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Abstract

Despite the appeal of screening travelers during emerging infectious disease outbreaks, ev-
idence shows that syndromic and questionnaire-based programs are largely ineffective in pre-
venting or delaying the geographic spread of infection. Molecular tests offer high sensitivity and
specificity, and can detect infections earlier than symptom screening, suggesting potential for
improved outcomes, yet molecular tests were used to screen travelers for COVID-19 with mixed
success. To investigate why screening for COVID-19 was not more successful, and to quan-
tify the limits of screening for other pathogens of concern, we developed a probabilistic model
that incorporates within-host viral kinetics. We then evaluated the potential effectiveness of
screening travelers with molecular tests for influenza A, SARS-CoV-1, SARS-CoV-2, and Ebola
virus. Even under highly optimistic assumptions about behavior and test characteristics, we
find screening effectiveness is always limited because the infections with the highest transmis-
sion potential are undetectable at the time of travel, an idea we term the fundamental limit
of traveler screening. We also demonstrate how estimates of ascertainment are a misleading
substitute for screening effectiveness because they overestimate reductions in transmission at
the destination. Understanding these limitations can guide the deployment of future traveler
screening programs and inform strategies to improve outbreak prevention and control.
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Introduction

Air travel is a major driver of the geographic spread of emerging infectious diseases, directly linked
to the international spread of SARS in 2003, influenza A/H1N1 in 2009, and SARS-CoV-2 in 2020
[1–3] as well as the importation of cases of influenza A/H7N9, MERS-CoV, Ebola, Lassa fever
and Chikungunya [1, 4–6]. Although screening travelers for symptoms of infection may therefore
seem like an intuitive countermeasure, scenario modeling [1, 3, 4, 7, 8] and overwhelming empirical
evidence [9–13] show that syndromic and questionnaire-based screening programs are ineffective.
For example, one modeling study found that even with a theoretical symptom-based test with
perfect sensitivity, fewer than 3%, 9%, 10% and 35% of infected travelers would be detected for
Ebola, SARS-CoV-2, SARS-CoV-1 and influenza, respectively [14].

An infected traveler may be missed by screening for two reasons. First, their infection may be
undetectable at the time they are screened. For instance, syndromic screening will fail to identify
asymptomatic and pre-symptomatic travelers. Second, their infection may be detectable in prin-
ciple, yet missed because of imperfect test sensitivity. For instance, a thermometer may fail to
detect a fever, or a person’s symptoms may differ from those surveyed. Novel rapid molecular tests
appear to address both of these issues, offering high sensitivity and specificity over a long detectable
window with rapid turnaround. These observations lead us to ask whether there are scenarios in
which screening travelers for an infectious disease with a state-of-the-art molecular test could be
effective in preventing or delaying an outbreak at the travelers’ destination.

Unfortunately, empirical evidence is limited. While molecular tests were used for traveler screening
during the COVID-19 pandemic [15, 16], the jurisdictions that most successfully prevented or
delayed transmission of SARS-CoV-2 such as New Zealand, Australia, Hong Kong, and Taiwan
also had strict border controls, post-arrival quarantine measures, widespread testing, or contact
tracing. As a result, it is unclear what role molecular testing of travelers per se played in practice,
and what little evidence we do have (reviewed in [17]) covers only the number of individuals
screening positive, but not programs’ effectiveness or impact on delaying transmission.

In place of empirical data, modeling studies offer various estimates for SARS-CoV-2 in particular.
For example, a PCR test within the 24 hours before departure is predicted to reduce the number
of infectious or pre-infectious travelers by 31% [18], while a PCR test within 3 days of departure
is predicted to reduce the cumulative number of infectious days over the travel period by 36%,
and would identify 88% of actively infectious travellers on the day of the flight [19]. Screening at
airports has been projected to reduce post-arrival transmission risk by 37-47% for rapid diagnostic
tests (RDTs) [20] or 28-50% for PCR or RDTs [21].

Here, in order to understand why molecular tests do not perform better in traveler screening,
despite their high sensitivity, we introduce a probabilistic model that incorporates within-host viral
kinetics to evaluate the effectiveness of screening. To explore how effective traveler screening could
be in different settings and against different pathogens, we apply the model to analyze four example
pathogens: influenza A, SARS-CoV-1, SARS-CoV-2, and Ebola virus. This modeling framework
incorporates variation in individuals’ post-travel transmission potential based on variability in viral
load trajectories and differences in when individuals travel during their infection. It is generalizable
and could be adapted for other pathogens or other testing settings like pre-event screening.
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Figure 1: Model diagram. An example (A) viral load, (B) infectiousness βi(t), and (C) trans-
mission potential Ri(t) for an individual infected traveler i, with travel time t∗ and post-travel
transmission potential Ri(t

∗). There are four possible statuses for infected travelers: (1) not yet
detectable or infectious, (2) detectable and not yet infectious, (3) detectable and infectious, (4)
detectable and no longer infectious. (D) Factors that contribute to variation in Ri(t

∗): Stochastic
realizations of viral load control points (first and last time detectable, peak viral load), when people
may travel [0, D], and the simulated travel time t∗ drawn from ϕi(t), the infection age distribution
among infected travelers.

