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ABSTRACT 

Interictal high-frequency oscillation (HFO) is a promising biomarker of the epileptogenic zone (EZ). However, 

objective definitions to distinguish between pathological and physiological HFOs have remained elusive, 

impeding HFOs' clinical applications. We employed self-supervised deep generative variational autoencoders to 

learn such discriminative HFO features directly from their morphologies in a data-driven manner. We studied a 

large retrospective cohort of 185 patients who underwent intracranial monitoring and analyzed 686,410 candidate 

HFO events collected from 18,265 brain contacts across diverse brain regions. The model automatically clustered 

HFOs into distinct morphological groups in the latent space. One cluster consisted of putative morphologically 

defined pathological HFOs (mpHFOs): HFOs in that cluster were observed to be associated with spikes and 

exhibited high signal intensity both in the HFO band (>80 Hz) at detection and in the sub-HFO band (10-80 Hz) 

surrounding the detection and were primarily localized in the seizure onset zone (SOZ). Moreover, resection of 

brain regions based on a higher prevalence of interictal mpHFOs better predicted postoperative seizure outcomes 

than current clinical standards based on SOZ removal. Our self-supervised, explainable, deep generative model 

distills pathological HFOs and thus potentially helps delineate the EZ purely from interictal intracranial EEG data. 

 

Key words: HFO, pathological HFOs, artificial intelligence, unsupervised learning, machine learning 

 

Abbreviations: HFOs: high-frequency oscillations. EEG: electroencephalogram. mpHFOs: morphologically 

defined pathological HFOs. SOZ: seizure onset zone. EZ: epileptogenic zone. iEEG: intracranial EEG. SEEG: 

stereotactic EEG. DL: deep learning. VAE: variational autoencoder. mArtifacts: Artifacts defined based on 

morphological analysis using the VAE model. spkHFOs: HFOs with spikes. non-spkHFOs: HFOs without spikes. 

HS: hippocampal sclerosis. FCD: focal cortical dysplasia. t-SNE: t-distributed stochastic neighbor embedding. 

ROIs: regions of interest. AUC: area under the curve. CT: computed tomography. MRI: magnetic resonance 

imaging. RMS: root mean square. SD: standard deviation. STE: short-term energy. 
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INTRODUCTION 

Over a third of people with epilepsy do not respond to medication, thereby becoming potential candidates 

for epilepsy surgery.1 Presently, surgical plans are mainly informed by neuroimaging and electroencephalogram 

(EEG), including interictal spikes and the seizure onset zone (SOZ). Nonetheless, the success rate of surgical 

intervention in achieving seizure freedom is less than ideal, varying between 50% and 75%.2,3 Discovering a 

biomarker that can precisely define the boundaries of the epileptogenic zone (EZ: the brain regions responsible for 

generating seizures) would be a significant breakthrough. Epilepsy studies in both humans and animals have 

indicated that interictal high-frequency oscillations (HFOs) in intracranial EEG (iEEG) is a promising spatial 

biomarker for delineating the EZ.4-7 Numerous retrospective studies have shown a correlation between the 

excision of brain areas generating HFOs and postoperative seizure freedom.8-11  

A fundamental challenge arises because HFOs with similar frequency ranges appear despite significantly different 

mechanisms: pathological HFOs and physiological HFOs.12 Pathological HFOs are conceptually associated with 

epileptogenesis, occurs exclusively in epileptogenic brain regions. Physiological HFOs are related to cognitive 

and sensorimotor function and occur in healthy brain regions.13 Indeed, it has been shown that sparing brain 

regions with physiological HFOs from resection can result in seizure freedom.14-17 A recent clinical trial 

investigating the effect of HFO-guided intraoperative resective surgery excluded patients with occipital lobe 

epilepsy from the study due to the concern of abundant physiological HFOs in the visual cortex.18 Hence, using 

HFOs as a spatial biomarker for directing epilepsy surgery requires developing a method to distinguish between 

pathological and physiological HFOs. The resection of brain regions generating pathological HFOs would be 

associated with favorable postoperative seizure outcomes. Studies have shown pathological HFOs generated by 

abnormal synchronous burst firing are morphologically distinct from physiological HFOs generated by inhibitory 

synchronous postsynaptic potentials when recorded with research microelectrodes.12,13 However, typical iEEG 

signals are recorded using clinical macro electrodes, and algorithms to characterize such morphological 

differences based on conventional signal processing have proven insufficient.19,20  

Supervised machine learning approaches, especially deep learning (DL), have proven effective when 

human annotators accurately label large-scale datasets. DL models can learn complex patterns representative of 

labeled categories and then perform automated classification on unseen signals and images, leading to significant 

advances in medical imaging applications.21,22 If such frameworks are used to classify pathological HFOs, 

certified experts would be required to label large repositories of HFOs from diverse groups of patients accurately 

and consistently. However, accurately annotating pathological HFOs is difficult because there is no consensus on 

what constitutes pathological HFOs. Our recent studies have shown that instead of expert labels, clinical evidence 

from a channel's resection status, postoperative seizure outcomes, or functional brain mapping results can be used 
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to design a weakly supervised framework that yields relatively accurate labels for a small cohort size, as verified 

by retrospective postoperative seizure outcome prediction.23,24 Since these labels are still noisy—not all identified 

HFOs in resected areas or the SOZ are necessarily pathological—extending such a weakly supervised approach to 

ensure surgical outcomes for unseen patients would require a much larger patient cohort with postoperative 

outcomes. However, this approach faces challenges: first, an increasingly significant percentage of patients are 

being recorded through stereotactic EEG (SEEG) for diagnostic purposes or neuromodulation, and only a small 

percentage of such patients go through the brain resection; thus, data from patients undergoing diagnostic SEEG 

cannot be used in the aforementioned weakly supervised method, limiting the availability of the training dataset; 

second, while such SEEG patients still need accurate predictions of pathological HFOs to delineate the EZ, they 

would no longer be represented in the training set, thereby potentially limiting the applicability of the weakly 

supervised model to these patients. 

One effective way to overcome such difficulties in using a supervised learning approach is to investigate 

the original observation directly: since pathological and physiological HFOs indeed differ in their biological 

mechanisms, leading to distinct morphologies, a generative AI model for the HFOs, trained in a self-supervised 

manner, should be able to simulate these underlying processes if a sufficiently large set of HFOs is provided. In 

particular, one should be able to discover the underlying discriminative morphological patterns without any labels. 

Autoencoders, such as variational autoencoders (VAEs),25 is a DL framework based on a self-supervised training 

paradigm, which can provide such a capability and has been proven to be successful in many natural language 

processing,26 computer vision tasks,27 medical data, including EEG analysis.28,29 VAEs are generative models that 

learn efficient low-dimensional representations (latent encodings) of unlabeled data by requiring that the original 

high-dimensional data be reconstructed from their latent codes. It is particularly effective in discovering clusters 

in the latent space, where each cluster corresponds to a different mechanism that led to the generation of data in it. 

Therefore, clusters automatically produced in the latent space of a VAE can potentially capture different 

underlying generative mechanisms. The HFO morphologies observed within these different clusters would have 

unique characteristics and can be interpreted through direct visualization and interpolations in the latent space.  

In this study, we utilized a large multi-institutional cohort of 185 patients with epilepsy who underwent 

iEEG monitoring with grid or SEEG electrodes, providing comprehensive coverage of both deep and superficial 

brain regions. We developed a VAE framework that analyzes 686,410 HFOs to characterize three different classes 

of HFOs: 1) morphologically defined putative pathological HFOs (mpHFOs), 2) morphologically defined putative 

non-pathological HFOs (non-mpHFOs), and 3) morphologically defined artifacts (mArtifacts) of extra-cerebral 

origin. We leveraged the interpretability of VAEs to explore various neurophysiological characteristics of HFOs, 

such as (i) characterization of cross-frequency power distributions of HFOs, (ii) exploring the dependence of HFO 

morphologies on variables, including the origin of iEEG datasets and patient-specific variables such as age, sex, 
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and epilepsy etiology based on histopathology (referred to pathology in the rest of the manuscript), and (iii) 

investigating HFO morphologies based on anatomical locations of the brain. 

Our results showed that mpHFOs, VAE-discovered putative pathological HFOs, generally originated 

within the SOZ and were associated with spikes. We also demonstrated that a latent space discovered by a VAE 

model exhibited refined characteristics of pathological HFOs within time-frequency plots. Finally, we showed 

that the proportion of the removal of mpHFOs outperformed the resection status of the SOZ in predicting 

postoperative seizure freedom with cross-validation. Our results demonstrate that deep generative models can 

characterize neurophysiological signatures of pathological HFOs. From a short duration of interictal iEEG data, 

one can potentially infer the EZ by differentiating pathological from physiological HFOs, thereby enhancing the 

use of these biomarkers in guiding epilepsy surgery. 

