Supplementary Materials for "Radiobiological meta-analysis of the response of prostate cancer to high dose rate brachytherapy"

1. Calculation of the EQD2 for different models

The *equivalent dose in 2 Gy fractions*, *EQD2*, of a given schedule is calculated by imposing isoeffectiveness with a 2 Gy/fraction treatment. There is some ambiguity in the calculation of the EQD2 regarding the effects that are included in the computation of the effectiveness of the 2 Gy/fraction treatment. Here, we will follow **[14]** and include *dose effects* (like the moderation of the quadratic term with increasing dose in the LQL model), but will ignore *time effects* (like incomplete repair or proliferation), which would require to assign a given schedule to the 2 Gy/fraction treatment (e.g. weekends off or not). The form of the EQD2 for each model can be calculated analytically as:

LQ model

$$EQD2_{LQ} = \frac{\left(D + \frac{dD}{(\alpha/\beta)} - \left(\frac{\lambda}{\alpha}\right)max(0, T - T_k)\right)}{\left(1 + \frac{2}{(\alpha/\beta)}\right)}$$

If we include the effect of sublethal damage incomplete repair we obtain:

$$EQD2_{LQ,SD} = \frac{\left(D + \frac{dD}{(\alpha/\beta)} + \frac{2 d^2 \sum_{k=1}^{n} \left(\sum_{p=1}^{k-1} \left(\prod_{q=p}^{k-1} \theta_q\right)\right)}{(\alpha/\beta)} - \left(\frac{\lambda}{\alpha}\right) \max\left(0, T - T_k\right)\right)}{\left(1 + \frac{2}{(\alpha/\beta)}\right)}$$

LQL model

$$EQD2_{LQL} = \frac{\left(D + \frac{2\left(\delta d + \exp\left(-\delta d\right) - 1\right)D}{\left(\alpha/\beta\right)d\delta^{2}} - \left(\frac{\lambda}{\alpha}\right)max\left(0, T - T_{k}\right)\right)}{\left(1 + \frac{2\delta + \exp\left(-2\delta\right) - 1}{\left(\alpha/\beta\right)\delta^{2}}\right)}$$

If we include the effect of sublethal damage incomplete repair we obtain:

$$EQD2_{LQL,SD} = \frac{\left(D + \frac{dD(\delta d + \exp(-\delta d) - 1)}{(\alpha/\beta)(\delta d)^2} + \frac{2d^2(\delta d + \exp(-\delta d) - 1)\sum_{k=1}^n \left(\sum_{p=1}^{k-1} \left(\prod_{q=p}^{k-1} \theta_q\right)\right)}{(\alpha/\beta)(\delta d)^2} - \left(\frac{\lambda}{\alpha}\right)\max\left(0, T - T_k\right)\right)} \left(1 + \frac{(2\delta + \exp(\delta d) - 1)}{(\alpha/\beta)\delta^2}\right)$$

Re-oxygenation model

$$EQD2_{S} = \frac{\frac{1}{\alpha_{0}} \left(\sum_{i=1}^{n} \alpha_{i} d_{i} + \sum_{i=1}^{n} \beta_{i} d_{i}^{2} - \lambda max \left(0, T - T_{k} \right) \right)}{1 + \frac{2}{\left(\alpha_{0} / \beta_{0} \right)}}$$

where α_i and β_i refer to the values of α and β at the time $t=t_i$ of delivery of the i-th fraction.

If we include the effect of sublethal damage incomplete repair we obtain:

$$EQD2_{S,SD} = \frac{\frac{1}{\alpha_0} \left(\sum_{i=1}^n \alpha_i d_i + \sum_{i=1}^n \beta_i d_i^2 + 2\sum_{i=1}^n \beta_i d_i \left(\sum_{p=1}^{i-1} d_p \left(\prod_{q=p}^{i-1} \theta_q \right) \right) - \lambda max(0, T - T_k) \right)}{1 + \frac{2}{(\alpha_0 / \beta_0)}}$$

2. Supplementary Tables

Supplementary Table 1: Detailed information of the analyzed schedules for low (LR) and intermediate risk (IR) prostate cancer, including: number of patients (N); dose per fraction (d); number of fractions (n); total dose (D); irradiation schedule derived from the publications, and presented as the time in hours at which each fraction is delivered (for modeling incomplete repair between fractions); overall treatment time (OTT, defined as treatment time - 1 day for modeling proliferation); percentage of patients receiving ADT, control at five years (TCP); and the first author and year of the study.