Results

Model for traveler screening

From a public health perspective, the most important infections for a traveler screening program
to catch are those most likely to infect others during or after travel, and the least important are
those with little to no remaining infectiousness. To incorporate this concept into a mathematical
model, we quantified an individual’s post-travel transmission potential using a simple within-host
viral kinetics model (Fig. 1). We define individual i’s post-travel transmission potential, Ri(t

∗), as
the expected number of secondary infections generated after traveling at time t∗. This approach
accounts for variation in individual reproductive numbers and infection age at time of travel.

We considered two different approaches to quantify traveler screening effectiveness. First, we con-
sidered how many additional infected travel attempts could be tolerated before causing an outbreak
with high probability in screening vs no-screening scenarios (∆N). To calculate ∆N , we used the-
ory from stochastic processes about the long-term probability of extinction to compute the number
of infected travelers required to cause an outbreak with probability p = 0.9. Second, we considered
how much longer it takes for an outbreak of size X to occur at the destination in screening vs
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no-screening scenarios (∆t). To calculate ∆t, we assumed that the number of infected travelers
arriving at the airport followed a Poisson process with mean λ infected travelers per day. We
simulated transmission chains initialized by infected travelers at the destination until X infections
had occurred.

Throughout this work, we intentionally made optimistic assumptions about test performance, as-
suming instantaneous tests results, perfect compliance, and a limit of detection (LOD) equal to
that of RT-PCR (hereafter PCR), the gold standard LOD currently achievable for the diseases
in this study. We assumed 100% sensitivity above the limit of detection. For currently available
technology, these assumptions are unrealistic because there is a tradeoff between sensitivity and
turnaround time: PCR tests do not give instantaneous results and rapid tests are less sensitive [22].
However, these optimistic assumptions allow us to characterize the best-case scenario, and thus the
potential effectiveness of screening programs.

In our comparisons of screening vs no-screening scenarios, we made two additional modeling as-
sumptions. First, we considered screening only at points of exit, rather than paired screening at
points of exit and entry. This is because prior work has found little marginal benefit for an addi-
tional test at points of entry, provided that the screening method is highly sensitive [1, 7]. Second,
we assumed that the outbreak at the departure location is in a phase of exponential growth, an as-
sumption relevant to screening-based containment scenarios, and one which affects the demographic
distribution of infection ages among those attempting travel.

Screening effectiveness to delay transmission

We simulated 5,000 infected travelers for four example pathogens: SARS-CoV-1, SARS-CoV-2,
influenza A, and Ebola. We chose these pathogens because their diverse natural histories probe
distinct areas of the parameter space of our model, and because traveler screening programs have
been implemented for all of them. Then, we ran 20,000 simulations of the traveling process,
sampling new infected travelers arriving at the airport from the 5,000 travelers until an outbreak
was likely triggered (Fig. 2A, B). To calculate the time until an outbreak of size X occurs at the
destination, we considered a plausible scenario for each pathogen. For SARS-CoV-1, SARS-CoV-2,
and influenza A, X = 100 infections and λ = 1 infected traveler attempting travel per day on
average. For Ebola, X = 1 infection and λ = 2 per month. We considered a different scenario
for Ebola because, due to the severity of symptoms, any local transmission would be of concern,
and sustained local transmission is relatively rare so X = 100 is less appropriate. We also expect
the arrival rate of infected travelers to be less frequent because Ebola’s generation interval is much
longer than respiratory pathogens and non-pharmaceutical interventions can usually bring Ebola
transmission under control, or nearly so.

Of the four pathogens we considered, traveler screening is most effective for influenza A. With
screening in place, it takes an average of 15 more infected individuals to attempt travel to trigger
an outbreak in comparison to no screening program (Fig. 2C). In units of time, screening delayed
an influenza A outbreak at the destination by 11.1 days on average (Fig. 2D). However, there is
considerable variation in both of these outcomes, so it is important to consider their distributions
when interpreting these results. One way to understand this variation is to consider the range of
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Figure 2: Screening effectiveness to delay transmission is limited and highly variable.
Histograms of (A) the number of infected travelers to likely trigger an outbreak with (pink) and
without screening (gray) and (B) the time to X infections generated at the destination with (pink)
and without screening (gray) from 20,000 Monte Carlo simulations. X = 100, λ = 1 per day
for SARS-CoV-1, SARS-CoV-2, and influenza A. X = 1, λ = 2 per month for Ebola. (C, D)
Distributions of ∆N and ∆t from 20,000 Monte Carlo simulations (sample mean (pink diamond),
IQR (dark gray) and 95% percentile range (light gray)).

the outcomes, such as the range of the central 50% of simulations (i.e., the interquartile range;
Fig. 2C, D). Another way to understand this variation is to compute the probability that screening
delayed an outbreak by at least x infected travelers or x days. For example, screening delayed an
outbreak by at least one week in 57.6% of simulations for influenza A. See Supp. Table S1 for more
values of x.