 

RESULTS:  

Building an explainable self-supervised DL algorithm for HFO analysis: 

We studied 185 patients (91 females) from two centers who met the eligibility criteria (Table 1). The 

median age at surgery was 13 years (range: 2–44 years). A total of 18,265 artifact-free electrode sites (median: 

106 per patient; range: 29–152) within 34 regions of interest (ROIs) were available for analysis (Figure 1a). 

There were 1,670 electrode sites sampled within the SOZ (mean: 9.42 per patient; frontal: 437; temporal: 464; 

parietal: 393; occipital: 135; limbic: 241), and 7,732 sites sampled within non-epileptogenic brain regions, defined 

as spared brain regions in patients with postoperative seizure freedom (frontal: 2943; temporal: 1806; parietal: 

1853; occipital: 635; limbic: 495) (Table 2). The median duration of analyzed EEG data for the UCLA grid/strip 

dataset was 91.5 min [IQR: 90.6-94.8 min], and for the UCLA SEEG, it was 90.3 minutes [IQR: 87.1-96.8 min]. 

The median analyzed EEG recording duration for the Detroit grid/strip dataset was 5.3 minutes [IQR: 5.1-5.7 

min]. In total, 686,410 putative HFOs were detected from all the datasets by the PyHFO, an automated HFO 

detection platform, using both STE and MNI detectors.30 The median rate of HFOs (number of detections/min) 

within SOZ contacts was 3.11 (range: 0.73-7.17), and the median rate of HFOs within the non-epileptogenic 

contacts was 1.08 (range: 0.63-2.15) across the ROIs. All the detected HFOs were used for the unsupervised VAE 

model training (Figure 1b). Using the trained VAE model, such HFOs were automatically classified into artifacts 

(mArtifacts) and non-artifactual HFOs. A cluster for mArtifacts was determined based on detected HFOs' high 

reconstruction loss due to the high variability of their morphologies (Figure 1c). All the non-artifactual HFOs 

were further classified into two clusters—the cluster with a higher resection percentage in seizure-free patients 

after resection was deemed pathological. HFOs originating from such a pathological cluster were defined as 
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mpHFOs, while those from another cluster were defined as non-mpHFOs. All the detected HFOs were also 

classified into artifacts, HFOs with spikes (spkHFOs), and HFOs without spikes (non-spkHFOs) using our 

previous classification algorithm23 (Supplementary Table 1) for the subsequent correlational analysis, including 

interpretability analysis (Figure 1d). The detailed workflow of the study is described in Supplementary Figures 

1-3. There were 163 patients who underwent resective surgery, and 110 patients (67.5 %) achieved seizure 

freedom. Of the patients who had resection, pathology results were as follows: focal cortical dysplasia (FCD) 

(41.1%), hippocampal sclerosis (HS) (6.7%), tumor (19.0%), and others (33.1%).  

 

Characterization of pathological HFOs based on the self-supervised VAE algorithm:  

With five-fold subjective-wise cross-validation, the VAE classification was aligned with conventional 

knowledge that spkHFOs are more likely pathological: 93.56% of mArtifacts were predicted as artifactual HFOs, 

80.1% of the mpHFOs were predicted as spkHFOs and 84.87 % of the non-mpHFOs were predicted as non-

spkHFOs (p-value < 0.001). Furthermore, we visualized these findings by projecting the latent codes of each 

event onto a two-dimensional plane using t-distributed Stochastic Neighbor Embedding (t-SNE). (Figure 2a, b). 

Such clustering results were consistent throughout the five folds (Supplementary Figure 4). Moreover, the 

mpHFO rate (count/channel/min) was significantly higher than the non-mpHFO rate (count/channel/min) in the 

SOZ channels across three datasets (p-value < 0.01 for UCLA grid/strip, Detroit grid/strip, and UCLA SEEG 

dataset) and did not exhibit significant difference within the non-soz channels (p-value = 0.1 for Detroit grid/strip 

dataset, p-value = 0.49 for UCLA SEEG dataset, and p-value = 0.38 for UCLA grid/strip dataset) (Figure 2c). We 

then investigated the neurophysiological characteristics of mpHFO and non-mpHFO directly from the data. The 

morphological analysis of the time-frequency plot demonstrated that mpHFOs had higher amplitude values 

throughout the HFO band (≥ 80 Hz), around the center point (0�ms, where HFOs were detected) than non-

mpHFOs (Figure 2d, e). Furthermore, there were statistically higher values of mpHFOs at the sub-HFO band (10-

80 Hz) throughout the time window compared to non-mpHFOs. These bands together lead to a "hanging bell" 

template in the time-frequency plot (Figure 2e). Such a template showed consistency regardless of the variables, 

including sex, the origin of the dataset, pathology, and age categories (Supplementary Figure 5). mpHFOs also 

showed distinct characteristics in the frequency domain with FFT analysis. The mpHFOs demonstrated relatively 

high amplitude within the sub-HFO band (10-80 Hz), while non-mpHFOs, likely representing physiological 

HFOs, exhibited discrete peaks with the HFO range, maximal at 87.7 Hz (Figure 2f, g). To understand the sub-

HFO band component of the "hanging bell" template in mpHFOs, we filtered mpHFOs with a 10-80 Hz bandpass 

to evaluate the corresponding time-series data. We found a spike-appearing EEG signal after this procedure 

(Figure 2h-j) but none in non-mpHFOs (Figure 2k-m). 
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HFO morphology analysis based on dataset origin, sex, age, and pathology: 

We investigated whether HFO morphology was affected by variables including recording sites/type 

(UCLA grid/strip, UCLA SEEG, Detroit grid/strip), sex (female vs. male), age (0-5, 6-10, 11-15, 16-20, and 21+), 

and pathology (HS, FCD, Tumor, others). We first visualized the distribution of the latent space by projecting 

latent codes of HFOs into 2D space using t-SNE and color-coded with different subcategories within that specific 

demographic variable (Figure 3a, c, e, g). Three hundred projected codes were randomly sampled from each 

subject to achieve easier visualization. Then, the accuracy of a logistic regression model trained from actual data 

was compared with a model trained with label-permuted data. HFO morphology based on the dataset sources 

could not be differentiated by the classifier (p-value = 0.13, Figure 3b). Similarly, HFO morphology, based on 

demographic information such as sex, age group, and pathology, could not be differentiated (Sex: p-value = 0.44; 

Age Group: p-value = 0.10; Pathology: p-value = 0.83) (Figure 3d, f, h). 

 

HFO morphology analysis based on ROIs (anatomical location): 

We then investigated whether HFOs generated from different anatomic locations exhibit distinguishable 

morphologies (frontal, temporal, parietal, occipital, and limbic). Initially, we generated a plot of the latent space 

for HFOs derived from the preserved regions in patients who remained seizure-free after resection, presumably 

physiological HFOs. We found a cluster of HFOs corresponding to the occipital region, which were 

distinguishable from other areas (Figure 4a, b). The confusion matrix showed that such occipital HFOs could be 

successfully distinguished by the classifier, which achieved an average of 62% accuracy (Figure 4c). To further 

characterize such distinguishable features, we plotted the summation of the time-frequency plot of each HFO 

event in different anatomical locations (Figure 4d). The HFOs derived from the occipital area showed distinct 

peak frequency and power ratio compared to HFOs generated from other anatomical areas (Supplementary 

Figure 6). Nevertheless, HFOs generated from the SOZ did not demonstrate distinctive morphological differences 

across the anatomical locations using the same method (Figure 4e-h). 

 

Disentanglement of the latent space to establish neurophysiological characteristics of pathological HFOs: 

We first plotted each dimension of the latent space and colored them with mpHFO and non-mpHFO for a 

specific fold (Supplementary Figure 2: Latent dimension interpretation); the mpHFO and non-mpHFO 

exhibited different distributions in some of the dimensions but did not in the others (Supplementary Figure 7). 

We then used the decoder of the VAE to understand the meaning of each latent dimension by perturbing each 

dimension in the latent space and visualizing the reconstructed image. Specifically, in each fold, we first took the 
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mean of the cluster of the mpHFO and non-mpHFO (Supplementary Figure 2: Generation of representative 

mpHFO and non-mpHFO morphologies based on respective cluster centroids) and then perturbed a single 

dimension from the smallest value (1 percentile) of that dimension to the largest value of that dimension (99 

percentile) (Supplementary Figure 2: Latent dimension interpretation). We found a dimension that 

demonstrates the separation of mpHFO and non-mpHFO. The morphological transition of the generated images 

showed more power within the "hanging bell" template region for both mpHFO and non-mpHFO when we 

traversed the value of that dimension (Figure 5a, b). At a population level, we randomly sampled actual latent 

code from both mpHFO and non-mpHFO and traversed that specific dimension of each latent code from the 

smallest (1% tile) to the largest (99% tile); the decoded images showed an increase of the power within the 

template region (Figure 5c). We fed the decoded time-frequency plots through our inference pipeline and plotted 

the distribution of the model confidence (Figure 5d), demonstrating the increasing model confidence toward 

mpHFO as we increased the value of that dimension in the latent space. Furthermore, we also captured 

dimensions that, while not separating mpHFOs and non-mpHFOs, still manifested interpretable 

neurophysiological properties. Within the same fold, a dimension represented the HFO's peak frequency (Figure 

5e, f), and subsequent population-level analysis indicated that an ascent in this dimension inversely correlated 

with the peak frequency in the time-frequency plots (Figure 5g) while the model confidence value did not change 

towards either the mpHFO and non-mpHFO (Figure 5h). Similarly, the slow-wave dimension (10-20Hz) was 

revealed (Figure 5i, j), where an increase in dimension value directly paralleled an increase in power within the 

slow-wave band in the decoded images (Figure 5k), but an increase in power within that dimension did not affect 

the model confidence towards either the mpHFO and non-mpHFO (Figure 5l).  