Risk	Ν	d (Cv)	n	D (Gy)	Schedule (hours)	OTT (aveb)	ADT	TCP	Reference
		(0)				(uays)	(70)	(/0)	
LR	288	7.25	6	43.5	[0 6 24 168 174 192]	8	0.0^{*}	98.7	Hauswald (2015)
LR	19	10.0	3	30.0	[0 6 24]	1	26.3	82.3	Barkati (2012)
LR	198	11.5	3	34.5	[0 504 1008]	42	5.0	96.1	Strouthos (2017)
LR	47 ^a	15.0	3	45.0	[0 480 984]	41 ^e	87.0	96.7	Kukielka (2015)
LR	233	9.5	4	38.0	[0 6 24 30]	1	0.0**	98.0	Jawad (2015)
LR	48	12.0	2	24.0	[0 6]	0	0.0***	92.0	Jawad (2015)
LR	56	13.5	2	27.0	[0 6]	0	0.0+	100.0	Jawad (2015)
LR	44	19.0	1	19.0	[0]	0	34.0	66.0	Prada (2016)
LR	103	9.5	4	38.0	[0 24 30 48]	2	0.0++	99.4	Behmueller (2021)
LR	19	9.5	4	38.0	[0 6 24 30]	1	0.0	89.0	Johansson (2021)
LR	85	11.0	3	33.0	[0 336 672]	27	0.0	99.0	Johansson (2021)
LR	69	14.0	2	28.0	[0 336]	13	0.0	98.0	Johansson (2021)
LR	23	19.0	1	19.0	[0]	0	0.0	84.3	Morton (2020)
LR	16	13.5	2	27.0	[0 168]	7	0.0	99.7	Morton (2020)
LR	196	9.5	4	38.0	[0 6 336 342]	13	3.6	94.0	Tselis (2013)
LR	84 ^b	13.5	2	27.0	[0 6]	0	32.7	96.0	Nagore (2018)
LR	26	7.0	7	49.0	[0 6 24 30 48 54 72]	3	7.7	100.0	Yamazaki (2018)
LR	2	6.0	9	54.0	[0 6 24 30 48 54 72 78 96]	4	0.0	100.0	Yamazaki (2018)
LR	22	20.5	1	20.5	[0]	0	68.2	82.0	Prada (2018)
LR	25°	20.0	1	20.0	[0]	0	0.0	73.5	Levi (2022)
LR	40 ^d	19.0	1	19.0	[0]	0	0.0	73.4	Siddiqui (2019)

*42 patients out of 448 (288 LR and 160 IR) received ADT. Because ADT is most likely prescribed to HR/IR patients, we assumed that 0/288 LR patients received ADT.

^{**} 61 patients out of 319 (233 LR, 86 IR) received ADT. Because ADT is most likely prescribed to HR/IR patients, we assumed that 0/233 LR patients received ADT.

^{***} 4 patients out of 79 (48 LR, 31 IR) received ADT. Because ADT is most likely prescribed to HR/IR patients, we assumed that 0/48 LR patients received ADT.

⁺3 patients out of 96 (56 LR, 40 IR) received ADT. Because ADT is most likely prescribed to HR/IR patients, we assumed that 0/96 LR patients received ADT.

⁺⁺33 patients out of 141 (103 LR, 32 IR, 6 HR) received ADT. Because ADT is most likely prescribed to HR/IR patients, we assumed that 0/103 LR patients received ADT.

^a47 out of 77 patients were LR (61%). Biochemical control (BC) was not specified by risk group, and we assigned the overall BC (96.7%) to the LR group.