Traveler screening was less effective for the other three pathogens. The average ∆N was 0.2, 1.1,
and 2.1 infected travel attempts for SARS-CoV-1, Ebola, and SARS-CoV-2, respectively. Screening
delayed outbreaks by 0.4, 3.5, and 4.8 days on average for SARS-CoV-1, Ebola, and SARS-CoV-2,
respectively (Fig. 2D). Once again, it is important to consider the variation in these outcomes. For
example, although the average value of ∆t for Ebola is around half a week, the ∆t distribution is
highly skewed—in over 50% of simulations, there is no delay at all. Screening delayed an outbreak
by at least a week in 1.4%, 9.3%, and 23.4% of simulations for SARS-CoV-1, Ebola, and SARS-
CoV-2, respectively.
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Figure 3: The effectiveness of screening travelers is fundamentally limited by the gap
between infection and detectability. (A) Individuals are undetectable by molecular testing
when their transmission potential is highest, fundamentally limiting the effectiveness of traveler
screening because infected people may travel during this window. (B) A growing epidemic exac-
erbates this fundamental limit because the infection age distribution among infected travelers is
positively skewed in comparison to a stable epidemic.

Fundamental limit of traveler screening

Ideally traveler screening would prevent an outbreak at the destination, or delay transmission
long enough to enable some public health activation. However, even for influenza A, which had
the most effective traveler screening programs on average, individual trial results varied greatly,
and sometimes screening did not delay transmission at all (Fig. 2C, D). Why is screening not
more reliably effective, especially under highly optimistic assumptions about detectability and test
sensitivity?

To answer this question, we observe that, for any test or pathogen, there always exists a gap
between when someone is infected and first detectable. This implies that there is a window of time
when an infected individual may travel and is undetectable at the airport. Crucially, travelers who
are missed by screening during this window have all of their transmission potential remaining (Fig.
3A). Thus, the travelers with the most transmission potential are impossible to catch.

To quantify how this window of time limits traveler screening effectiveness, we calculated the
expected proportion of transmission potential that is detectable by screening,

1−
E[

∫ t1
0 Ri(t)ϕi(t)dt]

E[
∫ ω
0 Ri(t)ϕi(t)dt]

, (1)

for all individuals i with transmission potential. Using the notation from Fig. 1, t1 is the time
i is first detectable, and ω is the time i is either no longer infectious or no longer able to travel
(ω = min(t3, D)). The infection age distribution among infected travelers, ϕi(t), is a mixture of
the infection age distribution and the propensity to travel at a particular age.

We found that, during a growing epidemic, only 2.8%, 9.7%, 40.2% and 59.8% of transmission
potential is expected to be detectable by traveler screening via molecular test for SARS-CoV-1,
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Ebola, SARS-CoV-2, and influenza A, respectively. Our estimate for SARS-CoV-2 is comparable to
other modeling studies that found testing reduced post-arrival transmission risk by 29–53% [20, 21].

Expression 1 represents a fundamental limit to the effectiveness of traveler screening. Because
of the gap between infection and detectability, the fraction in Expression 1 is always positive.
Consequently, traveler screening alone can never eliminate the risk of local transmission at the travel
destination. Furthermore, during a growing epidemic, most of the infected traveling population
would travel during this early window of undetectability coincides (Fig. 3B), exacerbating the
consequence of this fundamental limit.

Ascertainment overestimates transmission reduction

Although difficult to measure in practice, a common approach in modeling studies to evaluate
the effectiveness of a screening program is to estimate ascertainment, the percentage of infections
detected out of all the infections screened. Out of the 5,000 simulated travelers, we found that
ascertainment is extremely low for SARS-CoV-1 and Ebola (3.1% and 10.5%, respectively), and
better but still imperfect for SARS-CoV-2 and influenza A (47.8% and 70.9%, respectively). Of
note, ascertainment is unaffected by test turnaround time, allowing us to compare our estimate
of SARS-CoV-2 ascertainment to an empirical estimate from testing at U.S. airports during 2022
(52%) [23], a difference of just 4.2 percentage points.

The ascertainment rate is a misleading substitute for screening effectiveness because it overestimates
reductions in transmission at the destination. This is because the typical undetected traveler has
a greater post-travel transmission potential than the typical detected traveler, a consequence of
the fundamental limit of traveler screening. We found that the average Ri(t

∗) among undetected
travelers is 2.6, 1.8, 2.5, and 1.2 for SARS-CoV-1, Ebola, SARS-CoV-2, and influenza A, respec-
tively, while for detectable travelers, it is 2.8, 1.7, 1.8, and 0.8. This pattern occurs because many
of the detected infected travelers are near the end of their course of infection and have little to
no transmission potential (Supp. Fig. S1). Moreover, for all four pathogens, the percent of post-
travel transmission potential that is detectable by screening is always less than the corresponding
ascertainment rate.

Sensitivity Analysis

The effectiveness of traveler screening is always limited by the amount of time people are infected
before they are detectable. How variable is such imperfect screening effectiveness across different
epidemic scenarios, test characteristics, infectiousness profiles, and traveling behaviors?

Across various epidemic scenarios (λ = {1 per day, 1 per week, 2 per month}, X = {1, 10, 100}
infections), we intuitively found that screening delays outbreaks for longer when infected people
travel less frequently or when the outbreak threshold is larger (Supp. Figs. S2, S3, S4, and S5).
However, even in the best case scenario (λ = 2 per month, X = 100), ∆t remains highly variable.
For example, in this scenario, the average delay to 100 influenza A infections is 95.8 days, yet ∆t is
less than one week in 38.9% of simulations (Supp. Fig. S2). We found negligible differences in ∆N

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.11.24310291doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.11.24310291
http://creativecommons.org/licenses/by-nc-nd/4.0/


and ∆t when modeling the rate at which infected people attempt travel as either a homogeneous
or non-homogeneous Poisson process as in [7].