 

Prediction of postoperative seizure outcomes using the classified HFOs:  

Based on the hypothesis that mpHFOs are pathological and their resection status can forecast 

postoperative seizure freedom, we investigated two prediction models. We first applied a logistic regression 

model with five-fold cross-validation. Notably, utilizing the resection ratio of the mpHFOs (AUC = 0.63) 

demonstrated superior separation capability compared to using the resection ratio of unclassified HFOs (AUC = 

0.53) and traditional expert-driven classification, spkHFO (AUC = 0.61) (Figure 6a). Further, a multivariable 

logistic regression model was fitted, incorporating subjects' demographic data as the baseline (age as a continuous 

variable and sex as a categorical variable) and the status of SOZ resection during surgery. The mpHFO resection 

ratio again showed enhanced classification performance over the spkHFO (AUC = 0.72 vs. 0.70) (Figure 6b). 

Additionally, we explored the feasibility of constructing a non-linear predictive model using a random forest 

classifier (Figure 6c). The random forest aimed to forecast post-surgical seizure freedom in the test set based on 

subject-specific features identified in the training set through a subject-wise five-fold cross-validation, ensuring 
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that our classifier was evaluated under consistent and rigorous conditions (Supplementary Figure 3). Our 

findings revealed that the random forest model, trained exclusively with the resection ratio of mpHFOs, exhibited 

better (p-value < 0.01, for both unclassified HFOs and spkHFO) predictive performance (F1 = 0.74) compared to 

using unclassified HFOs (F1 = 0.69) and spkHFO (F1 = 0.66). The model's predictive power improved when 

incorporating more features, such as subjects' demographic information and the SOZ resection status. Specifically, 

the combination of demographic data and mpHFO resection ratio (F1 = 0.77) outperformed (p-value < 0.01) 

traditional clinical predictions based on demographic information and SOZ resection status (F1 = 0.73). 

Furthermore, a comprehensive model including all features, including demographic data, SOZ resection, and 

mpHFO resection ratio (F1 = 0.81) demonstrated superior (p-value < 0.01) predictive power over the traditional 

expert-driven HFO classification including demographic data, SOZ resection, and spkHFO resection ratio (F1 = 

0.80) (Detailed numbers are listed in Supplementary Table 2). We also conducted an ablation study on 

predicting surgical outcomes by only using subjects with a higher number of HFOs (Supplementary Figure 10): 

the mean F1 score remains consistent, demonstrating the robustness of our self-supervised framework. 

 

 

DISCUSSION  

Leveraging the innovative self-supervised deep learning approach, we aimed to characterize pathological 

HFOs using a cohort of 185 epilepsy patients who underwent intracranial monitoring with grid or stereotactic 

EEG electrodes across 18,265 brain contacts from 34 ROIs. We analyzed 686,410 HFOs obtained via fully 

automated detectors. The novel VAE method and extensive data allowed us to control for variables, including 

recording sites/types, sex, age, pathology, and anatomical location. By analyzing the latent space of VAEs, we 

identified morphological features of pathological HFOs, notably high signal intensity within the HFO band at 

detection, extending across the sub-HFO band (10-80 Hz). These features remained consistent across all studied 

variables. Incorporating the resection status of the identified pathological HFOs into prediction models markedly 

enhanced the accuracy of postoperative seizure freedom forecasts, outperforming traditional approaches that 

utilize the resection status of the SOZ.  

Until now, the field of HFO research has encountered significant challenges. HFOs can be generated in 

healthy brain regions, adding complexity to their interpretation. Despite promising results from numerous 

retrospective studies,8-10 a clinical trial failed to demonstrate the utility of HFOs in improving postoperative 

seizure outcomes.18 The major challenge in HFO research is distinguishing between pathological HFOs that need 

to be targeted for resection and physiological HFOs that can be spared during resection. Attempts to differentiate 

these include identifying HFOs associated with spike-wave discharges,31-33 which are generally considered 

indicative of pathology. However, there is no uniform method to define HFOs with spikes, and experts often 
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exhibit inconsistencies and poor inter-rater reliability when using visual annotations.34 Moreover, simple analyses 

of HFO features such as frequency, amplitude, and duration have been ineffective in differentiating pathological 

from physiological HFOs.19,20 While fast ripples (250–500 Hz) may more accurately delineate epileptogenic zones 

than ripples (80–250 Hz), they are detected less frequently.35,36 Strategies like adjusting the detection rate of HFOs 

to match region-specific normative values can help estimate the degree of pathology in the corresponding brain 

regions,37,38 it cannot reliably classify each HFO event as pathological or physiological. This uncertainty 

complicates clinical decision-making, especially when treatment decisions hinge on a limited number of detected 

HFOs. 

In this study, we adopted a fundamentally different approach. Instead of pre-selecting potential 

pathological HFO features, we implemented a data-driven, self-supervised strategy using VAE to define 

pathological HFOs. In the field of HFOs, prior studies have explored various types of neural networks, including 

convolutional neuronal networks,39,40 long short-term memory,41,42, and transformer43, to classify HFOs into 

pathological and physiological based on human-annotated labels. This reliance limits scalability on large datasets 

and is constrained by the subjectivity inherent in expert labeling. Our method is contingent on the premise that 

pathological HFOs possess distinct morphological characteristics that are separable from their physiological 

counterparts. This hypothesis is biologically plausible, given that HFOs with similar frequency ranges emerge via 

markedly different generative mechanisms: Pathological HFOs arise from abnormal synchronous burst firing, 

whereas physiological HFOs result from inhibitory synchronous postsynaptic potentials.12,13 These morphological 

differences, potentially too subtle for detection with traditional signal processing methods using clinical 

macroelectrodes, may be effectively discerned through our innovative approach. The VAE is a DL framework 

capable of efficiently learning low-dimensional representations of unlabeled data.25,44 Without providing any 

labels associated with the input, an unsupervised classification can be achieved by reconstructing the original 

high-dimensional data from their latent codes. It excels at uncovering clusters in the latent space, with each cluster 

representing a distinct mechanism underlying the data generation. Consequently, clusters automatically formed in 

the latent space of a VAE have the potential to capture various morphological features and classify artifacts and 

HFOs with or without spikes, as demonstrated in our study. The diverse HFO morphologies generated by these 

clusters possessed distinct traits, allowing for interpretation through direct visualization and interpolations in the 

latent space, which enabled us to interpret what the algorithm has learned. The algorithm provided us with 

intuitive and interpretable latent spaces, such as a pathological template domain (the "hanging bell" template on a 

time-frequency plot), peak frequency domain, and slow-wave domain.  

Our results are compelling, as the morphologically defined pathological HFOs identified by our deep 

generative model exhibited features commonly associated with expert-acknowledged pathological HFOs, such as 

spikes. While "spike" annotations can be performed by human experts or computationally, there is no 

standardized method for determining what constitutes pathological spikes. Our deep generative model objectively 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.10.24310189doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.10.24310189
http://creativecommons.org/licenses/by/4.0/


 

identified distinctive features of the hanging bell template within the time-frequency plot. Specifically, 

pathological HFOs were associated with higher signal intensity within the sub-HFO band, peaking at 23 Hz. Such 

sub-HFO band EEG signals seemed to emerge as spikes in time series data. Thus, rather than arbitrarily define 

spikes to analyze HFOs with spikes, this data-driven approach to characterize the "spike" component associated 

with pathological HFOs seemed more unbiased. Another evidence of the pathological nature of mpHFOs was that 

they were primarily localized around the SOZ, although the model was trained without a SOZ label.  

Our findings provide clinically significant insights; the resection ratio of mpHFOs outperformed 

traditional unclassified HFOs and spkHFOs in predicting postoperative seizure freedom. This supports the idea 

that mpHFOs are more indicative of pathological HFOs than unclassified HFOs and spkHFOs. The potential 

clinical utility is evident as the resection ratio of mpHFOs exceeded the current clinical standards regarding the 

removal status of SOZ in predicting postoperative outcomes. The mpHFOs can be analyzed from short interictal 

EEG data, offering the potential to reduce the duration of EEG monitoring, hospital stays, and associated costs for 

the patient. Furthermore, combining the resection status of the SOZ with the proportion of mpHFO resection 

further enhanced the prediction, suggesting an additive effect when mpHFOs are combined with the current 

clinical standard. 