^b 84 out of 119 patients were LR (71%). Biochemical control (BC) was not specified by risk group, and we assigned the overall BC (96.0%) to the LR group.

^c 25 out of 33 were LR (76%). Biochemical control (BC) was not specified by risk group, and we assigned the overall BC (73.5%) to the LR group.

^d40 out of 68 patients were LR (59%). Biochemical control (BC) was not specified by risk group, but the study found "No significant difference between low- and intermediate-risk patients". We assigned the overall BC (73.5%) to the LR group.

^e median value

IR	54*	6.50	7	45.5	[0 6 24 30 48 54 72]	3	44.3	93.0	Yoshioka (2016)
IR	160	7.25	6	43.5	[0 6 24 168 174 192]	8	26.3	97.6	Hauswald (2015)
IR	284	6.50	6	39.0	[0 5 24 408 413 432]	18^{+}	16.2	94.4	Rogers (2015)
IR	190**	7.25	6	43.5	[0 6 24 168 174 192]	8	0.0	97.0	Patel (2016)
IR	135	11.50	3	34.5	[0 504 1008]	42	11.9	96.1	Strouthos (2017)
IR	86	9.50	4	38.0	[0 6 24 30]	1	70.9	95.0	Jawad (2015)
IR	31	12.00	2	24.0	[0 6]	0	12.9	81.0	Jawad (2015)
IR	40	13.50	2	27.0	[0 6]	0	7.5	79.0	Jawad (2015)
IR	28	19.50	1	19.5	[0]	0	53.6	94.4	Hoskin (2017)
IR	69	13.00	2	26.0	[0 6]	0	52.2	95.0	Hoskin (2017)
IR	49	10.50	3	31.5	[0 6 24]	1	71.0	94.0	Hoskin (2017)
IR	32	9.50	4	38.0	[0 24 30 48]	2	84.4	97.2	Behmueller (2021)
IR	22	11.00	3	33.0	[0 336 672]	27	0.0	86.0	Johansson (2021)
IR	34	14.00	2	28.0	[0 336]	13	0.0	72.0	Johansson (2021)
IR	64	19.00	1	19.0	[0]	0	0.0	69.9***	Morton (2020)
IR	67	13.50	2	27.0	[0 168]	7	0.0	94.1***	Morton (2020)
IR	81	9.50	4	38.0	[0 6 336 342]	13	23.5	92.0	Tselis (2013)
IR	48	6.50	7	45.5	[0 6 24 30 48 54 72]	3	22.9	89.0	Yamakazi (2018)
IR	52	7.00	7	49.0	[0 6 24 30 48 54 72]	3	96.2	99.6	Yamakazi (2018)
IR	39	6.00	9	54.0	[0 6 24 30 48 54 72 78 96]	4	76.9	97.8	Yamakazi (2018)
IR	34	20.50	1	20.5	[0]	0	14.7	79.0	Prada (2018)
IR	16	19.00	1	19.0	[0]	0	31.3	63.0	Prada (2016)

^{*}62% of the 79 patients were treated with this treatment plan. Other fractionations were employed, but since BC is not specified separately, we assigned the overall BC (93%) to this fractionation.

**83% of the patients received this treatment plan. Other fractionations were employed, but since BC is not specified separately, we assigned the overall BC (93%) to this fractionation.

*** weighted average of the BC for IR favourable group and IR unfavourable group.

⁺ mean value

Supplementary Table 2: 95% confidence intervals of best fitting parameters (α/β , δ) for the LQ and LQL models without incomplete repair correction. Results are separated by risk, low (LR) and intermediate (IR). The values of α/β were not constrained to be low ($1 \le \alpha/\beta \le 100$ Gy). The symbol * indicates that the parameter value reached the edge of the constraint window.

		Parameters			
Risk	Model	α/β [Gy]	δ [Gy ⁻¹]		
	LQ	[27.8, 100*]	-		
LR	LQL	[1*, 100*]	[0*, 1*]		
	LQ	[16.6, 100*]	-		
IR	LQL	[1*, 100*]	[0*, 1*]		