Infectious thresholds are estimated in the literature for SARS-CoV-2 and influenza A (Table S2)
but not for SARS-CoV-1 or Ebola. For these pathogens, we chose infectious thresholds so the
distributions of Ri(0) are similar to the gamma distribution with mean R0 and dispersion parameter
k [24] and ran sensitivity analyses with thresholds 10× larger and 10× smaller. A lower infectious
threshold decreases the amount of time it takes to generate X infections at the destination because
more infected travelers have post-travel transmission potential (Supp. Fig. S6). However, the change
in the average ∆N and ∆t due to different infectious thresholds was at most 1 person or 2.4 days
(Supp. Figs. S7, S8, S9, and S10).

Finally, we assumed the probability an individual travels is uniform from infection to viral clearance
for SARS-CoV-2 and influenza A. For SARS-CoV-1 and Ebola, we assumed symptoms prevent
travel, limiting travel from infection to the time of hospitalization. If symptom severity did not
impede travel for these pathogens, screening would be more effective because travelers are more
likely to be detectable. Under these assumptions, the mean ∆t increased from 3.5 to 7.9 days for
Ebola, (Supp. Fig. S11) and from 0.5 to 3.8 days for SARS-CoV-1 (Supp. Fig. S12).

Discussion

This study modeled the potential effectiveness of traveler screening programs with highly sensitive
molecular diagnostics to delay transmission at the destination. Overall, we found that screen-
ing effectiveness is generally quite limited, or at best, highly variable. Of the four pathogens we
considered, traveler screening was most effective for influenza A, but even under our optimistic
assumptions about test performance, over 40% of post-travel transmission potential is not pre-
ventable by screening. This limitation is exemplified by what we refer to as the fundamental limit
of traveler screening. The idea is simple: the effectiveness of traveler screening programs will always
be limited because, for every diagnostic test and pathogen, the newest infections with the most
remaining transmission potential are impossible to catch. Even with state-of-the-art tests where
people are detectable before they are infectious, there is a window of time after the infection event
when individuals are not yet detectable and may travel, and their infectious period will not begin
until they are at the destination.

The consequences of this fundamental limit are exacerbated during a growing epidemic, precisely
when traveler screening programs would likely be implemented, because infections are more likely
to be recent. This fact reinforces the idea that any post-screening countermeasures such as ar-
rival quarantines should be sized and scoped for the full duration of when infections are likely
undetectable [21], or in the case of syndromic screening, the full incubation period [14].

The fundamental limit can help us understand when traveler screening programs are more likely
to be effective. The best case scenario for screening would involve a pathogen such that people are
detectable very quickly after infected (ideally within hours [14]) or, if individuals are undetectable
for a long period of time, they have low post-travel transmission potential (i.e., t1 and Ri(t) are
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negatively correlated). Additionally, screening is more likely to be effective if transmission is highly
dispersed simply because most individuals who are missed by screening are unlikely to infect others
[24]. Importantly, this notion of controllability differs from that of Fraser et. al. [25] and Middleton
and Larremore [26], because effective control of community transmission requires that detectability
precede infectiousness. While this requirement is necessary for effective traveler screening, it is not
sufficient. One also needs there to be no undetectable window after exposure.

While molecular tests are typically more sensitive than syndromic screening, they are not always
superior for traveler screening. For example, we found traveler screening via molecular tests is
extremely ineffective for SARS-CoV-1, even though it is considered a controllable pathogen [25].
This discrepancy is due to symptom onset occurring before infectiousness and typically before
detectability by PCR. In the initial days post symptom-onset, 50-80% of infections are negative by
PCR with nasopharyngeal aspirate samples [27–32], possibly because viral replication starts in the
lower respiratory tract [27]. Thus, effective screening depends on the natural history of the disease.

This work assumes the goal of traveler screening is to delay or prevent local transmission at the des-
tination, yet screening may also be used for general surveillance, sequencing, and public awareness
of an ongoing outbreak. For example, in Venezuela in 2021, the introduction of the SARS-CoV-2
Omicron variant was rapidly detected in samples from airport screening [33]. Our work cautions
that measurements of prevalence among travelers are likely to be poor, even with a state-of-the-art
test, yet could be corrected using our model’s ascertainment estimates.

Our findings are subject to a number of limitations. First, the exact effectiveness of screening
programs will depend on whether our model truly captures viral kinetics and infectiousness profiles.
The data available to parameterize viral load trajectories vary widely in quality and quantity. For
example, the distributions of control points for the viral load function are well characterized for
SARS-CoV-2, but meager or nonexistent for other pathogens. In these cases, we used the best
estimates available or extrapolated plausible ranges from other available information like the percent
of PCR positivity upon hospitalization (Table S2). Additionally, while the use of log viral load as a
proxy for infectiousness is supported in the literature (SARS-CoV-1 [25, 34], SARS-CoV-2 [35, 36],
Ebola [37], influenza A [38]), other relationships between viral load and infectiousness [22, 39], or
other proxies for infectiousness [40, 41], are possible.