Another notable discovery was that non-pathological HFOs originating from the occipital lobe displayed 

distinct morphological features compared to HFOs from other brain regions. Physiological HFOs were reportedly 

abundant in the occipital lobe15,16,45 and also showed distinct coupling with slow waves.46 This study added 

essential findings in the literature to establish the unique morphology of HFOs originating in the occipital lobe. 

These findings could potentially overcome the limitation faced by the HFO trial, which necessitated the exclusion 

of subjects with occipital lobe epilepsy due to the likelihood of abundant physiological HFOs in such patients.18 

There are several factors to consider when interpreting these results. The study was conducted using only 

macroelectrode recordings, and while we hypothesized that the different biological mechanisms of pathological 

and physiological HFOs would manifest differently in these recordings, we could not verify the actual 

neurophysiological mechanisms at the single-neuron level. Although our sample included 185 patients, only 18 

were studied using SEEG, limiting our ability to sample from deeper brain areas. With more balanced coverage of 

both superficial and deep areas, network analysis to account for HFO propagation may provide better accuracy in 

the prediction of postoperative surgical outcomes.47 Since we aimed to investigate the HFOs' morphology as a 

function of age, we primarily included the pediatric population in the study. Expanding the inclusion of the adult 

population will be needed to generalize our findings. Additionally, the majority of our EEG data comprised short 

recordings, typically around five minutes from the initial night during sleep. Also, the sampling frequency of the 

Detroit dataset was limited up to 1,000 Hz, limiting the analysis of the fast ripple band (250-500 Hz). Although 

our results suggest that the peak frequency of HFOs did not affect pathological classification, further investigation 
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of the fast ripple band will be needed. Longer, multi-day recordings might reveal HFOs with potentially varying 

morphologies over time.48 The vigilance state should also be considered,49 as morphological differences between 

various sleep stages and wakefulness remain under-investigated. Finally, our sample size may not be sufficient to 

fully characterize the subtle differences in HFO morphology associated with different types of epilepsy 

pathologies. Conditions like focal cortical dysplasia (FCD) and tumors have distinct subtypes whose 

morphological differences might become clearer with a larger number of cases. 

In the foreseeable future, we plan to collaborate with additional institutions to test the generalizability of 

our approach. Analyzing publicly available datasets will also be considered. Analyzing multi-day recordings from 

different sleep stages presents challenges, yet such studies could be feasible with our fully automated algorithm. 

Once we establish definitions for pathological HFOs across different anatomical regions, we can potentially 

integrate this data with other types of information, such as neuroimaging studies, to guide surgical resections. We 

aim to test the utility of this approach prospectively and may eventually consider a clinical trial to verify whether 

HFO-guided resections truly improve postoperative seizure outcomes. 

 

METHODS:  

Patient cohort: This was a multi-institutional retrospective cohort study. The inclusion criteria consisted of [a] 

simultaneous video-iEEG recording for epilepsy surgery between August 2016 and December 2023 at UCLA 

Mattel Children's Hospital or between January 2007 and May 2018 at Children's Hospital of Michigan, Detroit, 

[b] iEEG sampling rate of at least 1,000Hz, [c] iEEG contained at least an artifact-free 20 min slow-wave sleep 

epoch at least two hours apart from clinical seizure events, and [d] known postoperative seizure outcomes over 

one year. The exclusion criteria included [a] undergoing hemispherectomy or hemispherectomy, and [b] the 

presence of massive brain malformations (such as megalencephaly and perisylvian polymicrogyria) or previous 

surgeries that make it difficult to identify brain anatomy during the iEEG study. The institutional review board at 

UCLA and Wayne State University have approved the protocol. We obtained written informed consent from 

patients or the guardians of pediatric patients. 

Patient evaluation: All patients with medically refractory epilepsy referred during the study period underwent a 

standardized presurgical evaluation, which—at a minimum—consisted of inpatient video-EEG monitoring, high 

resolution (3.0 T) brain magnetic resonance imaging (MRI), and 18 fluoro-deoxyglucose positron emission 

tomography (FDG-PET), with MRI-PET co-registration. The margins and extent of resections were determined 

mainly based on the SOZ, clinically defined as regions initially exhibiting sustained rhythmic waveforms at the 
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onset of habitual seizures. In some cases, the seizure onset zones were incompletely resected to prevent an 

unacceptable neurological deficit. 

iEEG recording: Macroelectrodes, including platinum grid electrodes (10 mm intercontact distance) and depth 

electrodes (platinum, 5 mm intercontact distance), were surgically implanted. The placement of intracranial 

electrodes was guided by the results of scalp video-EEG recording and neuroimaging studies. All electrode plates 

were stitched to adjacent plates, the edge of the dura mater, or both to minimize movement of subdural electrodes 

after placement. Regarding the SEEG placement, BrainLab Elements software was used for planning the 

electrodes to the intended targets using T1-weighted sequences, and the trajectories were guided by a gadolinium-

enhanced T1-weighted MRI. Both institutions obtained iEEG recordings using Nihon Kohden Systems (Irvine, 

California, USA). The sampling frequency was set at 1,000 Hz in Detroit and at 2,000 Hz in UCLA upon 

acquisition.  

Acquisition of three-dimensional (3D) brain surface images: We obtained preoperative high-resolution 3D 

magnetization-prepared rapid acquisition with gradient echo (MPRAGE) T1-weighted image of the entire head. 

Using the FreeSurfer scripts, we created the averaged surface image to which all electrode locations were spatially 

normalized.23,38 In cases where the software failed to detect the pial surface accurately due to insufficient cerebral 

myelination, we manually delineated the pial surface using the Control Point function. For patients younger than 

two, we used the Infant FreeSurfer software package to reconstruct the surface image.46 The averaged surface 

image functioned as the template for the analysis of anatomical location. 

Anatomical labeling and determination of ROIs: For the dataset from UCLA, each implanted contact was 

labeled visually according to the Desikan-Killiany-Tourville atlas.50 The location of electrodes was directly 

defined within a Freesurfer-based 3D surface image using post-implant computed tomography (CT) images using 

Brainstorm software.23 For the dataset from Detroit, all implanted subdural contacts were coregistered with 3D 

surface images within the FreeSurfer with an FSaverage vertex label.38 We defined 34 ROIs for further analysis 

(Table 2). For the data harmonization between the two institutions, the FSaverage vertex of Detroit datasets was 

converted to MNI coordinates.51 Finally, these data were combined with UCLA patients, which were projected to 

the MNI normalized space under Brainstorm for the co-registration image (Figure 1a). 

iEEG data pre-processing: We used a customized common average reference for the grid23 and a bipolar 

montage for SEEG data. The EEG was first resampled to be the same sampling frequency of 1,000 Hz, and a 

band-reject filter was to reject the 60 Hz and its harmonics with a stopband of 2 Hz. iEEG channels not recording 

from grey matter (e.g., located outside of the brain) or otherwise deemed 'bad' (e.g., excessively noisy or 
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artifactual) by the clinicians were discarded from the analysis. All EEG data pre-processing and analysis were 

performed using Python 3.9.1 (Python Software Foundation, Wilmington, DE). 

Automated HFO detection: HFOs were detected by the PyHFO platform using both STE and MNI detectors to 

enhance the sensitivity of detection.30 For STE and MNI detectors, the detection parameters were set to default 

(Supplementary Table 3), except that the frequency band for filtering the signal was set to be 80-300 Hz to 

accommodate a minimum 1,000 Hz sampling frequency. 

Overall training and inference method: The overall study flow is outlined in Figure 1 and Supplementary 

Figure 1-3. 

Morphology-based pathological HFO classification by deep generative model 

Subject-wise k-fold Cross-validation: To thoroughly test our method, we use a subject-wise five-fold cross-

validation. In this setup, for each fold, we set aside 20% of the subjects as a test set (controlling sampling from 

UCLA grid/strip, UCLA SEEG, and Detroit grid/strip, ensuring that over five folds, every subject is tested once. 

All remaining data became the training set. Within the training set, we then randomly sampled ten subjects 

uniformly from three datasets for the validation set. 

Feature Representation: Each event detected by the automatic detector was represented by a time-frequency plot 

(Morlet wavelet transform), as the time-frequency plot is known for representing spatial-temporal information for 

each HFO event. The time-frequency plot spans ± 285 ms (centered in the middle of the HFO event) in time and 

10-290 Hz in frequency. This plot was resized to a 64 x 64 resolution, and the value was normalized within the 

range of 0 to 1 before being sent to the VAE encoder. 

VAE architecture: VAE emerges as a prominent deep learning mode. Distinct from traditional autoencoders, VAE 

introduces a probabilistic approach; the encoder encodes inputs as distributions. During the decoding process, the 

model stochastically samples from these distributions, enabling it not only to accurately reproduce known data but 

also requires the decoder to generate new similar data. The loss of training the VAE, reconstruction loss, and 

variational regularization, the reconstruction loss measures the distance from the input to the output, and the 

variational regularization ensures the distribution generated from the encoder follows the normal distribution. 

