whose cIMT SDS were overes-mated (Figure S3 D-E). 

Standardized marginal residuals appeared to be normally distributed across the en-re range of 

average popula-on-level fiDed cIMT SDS suggesting that the LMM did not miss any apparent non-

linear fixed-effect rela-onships between covariates and cIMT SDS in the data (Figure S3 A-C). 

Measurement errors within pa-ents were not correlated between follow-up visits as shown by flat 

LOESS trend lines in semivariograms constructed for each fiDed final LMM per pa-ent group (Figure 

S3 G-I). 

 

 
Figure S3: Model diagnos.cs for LMM per pa.ent group. A-C: Plots of standardized marginal residuals against 
.me of follow-up; D-F: Plots of standardized marginal residuals against marginal fiDed cIMT SDS; G-I: 
Semivariograms. 



Deriva+ons from the longitudinal LMM equa+on (equa+on I) 

 

Decomposi9on of the es9mated total cIMT SDS variance 𝝈I𝒋,𝒕𝒐𝒕𝒂𝒍𝟐  

The decomposi-on of the es-mated total cIMT SDS variance 𝜎J),#3#;<$ 	at -me j around the 

average popula-on-level mean 𝑿´𝜷# into inter-center variability (𝜎J𝑖𝑛𝑡𝑒𝑟−𝑐𝑒𝑛𝑡𝑒𝑟
2 ),	inter-pa-ent variability 

(𝜎(1,3456789:53645; ), and -me-dependent measurement error within pa-ents (𝜎(1,76<3=>:?; 	= 𝜎²𝑟𝑒𝑠 ∗ 𝑒𝛿𝑡𝑖𝑗) in 

the final LMM is represented by equa-on II.  

 

 

Assessment of the propor9on of explained total cIMT SDS variance by the average popula9on-level 

effects 

To assess the propor-on of explained total cIMT SDS variance by the average popula-on-

level effects , the standardized generalized variance 𝑅=
$ metric (see equa-on III) proposed by Edwards et 

al. (2008)53 . was calculated for the final fiDed LMM per pa-ent group. The 𝑅=
$ metric compared the 

final  fiDed LMM per pa-ent group with the null model fit per pa-ent group i.e. an LMM with 

iden-cal random effect and residual covariance structures but intercept-only fixed effect mean 

structure. 

 

 

 

 

Var- .𝑌A310 =	 𝜎(345678B64567; 	+ 𝜎(1,3456789:53645; + 𝜎(1,76<3=>:?; =  𝜎(1,5C5:?;  

      = Var(𝑿´𝜷# +	𝑐DA3  + 𝑏DE- + 𝑏FE-𝑡31 + 𝑏;E-𝑡²31 	+ 𝜖EG3) 

      = Var(𝑐DA3 )	+ 	Var(𝑏DE- + 𝑏FE-𝑡31 + 𝑏;E-𝑡²31) 	+ Var(𝜖EG3) 

      =  Var(𝑐DA)9+ 

          Var.𝑏DE-0+ 𝑡;31Var.𝑏FE-0 + 𝑡31HVar.𝑏;E-0+	 

2Cov(𝑏DE-,𝑏FE-𝑡31) + 2Cov(𝑏DE-,𝑏;E-𝑡²31) + 2Cov(𝑏FE-𝑡31 , 𝑏;E-𝑡²31) + 

																										Var(𝜖EG3) 

       = 𝑔DD +	𝑑@DD + 𝑑@FF𝑡²31 + 𝑑@;;𝑡31H + 2𝑑@DF𝑡31 + 2𝑑@D;𝑡²31 + 2𝑑@F;𝑡31I + 𝜎(²76< ∗ 𝑒J
K5!".  

 

                   (equa'on II)   

𝑅=
$ =	 >>?#(𝒀$!"	B𝟏=%D𝒁!"𝑫!"	D	𝟏𝑮!	D	𝜺!")						0				>>?#(𝒀$!"	B𝑿!"𝜷D𝒁!"𝑫!"	D𝟏K!	D	L!")

>>?#(𝒀$!"	B𝟏=%D𝒁!"M!"	D	𝟏𝑮𝒊	D	L!")
 . 

(equa'on III) 



Intra-pa9ent correla9on (IPC) 

The es-mated intra-pa'ent correla'on (IPC) between any two cIMT SDS measurements of 

the same pa-ent i at follow-up -me 𝑡(()) and follow-up -me 𝑡(()D4;	4	O*) is expected to decrease with 

increasing -me k between the two measurements and can be calculated based on the es-mated 

LMM parameters as shown in equa-on IV. 

 

 

 

               (equa'on IV) 

 

 

Post-fit correlations of absolute linear patient-level change per year in imt sds with absolute 

linear patient-level change per year in blood pressure sds within the first 4.5 years of follow-up  

The analysis was conducted to inves-gate if there is a sta-s-cally significant rela-onship between 

es-mated linear absolute rate of change in cIMT SDS with es-mated linear absolute rate of change in 

blood pressure SDS within the first 4.5 years of follow-up. Pa-ent-level absolute change per year is 

derived from the longitudinal linear mixed-effects model (LMM with REML es-ma-on) constructed 

above and es-mated for each of three dependent measures (cIMT SDS, systolic and diastolic BP SDS). 

Subsequently, two linear regression models are performed to test the correla-on between the linear 

absolute change per year in cIMT SDS and either diastolic or systolic BP SDS. 

Absolute change per year for pa-ent i in systolic BP sds and in diastolic BP sds is obtained as (abs.

δ.systolic.sdsi = β1 + b1i | abs.δ.diastolic.sdsi = β1 + b1i) from es-mated parameters of the 

corresponding LMM fiDed to data from pa-ents with stable renal func-on and progressive renal 

failure (see equa-on II). 

Absolute change per year for pa-ent i in imt sds is derived as (abs.δ.imt.sdsi = (last.imt.sdsi − 

first.imt.sdsi)/last.-mei) from predicted values of an LMM elaborated for tes-ng risk factor 

rela-onships with imt sds in pa-ents with stable renal func-on and progressive renal failure (see 

equa-on I in Appendix).  

𝐼𝑃𝐶) (𝑌2() , 𝑌2(()D4;	4O*) = 	
𝐶𝑜𝑣) (𝑌2() 	, 𝑌2(()D4;4O*))

𝑆𝐷)R𝑌2()S ∗ 𝑆𝐷)R𝑌2(()D4;4O*)S
	 

= 

PQ%%	D	RS%%	D	RS%((#!"D#!("*+))	D	RS((#!"#!("*+)	D	RS%-(#²!"D#²!("*+))	D	RS(-(#²!"#!("*+)D#!"#²!("*+))	D	RS--#²!"#²!("*+)	

UV;%W (X$!")	∗	UV;%W (X$!("*+))
 . 

. 

               (equa'on IV) 

 



Predicted outcome and slope es-mate values visualized in Figures S4-S6 are average-aggregated 

values based on repeated LMM fits to each of 20 imputed datasets.  

 

  



Pa-ent-level absolute change per year in cIMT SDS 

 
Figure S4: Deriva-on of absolute and rela-ve change per year in cIMT SDS 

 

Pa-ent-level absolute change per year in systolic blood pressure SDS 

 
Figure S5: Deriva-on of absolute and rela-ve change per year in systolic BP SDS 

 

  



Pa-ent-level absolute changer per year in diastolic blood pressure SDS 

 
Figure S6 Deriva.on of absolute and rela.ve change per year in diastolic BP SDS 
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