Another limitation of this model is that the simplistic model of βi(t) assumes that all variation in
individuals’ transmission potential is due to their viral load, and not differences in social contacts
or behavior. This model also excludes other modes of transmission like post-mortem transmission
that is known to be an important driver in the spread of Ebola. Improved characterization of
individual viral load trajectories, and how they relate to infectiousness, symptoms and behavior,
would greatly improve the impact and value of this, and other [22, 26, 42], modeling studies.
Moreover, while the simple triangular model of βi(t) is used in other modeling studies [26, 43],
the modeling framework is flexible and more sophisticated functional forms of βi(t) could capture
time-varying contact patterns or behavior.

We assumed tests have a highly sensitive PCR limit of detection, around 102.6 copies of RNA/mL
(Table S2). One way to improve screening effectiveness would be to design tests with a lower limit
of detection so individuals are detectable earlier. Lower PCR limits of detection are physically
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possible, for example by using more sensitive PCR enzymes or optimizing the PCR conditions,
but reliability at lower thresholds is challenging. In practice, any operational delays in sample-
to-answer times would substantially lower screening effectiveness, so our results, which assumed
instantaneous results, represent an upper bound on the potential effectiveness of traveler screening.

More broadly, our work is situated within a family of research that uses mathematical modeling to
evaluate different testing scenarios. Other areas that our modeling framework could easily extend
to include pre-event testing [20, 42], screening in combination with other interventions such as
quarantine and/or contact tracing [3, 18, 19, 21], and combining multiple screening methods such
as fever screening and health questionnaires with molecular testing [1, 4].

Traveler screening programs are typically expensive and resource intensive to implement. Our
results suggest that, while traveler screening may delay an outbreak at the destination, combining
traveler screening with other interventions is necessary to more consistently delay, or ideally prevent,
an outbreak post-travel. Unfortunately, screening travelers with more sophisticated rapid molecular
diagnostics will not be as effective as hoped at delaying transmission because the travelers with the
highest transmission potential are likely impossible to detect.
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Methods

Approximation of Ri(t)

Let βi(t) be the infectiousness of a single individual i at time t during their course of infection.
We assume that βi(t) reflects infectiousness and an average over typical behavior in the absence of
interventions. Mathematically,

Ri(t) =

∫ ∞

t
βi(t̃)dt̃, (2)

where Ri(t) is the expected number of secondary infections i will generate after time t. Here,
Ri(0) is i’s individual reproductive number and the population-level basic reproductive number
R0 = E[Ri(0)]. The individual reproductive number is also commonly referred to as ν [24] or
simply Ri. Ri(t) is a monotonically decreasing function, which is biologically realistic: the number
of expected secondary transmission events ahead in time decreases as an individual’s infection
progresses (Fig. 1C).

To compute Ri(t), we approximate βi(t) using a simple within-host viral kinetics model with an
infectious threshold as a proxy for infectiousness over time (Fig. 1A, 1B). The within-host model
assumes there is a period after infection where the virus is undetectable, and then a proliferation
phase of exponential growth followed by a clearance phase of exponential decay. This type of
log-linear proliferation and clearance model, sometimes referred to as a hinge or tent function, is
commonly used to describe the proliferation and clearance phase of viral infection [22, 26, 42, 44, 45].
We assume there is an infectious threshold such that infectiousness is proportional to log viral loads
above this threshold.

For SARS-CoV-2 and influenza A, we found estimates for the infectious threshold in the literature
(Table S2). For SARS-CoV-1 and Ebola, we estimated infectious thresholds to result in distribu-
tions of Ri(0) similar to the gamma distribution with mean R0 and dispersion parameter k, a typical
choice for the distribution of individual reproductive numbers [24]. Fitting the infectious threshold
directly to the gamma distribution would assume that all the variation in individual reproductive
numbers is due to differences in viral loads. However, we know that other factors contribute to dif-
ferences in individual reproductive numbers so we would not expect the distribution of Ri(0) from
the viral load model to identically match the distribution of Ri(0) fit to contact tracing data. We
checked how sensitive our results were to the infectious threshold value in the sensitivity analyses
(Supp. Fig. S6, S7, S8, S9, S10).

Simulations

Each simulated infected traveller is assigned a time they are first and last detectable by a molecular
test with a PCR limit of detection, a time and magnitude of peak viral load, and a time of hospi-
talization (for SARS-CoV-1 and Ebola) sampled from the distributions in Table S2. Some of these
distributions are hard to estimate in practice so the distributions used were optimistic estimates, in
terms of potential screening effectiveness, informed by existing literature when well-characterized
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distributions were not available (Described further in the Supp. Materials). Individuals’ travel
times t∗ are sampled from the infected travelers’ infection age distribution ϕ(t) using the inverse
CDF method. With these parameters, we compute individuals’ Ri(t

∗) and screening result at the
time of travel.

For each individual, we simulate their contribution to infection at the destination using a branching
process in which the offspring distribution of the first generation is a Poisson distribution with
λ = Ri(t

∗), and for subsequent generations, a Negative binomial distribution with mean R0 and a
disease-specific dispersion parameter k [24]. If i is not detected, the simulated branching processes
are identical with and without screening. This approach of comparing counterfactual scenarios
ensures our results reflect the impact of screening alone and not the stochasticity of transmission.