We've chosen ResNet52 as the backbone for both the encoder and decoder, drawing inspiration from its 

widespread application in the community of computer vision, as evidenced by sources, as well as the successful 

application of using ResNet in capturing morphological information within the time-frequency plot.23,24 The 

designated size for the latent space was fixed at 8. As an ablation study, we set the latent dimension to 16 and 

demonstrated that it would produce more redundant latent space by visualization (Supplementary Figure 8). 
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Self-supervised VAE training: Our VAE underwent training over 80 epochs with the main goal of reconstructing 

the input image (Figure 1a). During the training, we used Adam optimizer with a learning rate of 3e-4 and batch 

size of 512. Furthermore, the time-frequency plot was augmented by randomly flipping at the time axis to 

improve the model's generalization ability. To ensure an even representation of each subject during every epoch, 

we employed a stratified sampling method, capping the sample number at 2,500 per subject in each epoch of 

training. Moreover, we selected perceptual loss as our reconstruction loss criterion to capture the morphological 

discrepancies more effectively between input and output images. We adopted the beta-VAE44 in training to better 

disentangle the latent space; therefore, the final loss function loss = perceptual loss + beta*KL divergence, where 

beta = 0.1. The model iteration (epoch) exhibiting the minimum validation loss was the one selected for 

subsequent utilization in the unsupervised classifier assembly and inference. 

Unsupervised discovery of HFO clusters: We designed a hierarchical (two-stage) Gaussian Mixture Model 

(GMM) based clustering pipeline to discover morphologically different classes of HFOs (Figure 1c). Once the 

VAE had been trained, we processed the entire training dataset through the VAE encoder, thereby extracting the 

associated latent codes (Figure 1b). After this extraction, at the first stage, we employed the GMM clustering 

algorithms, setting the cluster number, k, to 2. We adopted stratified sampling to balance the contribution of 

information from each subject. We capped the number of events from each patient at 10,000.  The cluster with 

high reconstruction loss was defined as the cluster of artifacts of extra cerebral origin, as the artifact is diverse in 

morphology and the VAE cannot properly decode. Then, at the second stage, within the cluster that was classified 

as non-artificial events, we trained another GMM to cluster them further into two clusters. We capped the number 

of events from each patient at 2000. To allocate either a pathological (mpHFO) or physiological (non-mpHFO) 

label to each cluster, we employed a minimalistic use of clinical data. The cluster with a higher resection 

percentage in seizure-free patients after resection was deemed pathological. As part of an ablation study, we also 

explored different stratified sampling methods, which demonstrated similar performance in predicting surgical 

outcomes (Supplementary Figure 9). 

HFO morphology inference pipeline: To predict the HFO events from a new subject, time-frequency plots were 

first computed. Then, these time-frequency plots were sent into the VAE encoder to extract the latent codes. The 

trained hierarchical GMMs predicted each latent code and assigned class labels: mpHFO, non-mpHFO, and 

mArtifact for each detected event. 

mpHFO characterization 

VAE-based HFO morphology inference pipeline: 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.10.24310189doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.10.24310189
http://creativecommons.org/licenses/by/4.0/


 

Time-frequency plot characteristics of pathological and physiological HFOs: We investigated whether the time-

frequency scalogram of mpHFOs identified by the VAE exhibited a distinction from that of non-mpHFOs (Figure 

2d, e). We used similar methodologies outlined in preceding studies.23,24 Specifically, we executed a t-test across 

every pixel in the time-frequency scalogram comparing the predicted mpHFOs and non-mpHFOs. The 

foundational null hypothesis is that scalogram values associated with mpHFOs are higher than those linked with 

non-mpHFOs. We binarized the p-value less than 0.05 (if the p-value is less than 0.05, the value is 1, and vice 

versa). The characteristics map displays mpHFOs' morphological distinction within frequency and time domains. 

Latent space interpretability analysis: 

Latent space 2D visualization: The encoder extracts latent vectors from the time-frequency plot of each event, and 

the latent code could contain essential morphological information that the decoder can reconstruct. To visually 

demonstrate the topology of the latent space trained from VAE better, we used t-SNE to project the latent space 

acquired from the VAE into 2D space. We used the TSNE accelerated by GPU (cuml package),53 the parameters 

of fitting the TSNE using default parameters as the released package except for the n_components as 2 

(Supplementary Figure 2: Clinical interpretation of latent space clustering). We projected all of the latent 

code into the 2D space. For better visualization, we randomly sampled a maximum of 200 data points from each 

subject for visualization and color-coded each 2D point by different types of HFOs: mpHFO, non-mpHFO, 

mArtifact (Figure 2a); spkHFO, non-spkHFO, the artifact (Figure 2b); different subcategories in subjects 

demographic information included sex, recording sites/type, age, pathology  (Figure 3) and different anatomical 

locations (Figure 4).   

Statistical tests to evaluate the dependence of HFO morphology on the significance of different demographic 

subject-level information and anatomic locations of the HFO events variability: 

We evaluated if HFO morphology is dependent on demographic and anatomical factors. Suppose HFO 

morphology depended on a particular variable (for example, the subject's sex, Figure 3c). In that case, the latent 

codes of the HFOs labeled with the corresponding subcategories (female or male) may be distinguishable. 

Consequently, a classifier designed to identify true labels from the latent codes of HFOs should achieve higher 

accuracy compared to a classifier trained with randomly assigned labels. The methodology can be illustrated 

using sex as an example. For each fold of the cross-validation, we randomly selected three subjects from each 

subcategory (male, n=3; female,n=3). We randomly sampled 100 HFO events from each subcategory  (100 HFO 

events for male subjects and 100 HFO events for female subjects). This resulted in 200 (n_subcategories * 100) 

latent codes for training a logistic regression classifier. For computing accuracy, we repeated the sampling process 

for the left-out subjects for that fold. This resulted in one accuracy datapoint. We repeated this sampling, training, 
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and testing process five times (trials) for each fold. Thus, we have 25 trails in total (5 folds * 5 trails) for a 

classifier to determine sex based on actual sex labels. Next, we describe the design of a surrogate classifier based 

on randomizing the labels. For each fold and each trial, the same latent codes sampled for the true-label case are 

used. However, the sex label is randomized. That is, we randomly shuffle the subjects and assign the label of male 

to the first three and female to the last three. Then, a surrogate logistic classifier is trained with the randomized 

sex labels. For testing, we again used the same data samples from the true-label case and randomized the sex 

assignment. This leads to another 25 accuracy samples for the surrogate classifier. A one-tailed t-test was 

employed to assess whether the true-label classifier's accuracy was significantly better than that of the surrogate. 

We performed two such tests, one for the dependence of the morphology of HFOs from preserved regions 

in seizure-free patients (presumed physiological HFOs) on anatomical locations. The second one was for the 

dependence of the morphology of the HFOs from SOZ regions (presumed pathological HFOs) on anatomical 

locations (Figure 4). Note that each channel in each subject was assigned a unique anatomical location. Given an 

HFO type, for each fold and each trial, the HFO events were sampled equally (n=100, in total 500) from each 

anatomical location across all patients. A multi-class logistic regression model was trained, and the confusion 

matrix was computed based on 500 samples acquired from the test subject under the same fold. Five such trials 

were done for each fold. Thus, for each HFO type, we obtained 25 confusion matrices, and the average of the 

confusion matrices and the accuracy were computed. Then, for the surrogate classifier, the randomization of 

labels of the 500 samples was done by shuffling samples on the channel level; for example, all samples from a 

particular channel that were initially labeled as "Frontal" would be reassigned to the same randomly selected label 

such as "Occipital". This led to 25 surrogate accuracy samples. A one-tailed t-test was employed to assess 

whether the true-label classifier's accuracy was significantly better than that of the surrogate.  

 

Latent space disentanglement on latent dimension perturbation: 

By manipulating specific dimensions of the latent space and observing the changes in the reconstructed 

images, we can infer the significance of each dimension in relation to the data characteristics it influences (Figure 

5, Supplementary Figure 2: Clinical interpretation of latent space interpolation). This approach not only can 

aid in the interpretability of complex models but also provide insights into the underlying data structure that the 

VAE has learned to encode. The latent code was a one-dimensional vector sampled from a distribution generated 

by the encoder using a time-frequency plot. The distribution of latent codes was plotted on each dimension and 

classification type  (mpHFO and non-mpHFO) to identify the dimension that contributes the most to the decision 

boundary. To further understand the morphological characteristics contributed from each dimension, we 
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manipulated each dimension of the latent code and then observed the resultant images generated from the decoder. 