Number required to likely trigger an outbreak

Following Clifford et. al. [7], we can estimate the long-term probability of disease extinction s0,
for a negative binomial offspring distribution with mean R0 and dispersion parameter k, from the
implicit equation

s0 =

(
1 +

R0

k
(1− s0)

)−k

.

Let si be the long-term probability of disease extinction in a population where the first generation
of infections is caused by infected traveler i with transmission potential Ri(t

∗), with offspring
distribution Poisson(Ri(t

∗)), and each subsequent generation follows NegBinom(R0, k). Then,

si =IP(Z = 0) + IP(Z = 1) · s0 + IP(Z = 2) · s20 + IP(Z = 3) · s30 + ...

=e−Ri(t
∗) +Ri(t

∗)e−Ri(t
∗)s0 +

Ri(t
∗)2

2!
e−Ri(t

∗)s20 +
Ri(t

∗)3

3!
e−Ri(t

∗)s30 + ...

=e−Ri(t
∗)(1−s0).

As in [7], the probability that infected traveler i causes an outbreak at the destination is qi = 1−si.

To calculate N , the number of infected travelers required to trigger an outbreak, we know that the
first N−1 travelers did not cause an outbreak. If qi = q for all infected travelers, X ∼ geometric(q)
so

P (X ≤ k) = 1− (1− q)k.

However, since qi is dependent on an individual’s Ri(t
∗), qi is a random variable so

P (X ≤ n) = 1− (1− q1)(1− q2)...(1− qn)
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for n infected travelers. For each run of our model simulation, we can use this equation to compute
the number of infected travelers N required to cause an outbreak with probability p. For our
analyses, we set p = 0.9.

Time to X infections generated at the destination

To compute this outcome via simulation, we first generate an arrival time for an infected traveler
and simulate any transmission chains they generated using the distributions described above. We
store the first X subsequent cases and the timing of infection using the pathogen-specific generation
interval. Then, we generate the arrival time of the next infected traveler. If this infected traveler
arrived before the last stored case, or the number of cases at the destination is less thanX, we repeat
these steps until the requirements have been met. The output, time to X infections generated at
the destination is the time of the Xth infection.

Infected travelers’ infection age distribution

We assume traveler screening programs would be implemented at the beginning of an emerging
infectious disease outbreak when infections are growing exponentially. So, as previously described
in [1], the probability that an infected traveler has infection age t at the time of travel is

ϕ(t) =


R0
D

e
−R0
D

t

1−e−R0
, t ∈ [0, D]

0, t > D

where D is the duration of infection in which an infected individual is assumed to travel. If the
disease does not prevent someone from traveling, D is the time from infection to viral clearance. If
symptoms prevent an individual from traveling, we assume D is the average time from infection to
hospitalization.

The corresponding CDF is the probability that an infected traveler was infected less than or equal
to t days before travel,

F (t) =

1−e
−R0
D

t

1−e−R0
, t ∈ [0, D]

0, t > D.
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Supplemental Materials

Viral load parameterization

Table S2 contains all of the parameter values and distributions used to simulate infected travelers
for each pathogen. For each parameter that is treated as a random variable, we used the reported
distribution when reported in the literature. If we could not find a reported distribution, we
used a truncated normal when a mean and standard deviation were reported, truncated either
at the lowest and highest reported values or within a reasonable range that captured the vast
majority of measurements. If mean and SD were not reported, then we used a uniform distribution
within a reasonable range that captured the vast majority of measurements. We used the serial
interval as an approximation for the generation interval when generation interval estimates were
not available. Examples of 100 simulated viral load trajectories for these four pathogens are shown
in Supp. Fig. S13. We chose the lowest reported PCR limit of detection, since this corresponds to
a best case scenario for testing. Below we elaborate on specific assumptions and rationale for each
pathogen.

SARS-CoV-1

We assumed that all the cases are hospitalized. This is appropriate because hospitalization rates
for symptomatic SARS-CoV-1 were high and, while estimates of asymptomatic infections vary from
0.1% [46] to 13% [47], there is no known transmission from asymptomatic patients so we do not
consider them in our analyses [47]. We chose the distribution uniform(0,9) days post symptom
onset as an optimistic guess for the time first detectable by PCR. This range was chosen based off
data that reported 50-80% did not test positive via PCR in initial days post symptom onset [27–32],
>50% were positive by day 6-7 [28, 29], and >95% are PCR positive by day 10 [32]. Although
not necessary for the model, we also parameterized individuals’ time of symptom onset since other
parameters were measured in units of the time since symptom onset.

SARS-CoV-2

We parameterized the model for the ancestral strain of SARS-CoV-2. Many of the parameters
needed for our model are well characterized by Kissler et. al. [42]. We did not distinguish between
symptomatic and asymptomatic cases, nor did we include hospitalization.

Influenza A

The majority of references reported data from influenza H1N1 subtype, a few from influenza H3N2,
and some simply referenced influenza A without specifying the subtype. We did not distinguish
between symptomatic and asymptomatic cases, nor did we include hospitalization.
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Ebola

For Ebola, higher viral load is correlated with mortality [48]. We parameterized the model for non-
fatal cases assuming they would be more likely to travel and assumed all such cases are hospitalized.
Although not necessary for the model, we parameterized individuals’ time of dry and wet symptom
onset since other parameters were measured in units of the time since symptom onset. Note that
the model parameters are not as well characterized for Ebola as other pathogens, possibly because
the incubation and infectious periods are highly variable [49].