The trend of the resultant images corresponding to the manipulation could reveal the morphological characteristic 

for that dimension. Specifically, for one latent code, we moved the value of a specific dimension to the 1st 

percentile and 99th percentile of all of the values within this dimension (we avoided extreme values to exclude 

outliers) while keeping the values in other dimensions unchanged. For visualization, we focused on the 

morphological impact on the two most representative latent codes, which were determined by averaging the latent 

vectors of all identified mpHFO and non-mpHFO events, respectively. To evaluate the effect of each dimension at 

a population level, we first randomly selected 500 high-confident mpHFO (model confidence > 0.99) and 500 

high-confident non-mpHFO (model confidence < 0.01). We then manipulated the latent codes of 1000 randomly 

selected samples, irrespective of the event types (mpHFO/non-mpHFO). To quantitively evaluate the 

morphological change of resultant images, we designed various metrics based on simple image processing 

techniques on the time-frequency plot as a proxy to represent the morphological characteristic of the 

corresponding HFO events. To identify if an event was more pathological (determining pathological dimension), 

we calculated the ratio of power in the "hanging bell" template (Figure 2e) to the overall power within the time-

frequency plot. To calculate the peak frequency of an event (determining the peak-frequency dimension), we 

averaged the information across -90 ms to 90 ms (as the center of the event to be 0 ms) of the time-frequency plot 

to construct a frequency-power vector and found the frequency that had the max power within 80 Hz to 290 Hz. 

To measure the slow-wave power of an event (determining the slow-wave dimension), we computed the power in 

the 10-20 Hz range on the time-frequency plot to the total power. These analyses were visualized using box plots. 

Furthermore, we used the inference pipeline (encoder and GMM) to classify each generated event and visualized 

the model confidence through the violin plot. 

Clinical correlation: Predicting surgical outcomes: Once the VAE and GMM classifiers were trained on the 

training set, this pipeline was able to make a prediction on the test set. In the following analysis, we used all 

subjects who underwent resection. We evaluated the effectiveness of a discovered biomarker by predicting the 

surgical outcomes of the resected subjects. Specifically, features associated with each subject were extracted, and 

then a predictive model was trained using these subject-specific features to predict whether or not one subject 

would be seizure-free. In particular, we used the resection ratio (No. resected events / No. overall detected events), 

which was the same as in previous studies,23 and subjects' demographic features such as sex and age. Furthermore, 

we also considered the resection status of the SOZ (whether the SOZ assigned by clinicians was removed or not), 

which is a current clinical standard to guide epilepsy surgery. We applied two approaches to validate and predict 

the surgical outcomes. First, we evaluated the separation of post-surgical seizure-free subjects and post-surgical 

non-seizure-free subjects in the feature space and also evaluated the balance of the trained unsupervised models in 

the five-fold cross-validation, i.e., if a model trained in one fold is too conservative or aggressive on predicting 
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the biomarkers. Therefore, we trained a single/multivariable logistic regression model to predict post-surgical 

outcomes on features generated from all subjects in all test sets among the five-fold cross-validation and 

compared the AUC of the logistic regression. Second, we evaluated the forward predictive power of our 

discovered biomarker. In each fold of five-fold cross-validation, we trained a random forest model from the 

training set and validation set, using subject-associated features as input of random forest and surgical status as 

labels. We used the trained random forest to predict all subjects underwent resection in the test set. Then, one 

random forest model was trained for each fold, and a set of performance metrics (accuracy, precision, recall, and 

F1 score) were reported; we reported the mean and SEM of the F1 score based on the unbalanced dataset.  

Statistical analysis: The above-mentioned statistical calculations were carried out using Python (version 3.9.1; 

Python Software Foundation, USA). The deep neural network was developed using PyTorch (version 2.1.0; 

Facebook's AI Research lab). Quantitative measures are described by medians with interquartile or mean with 

standard deviations. Comparisons between groups were performed using chi-square for comparing two 

distributions and Student's t-test for quantitative measures (in means with standard deviations). All comparisons 

were two-sided, and significant results were considered at p < 0.05 unless stated otherwise. Specific statistical 

tests performed for each experiment were described in each section. Machine learning model performance was 

evaluated using accuracy ([TP + TN]/[TP+TN+FP+FN]), recall (TP/[TP+FN]), precision (TP/[TP+FP]), and F-1 

score (2/[1/recall + 1/precision]). 

 

Data sharing and availability of the methods: All data produced in the present study are available upon 

reasonable request to the corresponding authors. Anonymized EEG data and metadata, including labels (channel's 

resection status, SOZ, patients' demographics, seizure outcomes, and pathology) used in this study will be 

available on the OpenNEURO website (https://openneuro.org) in the near future. The Python-based code used in 

this study is available at (https://github.com/roychowdhuryresearch/HFO-VAE). One can train and test the deep 

learning algorithm from their data and confirm our methods' validity and utility. 
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FIGURE LEGENDS 

 

Figure 1. Study flow. (a) Spatial distribution of intracranial electrodes: Electrode contact locations within the 

standardized MNI brain space from various views (Lateral left, Lateral right, Anterior, Posterior). (b) Variational 

Autoencoder (VAE) training: Time-frequency EEG data representing HFOs serve as input into the VAE, which 

outputs a reconstructed image. The VAE's encoder generates a latent distribution of mean and variance while the 

decoder reconstructs the time-frequency plot from a sampled latent vector. The loss function is a combination of 

perceptual loss (to capture morphological differences) and KL divergence (measuring the latent distribution's 

deviation from a normal distribution). (c) HFO classification pipeline: A two-stage, morphology-based 

classification process uses Gaussian Mixture Models (GMMs) for unsupervised learning. The first stage identifies 

artifacts (mArtifact) by latent codes and reconstruction loss; the second stage distinguishes putative pathological 

HFOs (mpHFOs) cluster; the cluster with a higher resection percentage in seizure-free patients after resection was 

deemed pathological. This process trains two unsupervised classifiers to be used on the test set. (d) Interpretability 

Analysis. Left: Latent space clustering, visualized via t-SNE, groups clinically relevant HFO classes, facilitating 

interpretation. Right: Dimensional perturbations in latent space discover specific neurophysiological features in 

reconstructed images, providing a bridge between clinical insights and the VAE's feature representations. 

 

Figure 2. Characterization of pathological HFOs (mpHFOs) based on the self-supervised VAE algorithm. 

(a). Projected latent space, color-coded by predicted results (mpHFO, non-mpHFO, and mArtifact) from VAE-

based HFO morphology inference pipeline on one example fold, shows the 2D projected eight-dimensional latent 

codes by the t-SNE. (b). The same latent space is color-coded by conventional HFO classification (spkHFO, non-

spkHFO, and artifact). (c) HFO rates (number of HFO detections[count]/min/channel) of mpHFO and non-

mpHFO are plotted in box plots based on the location (SOZ versus non-SOZ) across three datasets (outliers were 

removed for better visualization quality). The rate of mpHFO (count/min/channel) was higher in the SOZ than in 

the non-SOZ. The rates of non-mpHFOs (count/min/channel) did not differ between the SOZ and non-SOZ 

(*:p�<�0.05; **: p�<�0.01; ***: p�<�0.001). (d)  Morphological analysis of the time-frequency plot for an 

example subject. The pathological counterparts (mpHFOs) have higher values throughout the HFO band (> 80 

Hz), around the center point (0�ms, where HFOs were detected) than non-mpHFOs; furthermore, higher values 

of mpHFOs at the sub-HFO band (10-80 Hz) throughout the time window compared to non-mpHFOs are 

exhibited. (e) The overall template (mean) of all subjects resembles a "hanging bell" shape (pixel comparisons 

that were significantly higher in mpHFOs than non-mpHFOs in more than 50% of patients were colored orange). 

(f) FFT amplitude is plotted as a function of frequency from an example patient (shaded areas indicate one SD). 

Note the FFT peak (around 80-90 Hz) is seen in non-mpHFOs but not in mpHFOs. The mpHFO has a higher sub-
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HFO frequency signal intensity, so the HFO peak may be masked. (g) FFT amplitude ratio of (mpHFO - non-

mpHFO / non-mpHFO) is plotted as a function of frequency, demonstrating the presence of relatively high FFT 

amplitude in mpHFO within the sub-HFOband, peaked around 23 Hz. (h) Time-frequency plot of an example 

predicted mpHFO. (i)  EEG tracing of the same mpHFO with the detected HFO part colored in red. (j) EEG 

tracing bandpassed between 10 and 80 Hz of the same mpHFO with HFO detection colored in red. (k/l/m) An 

example predicted non-mpHFO presented in the same fashion as the mpHFO example. Note the presence of a 

spike-wave activity in EEG in the mpHFO but not in the non-mpHFO. 

 

Figure 3. Investigating potential heterogeneity of HFO morphology based on variables. (a) Visualization of 

the latent space for HFOs, color-coded by different recording sites/types (UCLA SEEG, UCLA grid/strip, and 

Detroit grid/strip) on a specific fold. (b) Across five-fold, the classifiers trained using the actual recording 

sites/type labels (Real) did not show significantly better accuracy than those trained by using the permuted labels 

(Random). (c) Visualization of the latent space for HFOs color-coded by different sexes (male and female) on a 

specific fold. (d) Across five-fold, the classifiers trained using the actual sex labels (Real) did not show 

significantly better accuracy than those trained by permuted labels (Random). (e) Visualization of the latent space 

for HFOs color-coded by different age groups (0-5, 6-10, 11-15, 16-20, and 21+) on a specific fold. (f) Across 

five-fold, the classifiers trained using the actual age group labels (Real) did not show significantly better accuracy 

than those trained by label permuted data (Random). (g) Visualization of the latent space for HFOs color-coded 

by different pathologies (HS, FCD, Tumor, and Others) on a specific fold. (h) Across five-fold, the classifiers 

trained using actual pathology labels (Real) did not show significantly better accuracy than those trained by label-

permuted data (Random).  