Our model of infectiousness implicitly assumes that we are only considering direct transmission via
fomites, droplets, or aerosols [50], and not post-mortem transmission. Thus, we did not consider
asymptomatic cases because they would not have transmission potential, and asymptomatic cases
are rare [51].

We chose the distribution uniform(0, 3) days post onset of dry symptoms as an optimistic guess
for the time first detectable by PCR. This range implies that individuals are sometimes detectable
when they have dry symptoms, and everyone is detectable by the time their symptoms progress
to wet symptoms. This was informed by the notion that there is no evidence that infected people
are viremic before symptom onset, but some are PCR positive on the day of illness onset [52].
Additionally, most are detectable by the time they are hospitalized (87% [53]).

Note that viral load measurements are measured in mL of serum. This is appropriate for our model,
since RDTs that could potentially be used for airport screening can collect a blood sample through
a finger prick [54].
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IP(∆N ≥ x) IP(∆t ≥ x)

x 7 days 14 days 21 days 1 person 10 people 20 people

SARS-CoV-1 0.014 0.001 0 0.055 0.001 0

SARS-CoV-2 0.234 0.037 0.004 0.567 0.026 0

Influenza A 0.576 0.289 0.149 0.998 0.728 0.248

Ebola 0.093 0.078 0.061 0.350 0.006 0

Table S1: Examples of the complementary CDF IP(X ≥ x) for screening effectiveness
∆N and ∆t. For ∆t, we used the same scenarios as the main text where X = 100, λ = 1 for
SARS-Cov-1, SARS-CoV-2 and influenza A, and X = 1, λ = 1/14 for Ebola.

Figure S1: Traveler screening programs decrease the number of infected travelers reach-
ing the destination, but the average imported case has more transmission potential
than without screening. Histograms of simulated infected travelers’ transmission potential at
the destination, Ri(t

∗), with all 5,000 travelers shown in gray and undetectable travelers in teal.
Vertical arrows indicate the mean of each distribution. The means overlap for SARS-CoV-1 and
Ebola. Ascertainment rates are reported in each upper right corner.
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Pathogen Parameter Value/Distribution Units Source

SARS-CoV-1

time first detectable Unif(0,9) days from SO [27–32]
time of peak VL Unif(7, 14) days from SO [28, 32, 34, 55]
time last detectable Unif(18, 28) days from SO [28, 29, 32]
PCR LOD 2.6 log10 copies/mL [56]
infectious threshold 6.5 log10 copies/mL See Methods
peak VL Unif(5.8, 8.5) log10 copies/mL [32, 57–59]
time to symptoms Unif(2,10) days from infection [60, 61]

time to hospitalization
Trunc. normal (µ = 2.9,
σ = 2.6, a = −1, b = 9)

days from SO [60]

R0 2.55 / [24]
k 0.21 / [24]
generation interval 8.4 days [62]

SARS-CoV-2

(ancestral)

time first detectable Unif(2.6, 3.8) days since infection [63]
time of peak VL Γ(shape=2.3, rate=0.7) days from first detect. [42]
time last detectable Γ(shape=2.4, rate=0.3) days from peak [42]
PCR LOD 40 CT [42]
infectious threshold 5 log10 copies/mL [42, 64]
peak VL Normal(µ = 22.3, σ = 4.2) CT [42]
R0 2.8 / [65]
k 0.55 / [66]
generation interval 5.9 days [67]

Influenza A

time first detectable Unif(0.5, 1.5) days from infection [68, 69]
time of peak VL Unif(1, 3) days from first detect. [68–70]
time last detectable Unif(2, 3) days from peak [68–70]
PCR LOD 2.95 log10 copies/mL [70]
infectious threshold 4 log10 copies/mL [38]
peak VL Unif(6, 8.5) log10 copies/mL [70]
R0 1.26 / [71]
k 2.36 / [71]
generation interval 2.6 days [72]

Ebola

time first detectable Unif(0, 3) days from SO [73–75]
time of peak VL Unif(3, 6) days from SO [76–79]

time last detectable
Trunc. normal(µ = 12.7,
σ = 3.8, a = 9, b = 16.5)

days from SO [76]

PCR LOD 2.7 log10 copies/mL [78]
infectious threshold 7 log10 copies/mL See Methods
peak VL Unif(6.5, 9.2) log10 copies/mL [76, 77, 79]
time to dry symptoms Unif(5, 13) days from infection [80, 81]
time to wet symptoms Unif(3, 5) days from SO [74]

time to hospitalization
Trunc. normal(µ = 4.5,
σ = 2.5, a = 2, b = 7)

days from SO [76]

R0 1.8 / [82–84]
k 0.18 / [84]
generation interval 13 days [81]

Table S2: Model parameters. Values or distributions used for each pathogen-specific parameter.
SO stands for symptom onset.
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Figure S2: Screening effectiveness for influenza A. The number of infected travelers required to
attempt travel to likely generate an outbreak with and without screening (N ′ and N0, respectively),
and the time to X infections generated at the destination for a range of X with and without
screening (t′ and t0, respectively), and screening effectiveness ∆N = N ′ −N0 and ∆t = t′ − t0 for
a range of scenarios. The gray row is the plausible example reported in the Main Text.