 

Figure 4. Morphological investigations of HFOs from various anatomical regions. (a) Visualization of the 

latent space for HFOs from preserved brain regions of post-surgical, seizure-free subjects, color-coded by 

anatomical locations (frontal, temporal, parietal, occipital, and limbic regions) on a specific fold. (b) Across five-

fold, the classifiers trained using actual anatomical location label (Real) showed significantly better (p = 6.67e-10) 

accuracy than those trained by permuted label (Random) (Real mean=0.286, std= 0.046, Random mean = 0.230, 

std= 0.033). (c) Averaged confusion matrix on the test set across five trials and five-fold (n=25 trials) using actual 

anatomical locations for HFOs from preserved brain regions of subjects who achieved postoperative seizure 

freedom. Note that HFOs from the occipital region were distinguishable. (d) Averaged time-frequency plots for 

each anatomical location for HFOs from each brain region. Note that HFOs from the occipital region exhibited 

distinct features on the time-frequency plot. (e) Visualization of the latent space for HFOs from SOZ channels, 

color-coded by anatomical locations. (f) Across five-fold, for HFOs from SOZ channels, the classifiers trained 

using the anatomical location label (Real) did not show significantly better (p = 0.090) accuracy than those trained 
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by permuted label (Random) (Real mean=0.241, std=0.043, Random mean = 0.23, std=0.027). (g) Averaged 

confusion matrix on the test set across five trials and five-fold (n=25) using actual anatomical locations for HFOs 

from SOZ channels. Note that HFOs from the SOZ were indistinguishable from any anatomical origin. (h) 

Averaged time-frequency plots for each anatomical location for HFOs from the SOZ channels. Note that HFOs 

from the SOZ exhibited similar features within time-frequency plots across the anatomical regions.  

 

Figure 5. Disentanglement of the latent space to establish neurophysiological characteristics of pathological 

HFOs (mpHFOs). (a) Pathological dimension visualization. This panel illustrates VAE-identified latent space, 

which enables separation between mpHFOs and non-mpHFOs. (b) A traversal from the lower to the upper 

percentile of this dimension revealed morphological evolution from non-mpHFO to mpHFO characteristics for 

both mpHFO (orange) and non-mpHFO (blue) representatives in the decoded output, depicted in the image 

sequence. (c) Power trend within the pathological dimension at the population level. The box plot aggregates the 

percentage of power within the designated pathological template (the "hanging bell shape") region of decoded 

images, showing an ascending trend with higher values, as indicated by the fitted median line. (d) Distribution of 

model probability scores for each sample. The red circles indicate the mean probability scores, showing increased 

confidence in the model as the value of the pathological dimension increases. (e) Peak frequency dimensional 

visualization. A similar visualization of another dimension is shown. This latent space represents the peak 

frequency of HFOs. (f) The output of the decoder traversing the dimension, displayed in the image sequence, 

showed a descending trend in peak frequency from upper to lower percentiles of the value of that dimension. (g) 

At the population level, the box plots indicated a negative correlation between the peak frequency dimension 

value and the peak frequency in decoded images, with a trend line fitted from the median of each box. (h) 

Distribution of model probability scores for each sample. The red circles indicate the mean probability scores, 

showing the average confidence of perturbed events was around 0.5 (unchanged). (i) Slow-wave dimension 

visualization. This latent space represented the slow-wave component of HFOs at 10-20 Hz, separated by mpHFO 

and non-mpHFO prediction. (j) The output of the decoder traversing the dimension, displayed in the image 

sequence, showed an increased trend in slow wave power from lower to upper percentiles of the value of that 

dimension. (k) At the population level, the box plot demonstrated a positive correlation between slow-wave 

dimension values and slow-wave power in decoded images, with a line fit illustrating the median trend. (l) Model 

probability scores distribution corresponding to each sample, where the mean of the probability marked as red 

circles, showed the average confidence of perturbed events was around 0.5. 

 

Figure 6. Clinical validation:  resection status of pathological HFOs (mpHFOs) helps predict postoperative 

seizure outcomes. (a) AUCs (area under the curve) of logistic regression (a single-variable classifier) using 

resection ratios as a variable to predict postoperative seizure freedom are shown based on different types of HFO 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.10.24310189doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.10.24310189
http://creativecommons.org/licenses/by/4.0/


 

resection ratios: HFO (unclassified HFO detection), spkHFO (HFO with spike), and mpHFO (pathological HFO 

defined by VAE). (b) AUCs from multivariable logistic regression models with different types of HFO resection 

ratios as the main predictive variable while incorporating subject-wise demographic information (baseline 

demographics: age and sex) are shown. As an additional predictive variable, the resection status of SOZ was also 

included. Note that combining the baseline demographics, SOZ resection status, and resection ratio of mpHFO 

provided the most favorable classification performance (base+soz+mpHFO, AUC=0.72). (c) The mean F1 scores 

(F1) and standard error of the mean for the random forest models, trained on the training subjects using five-fold 

cross-validation and evaluated on the test subjects across the five folds and using different features, are shown. 

Note that the resection ratio of mpHFO achieved a comparable predictive performance compared to the current 

clinical standard (SOZ resection status). By combining all the features (baseline demographics, mpHFO resection 

ratio, and SOZ resection status), the model achieved high performance with an F1 score of 0.812 ± 0.078. 
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Table 1: Patient Demographics 
    UCLA Detroit All 

Number of patients 50 135 185 
Median age in years (range) 14.5 (2-28)  12.0 (4-44)  13 (2-44) 
Proportion of female (%) 24 (48.0%) 67 (49.6%) 91 (49.2%) 
Proportion of grid case (vs. SEEG)  (%) 32 (64.0%) 135 (100.0%) 167 (90.3%) 
Sampled hemisphere (%) 

  Left 21 (42.0%) 61 (45.19%) 82 (44.3%) 
Right 11 (22.0%) 51 (37.78%) 62 (33.5%) 
Both 18 (36.0%) 23 (17.04%) 41 (22.2%) 

Seizure onset zone 
  Frontal 24 42 66 

Temporal 16 63 79 
Parietal 22 49 71 

Occipital 4 23 27 
Limbic 18 59 77 

Patients who underwent resection
# 28 (56.0%) 135 (100%) 163 (88.1%) 

Patients with postoperative seizure-freedom (%)
# 15 (53.6%) 95 (70.4%) 110 (67.5%) 

Pathology (%)* 
  Focal cortical dysplasia 18 (64.29%) 49 (36.3%) 67 (41.1%) 

Hippocampal sclerosis 0 (0.0%) 11 (8.15%) 11 (6.7%) 
Tumor 3 (10.71%) 28 (20.74%) 31 (19.0%) 
Others 7 (25.0%) 47 (34.81%) 54 (33.1%) 

*Pathology was considered only in resected patients. 
  #Only three patients in SEEG were resected. Therefore, they were excluded for the outcome analysis. 
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Table 2: Spatial distribution of intracranial electrode sampling 
     

          

Region of Interest (ROI) 
No. of 

contacts 
Left 

No. of 
contacts 

Right 
No. of 

contacts 
Total 

Proportion of 
Grid contacts 

(%) 
Proportion of 

SEEG 
contacts (%) No. of SOZ 

contacts 
No. of non-

epileptogenic 
contacts* 

HFO rate at 

SOZ (/min)
# 

HFO rate at non-
epileptogenic 

contacts (/min)
# 

Frontal: 3197 3074 6271 95.39 4.61 437 2943 3.60 1.08 
caudalmiddlefrontal 477 400 877 97.38 2.62 52 433 2.77 1.10 

frontalpole 2 11 13 100 0 1 3 NA NA 
paracentral 71 99 170 98.82 1.18 12 80 5.68 1.31 

parsopercularis 325 203 528 95.27 4.73 33 286 3.14 1.31 
parsorbitalis 137 162 299 97.99 2.01 31 118 2.24 1.28 

parstriangularis 265 295 560 92.32 7.68 51 250 3.09 1.05 
precentral 920 797 1717 95.92 4.08 71 933 6.35 1.03 

rostralmiddlefrontal 613 629 1242 95.09 4.91 116 508 2.84 1.04 
superiorfrontal 387 478 865 93.18 6.82 70 332 3.26 1.00 