Figure S3: Screening effectiveness for SARS-CoV-2. The number of infected travelers re-
quired to attempt travel to likely generate an outbreak with and without screening (N ′ and N0,
respectively), and the time to X infections generated at the destination for a range of X with
and without screening (t′ and t0, respectively), and screening effectiveness ∆N = N ′ − N0 and
∆t = t′ − t0 for a range of scenarios. The gray row is the plausible example reported in the Main
Text.
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Figure S4: Screening effectiveness for Ebola. The number of infected travelers required to
attempt travel to likely generate an outbreak with and without screening (N ′ and N0, respectively),
and the time to X infections generated at the destination for a range of X with and without
screening (t′ and t0, respectively), and screening effectiveness ∆N = N ′ −N0 and ∆t = t′ − t0 for
a range of scenarios. The gray row is the plausible example reported in the Main Text.

Figure S5: Screening effectiveness for SARS-CoV-1. The number of infected travelers re-
quired to attempt travel to likely generate an outbreak with and without screening (N ′ and N0,
respectively), and the time to X infections generated at the destination for a range of X with
and without screening (t′ and t0, respectively), and screening effectiveness ∆N = N ′ − N0 and
∆t = t′ − t0 for a range of scenarios. The gray row is the plausible example reported in the Main
Text.
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Figure S6: Different approaches to calculate the individual reproductive number Ri(0)
result in important differences in the population-level distributions of Ri(0). (A, C, E,
G) Distribution of the individual reproductive number Ri(0) sampled from a gamma distribution
with mean R0 and dispersion parameter k. (B, D, F, H) Distribution of Ri(0) from the within-host
viral kinetics model with various infectious thresholds.
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Figure S7: Screening effectiveness for Ebola with a lower infectious threshold. The num-
ber of infected travelers required to attempt travel to likely generate an outbreak with and without
screening (N ′ and N0, respectively), and the time to X infections generated at the destination
for a range of X with and without screening (t′ and t0, respectively), and screening effectiveness
∆N = N ′ −N0 and ∆t = t′ − t0 for a range of scenarios. The infectious threshold is 6 log10 copies
RNA/mL. An infectious threshold of 7 log10 copies RNA/mL was used in the Main Text.

Figure S8: Screening effectiveness for Ebola with a higher infectious threshold. The num-
ber of infected travelers required to attempt travel to likely generate an outbreak with and without
screening (N ′ and N0, respectively), and the time to X infections generated at the destination
for a range of X with and without screening (t′ and t0, respectively), and screening effectiveness
∆N = N ′ −N0 and ∆t = t′ − t0 for a range of scenarios. The infectious threshold is 8 log10 copies
RNA/mL. An infectious threshold of 7 log10 copies RNA/mL was used in the Main Text.
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Figure S9: Screening effectiveness for SARS-CoV-1 with a lower infectious threshold.
The number of infected travelers required to attempt travel to likely generate an outbreak with
and without screening (N ′ and N0, respectively), and the time to X infections generated at the
destination for a range of X with and without screening (t′ and t0, respectively), and screening
effectiveness ∆N = N ′ −N0 and ∆t = t′ − t0 for a range of scenarios. The infectious threshold is
5.5 log10 copies RNA/mL. An infectious threshold of 6.5 log10 copies RNA/mL was used in the
Main Text.

Figure S10: Screening effectiveness for SARS-CoV-1 with a higher infectious threshold.
The number of infected travelers required to attempt travel to likely generate an outbreak with
and without screening (N ′ and N0, respectively), and the time to X infections generated at the
destination for a range of X with and without screening (t′ and t0, respectively), and screening
effectiveness ∆N = N ′ −N0 and ∆t = t′ − t0 for a range of scenarios. The infectious threshold is
7.5 log10 copies RNA/mL. An infectious threshold of 6.5 log10 copies RNA/mL was used in the
Main Text.
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Figure S11: Screening effectiveness ∆N and ∆t for Ebola assuming people travel until
viral clearance. The number of infected travelers required to attempt travel to likely generate
an outbreak with and without screening (N ′ and N0, respectively), and the time to X infections
generated at the destination for a range of X with and without screening (t′ and t0, respectively),
and screening effectiveness ∆N = N ′ −N0 and ∆t = t′ − t0 for a range of scenarios. In the Main
Text, we assumed people traveled up until the time they hospitalized.

Figure S12: Screening effectiveness ∆N and ∆t for SARS-CoV-1 assuming people travel
until viral clearance. The number of infected travelers required to attempt travel to likely
generate an outbreak with and without screening (N ′ and N0, respectively), and the time to X
infections generated at the destination for a range of X with and without screening (t′ and t0,
respectively), and screening effectiveness ∆N = N ′ −N0 and ∆t = t′ − t0 for a range of scenarios.
In the Main Text, we assumed people traveled up until the time they hospitalized.
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Figure S13: Simulated viral load trajectories for SARS-CoV-1, Ebola, SARS-CoV-2 and
influenza A. 100 stochastically drawn viral load trajectories for SARS-CoV-1, Ebola, SARS-CoV-
2, and influenza A, using the control points and parameter values in Table S2.
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