Temporal: 2707 2128 4835 93.9 6.1 464 1806 2.99 1.05 
fusiform 481 391 872 97.82 2.18 108 358 2.56 1.02 

inferiortemporal 469 395 864 97.11 2.89 92 296 3.76 1.06 
middletemporal 720 526 1246 89.41 10.59 99 440 2.51 0.98 

superiortemporal 876 652 1528 92.87 7.13 115 618 3.35 1.04 
temporalpole 158 154 312 100 0 46 94 2.74 1.52 

transversetemporal 2 10 12 16.67 83.33 4 0 NA NA 
Parietal: 2231 1936 4167 96.02 3.98 393 1853 5.40 1.22 

inferiorparietal 314 353 667 95.95 4.05 81 208 3.67 1.19 
postcentral 832 661 1493 97.19 2.81 91 783 7.17 0.94 
precuneus 137 142 279 96.42 3.58 31 129 4.91 1.14 

superiorparietal 237 173 410 92.2 7.8 48 125 4.42 1.54 
supramarginal 711 607 1318 95.83 4.17 142 608 5.83 1.44 

Occipital 806 670 1476 98.98 1.02 135 635 3.19 0.81 
cuneus 79 62 141 100 0 17 54 4.04 0.87 

lateraloccipital 504 356 860 98.84 1.16 78 355 3.13 0.87 
lingual 219 249 468 99.79 0.21 40 226 2.95 0.68 

Limbic 808 708 1516 82.19 17.81 241 495 2.07 1.28 
Hippocampus 32 28 60 0 100 9 7 1.65 1.23 

amygdala 18 14 32 0 100 0 4 NA NA 
caudalanteriorcingulate 26 28 54 55.56 44.44 5 18 3.51 0.66 

entorhinal 164 169 333 99.7 0.3 83 89 1.86 2.15 
insula 40 52 92 0 100 17 21 1.22 0.63 

isthmuscingulate 66 59 125 97.6 2.4 8 55 0.73 1.62 
lateralorbitofrontal 226 179 405 94.81 5.19 50 155 2.42 1.09 
medialorbitofrontal 49 36 85 94.12 5.88 8 37 1.66 1.25 

parahippocampal 104 80 184 96.2 3.8 44 57 1.69 1.37 
posteriorcingulate 68 48 116 89.66 10.34 10 49 4.77 0.93 

rostralanteriorcingulate 15 15 30 56.67 43.33 7 3 2.67 NA 
*Non-epileptogenic contacts were defined as EEG contacts covering spared brain regions in patients who achieved postoperative seizure freedom  

 
# ROIs with contacts less than 5 were removed from the analysis 
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Supplementary Figure 1. VAE training and HFO classification workflow. 
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Supplementary Figure 2. Model interpretation analysis workflow.  
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Supplementary Figure 3. Building postoperative seizure outcome prediction model using HFO 

information  
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Supplementary Figure 4. Latent space comparison: This figure illustrates the 2D projection of the 

latent space, color-coded according to classifications from a VAE (mpHFO, non-mpHFO, and 

mArtifact) and from conventional supervised methods (spkHFO, non-spkHFO, and Artifact), evaluated 

across five folds. It highlights the alignment between VAE predictions and conventional supervised 

classifications, demonstrating that classifiers developed from unsupervised learning can achieve 

performance comparable to those developed from supervised methods. 
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Supplementary Figure 5. mpHFO shares similar morphology across the variables. The 

morphological analysis of mpHFOs' time-frequency plot is shown based on subgroups, each 

corresponding to a specific variable. Consistent morphological features of mpHFOs are seen across the 

subgroups. mpHFOs have higher values throughout the HFO band (> 80 Hz), around the center point 

(0 ms, where HFOs were detected) than non-mpHFOs; furthermore, higher values of mpHFOs at the 

sub-HFO band (10-80 Hz) throughout the time window compared to non-mpHFOs are seen.   
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Supplementary Figure 6. Conventional physiological non-mpHFO characteristics across different 

anatomical locations. This figure displays multiple aspects of HFOs: the HFO power ratio in the first 

column, HFO peak frequency in the second column, STE HFO length in the third column, and MNI 

HFO length in the fourth column. The HFO power ratio is defined as the ratio of the signal power within 

±50ms of the HFO center to the power within the entire time window of ±285ms. The peak frequency is 

identified as the frequency component that has the most power within the 80-300 Hz range. Both STE 

and MNI HFO lengths are measured in milliseconds as the duration of the HFO event. Each histogram's 

mean value is annotated within its respective panel. Additionally, statistical comparisons revealed that 

physiological HFOs in the occipital region exhibited lower power (p<0.001, one-sided t-test), higher 

peak frequency (p<0.001, one-sided t-test), and shorter durations in both STE and MNI HFOs (p<0.001 

for all, except in the frontal location where p<0.01, one-sided t-test) compared to those in other 

anatomical locations. 

. 
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Supplementary Figure 7. Full latent space visualization across five folds. This visualization presents 

the distribution of each latent dimension, trained within five folds and depicted by separating mpHFO 

(in orange) and non-mpHFO (in blue). It is evident that mpHFO and non-mpHFO exhibit significant 

separation in some dimensions while others show less distinction. 
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Supplementary Figure 8. Ablation study on different latent dimensions. The left panel shows the 

distribution of dimensions for a VAE model trained with a latent dimension of 8, across five folds. The right panel 

displays the distribution for the same model configuration but with a latent dimension of 16. Several dimensions 

in the 16-dimension model do not spread well, indicating that these dimensions are underutilized during training. 

This compactness suggests a potential reduction in dimensionality. Based on these observations and the more 

effective utilization of dimensions seen in the boxplot for the 8-dimension model, we chose to proceed with a 

latent dimension of 8, as it demonstrates optimal use of all available dimensions during training.  
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This is the new figure using threshold = 0 

Supplementary Figure 9. Ablation study on predicting surgical outcomes using different sample 

sizes for training GMM models. We conducted experiments using different stratified sampling to train 

GMM models and investigated how capping the number of samples per subject used to train the artifact 

rejection and mpHFO classification impacts surgical outcomes prediction performance metrics such as 

AUC and F1 score. We compared models capped at 10,000 or 5,000 samples per subject for artifact 

rejection and 2,000 or 1,000 samples for mpHFO classification. (a) Comparison of AUC scores for 

mpHFO models trained from different stratified sampling sizes against those from spkHFO models. (b) 

A similar comparison for base.+soz+mpHFO against base.+soz+spkHFO. (c) Comparison of F1 scores 

for mpHFO models trained from different stratified sampling sizes against those from spkHFO models. 

(d) Similar procedure as in (c), Similar comparison for base.+soz+mpHFO against base.+soz+spkHFO. 
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Supplementary Figure 10. Ablation study on predicting surgical outcomes by excluding patients 

with fewer HFOs: We conducted an ablation study to assess the impact of excluding patients with a 

smaller number of high-frequency oscillations (HFOs) on the performance of our Random Forest model 

in predicting post-surgical outcomes. In addition to the results presented in the main manuscript, which 

included all patients, we compared the F1 scores for predicting post-surgical outcomes by selectively 

including patients with a minimum of 10, 20, 30, 40, and 50 HFOs. The F1 scores were plotted for 

different feature sets used in constructing the Random Forest model. The results indicate that the F1 

score remains consistent even when including only patients with more than 50 HFOs, demonstrating the 

robustness of our self-supervised framework. 
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Supplementary Table 1 

     

     

Dataset No. Event No. Artifact No. spkHFO 
No. non-

spkHFO 

STE Detector 

Detroit 

grid/strip 
35610 4374 20481 10755 

UCLA 

grid/strip 
103360 14578 54455 34327 

UCLA SEEG 35861 7886 21748 6227 

All STE HFOs 174831 26838 96684 51309 

MNI Detector 

Detroit 

grid/strip 
36279 6494 26953 2832 

UCLA 

grid/strip 
124064 42848 69266 11950 

UCLA SEEG 351236 275550 50434 25252 

All MNI 

HFOs 
511579 324892 146653 40034 
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Supplementary Table 2 

 

Feature (s) Accuracy F1 

HFO 0.559(0.089) 0.686(0.081) 

spkHFO 0.553(0.141) 0.665(0.134) 

mpHFO 0.657(0.051) 0.743(0.056) 

base.+ soz 0.637(0.106) 0.734(0.090) 

base.+ spkHFO 0.624(0.113) 0.725(0.108) 

base.+ mpHFO 0.668(0.111) 0.769(0.096) 

base.+ soz + spkHFO 0.719(0.126) 0.795(0.115) 

base.+ soz + mpHFO 0.732(0.084) 0.812(0.078) 
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Supplementary Figure 3    

     

  STE    MNI 

Filter freq (Hz) [80, 300]  Filter freq (Hz) [80, 300] 

RMS window (s) 0.003  Epo CHF (s) 60 

Min window (s) 0.006  Per CHF (%) 0.95 

Min gap (s) 0.01  Min win (s) 0.01 

Min osc (count) 6  Min gap (s) 0.01 

RMS thres (in SD) 5  Thrd perc (%) 0.999999 

Peak thres (in SD) 3  Base seg (s) 0.125 

Epoch len (ms) 600  Base shift (0-1) 0.5 

   Base thrd (0-1) 0.67 

   Base min (%) 5 

   Epoch time (ms) 10 

   Seed 0 
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