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Abstract 

Background: The Kisspeptin system plays a critical regulatory role in female reproductive 

functions. However, its role is not yet investigated in primary female infertility (PFI).  

Materials and Methods: This is a case-control study of consenting primarily infertile (54) and 

fertile (50) Nigerian females aged between 20 and 44 years who sought consult at University 

College Hospital, Ibadan. Basic clinical and demographic data were obtained from the participants 

using a clinical proforma. Five ml of blood were collected by venepuncture for kisspeptin, KISS1, 

and KISS1R gene expression analysis within the plasma using ELISA and RT-qPCR techniques. 

The menarcheal age and BMI of the cases and controls were also investigated as possible 

predictors of PFI. 
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Result: There was no significant change in the relative expression of Kisspeptin, KISS1, and 

KISS1R genes (p>0.05) in the plasma of the primarily infertile women (PIW) compared to the 

fertile women (FW). PIW with early menarche showed a significantly lower level of Kisspeptin 

compared to PIW with normal menarche (p=0.03). Plasma Kisspeptin levels in PIW showed a 

weak negative correlation (r = -.305; p=0.039) and a good predictive model for KISS1 gene 

expression (p=0.001; r=0.458). There was a significant difference in KISS1 gene expression in 

PIW when compared based on their menarcheal age categories (p=0.04).  

Conclusion: Kisspeptin levels, KISS1, and KISS1R gene expression levels in the blood may not 

be useful for diagnosing PFI. However, menarcheal age should be investigated as an additional 

diagnostic indicator for PFI.  

Keywords: Primary female infertility, Nigeria, Menarcheal age, BMI, KISS1 gene, KISS1R gene, 

Kisspeptin level, Gene expression. 

Introduction 

Infertility, a complex but common disease, is a worldwide problem affecting 8 - 12% of couples 

during their reproductive lives [1]. Sub-Saharan Africa has been reported to have one of the highest 

prevalences of primary (>3%) and secondary (11.6%) infertility in the world [2]. This trend can 

only be changed if the causes of infertility in the population could be identified, especially as 

Assisted Reproductive Technology (ART) is relatively inaccessible and very expensive for couples 

in developing countries [3]. The causes of primary infertility (not being able to be pregnant after at 

least 1 year of having unprotected sex) have been highlighted in clinical studies over the years [4,5] 

and grouped mainly as either male factor, female factor, combined or unknown factors vary across 

different populations [1]. The International Glossary on Infertility and Fertility Care has defined 

female infertility as infertility caused primarily by female factors encompassing: ovulatory 

disturbances; diminished ovarian reserve; anatomical, endocrine, genetic, functional or 

immunological abnormalities of the reproductive system; chronic illness; and sexual conditions 

incompatible with coitus [6]. It accounts for about 37% of infertility cases among couples [7]. 

There is mounting evidence that 10% of infertile females have genetic problems [8]. Several studies 

have tried to establish the genetic basis of female infertility, but some of these findings have been 
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faulted due to sample size issues, contradictory results, and study peculiarities [9–12]. Despite these 

findings, genetic causes of female infertility remain unidentified for most patients [13]. Identifying 

the most promising genetic variants, mutations, or polymorphisms may provide clinically relevant 

leads with potential for therapeutic intervention, for primarily infertile women (PIW). As 

additional genes are discovered, and the causes of some infertility disorders become better 

understood, the management and treatment of female infertility could be improved. 

Genome-wide association studies suggest that genetic causes of female infertility could be rare 

mutations in specific genes and common variations at many sites in the genome, each with a small 

effect but cumulating in the condition [9]. A critical challenge is the significant number of potential 

genes that may have an influence on human reproductive function, and which contribute to female 

infertility. Only a few numbers of genes or genetic disorders are currently substantially linked to 

infertility. The scenario is fast changing because of the human genome's completion and 

advancements in personalized medicine. In fact, 10 to 15 new gene tests are often introduced each 

year to the list of clinical genetic assays [13]. Thus, a detailed investigation of the genetic basis of 

female fertility will provide crucial information for the prevention, diagnosis, and treatment of 

female infertility. 

Our understanding of the physiology of the hypothalamic-pituitary-gonadal axis, reproduction, and 

fertility was fundamentally altered by the discovery of Kisspeptin [14–16], which acts as a ligand for 

KISS1R (GPR-54) [17,18] and produced by the KISS1 gene after a proteolytic process [19]. The 

KISS1 gene was first identified as a metastasis-suppressing gene  before its discovery as a major 

player in reproductive physiology. [17] 

It has been established that Kisspeptin-KISS1R signalling directly affects how GnRH secretion is 

regulated. Thus, Kisspeptin and KISS1R's interaction is crucial for controlling the start of puberty 

and the hypothalamic-pituitary-ovarian axis [20,21]. Inability to reach pubertal development, 

defective gametogenesis, and a lack of an estrous or menstrual cycle in both mice and humans 

respectively are some of the reproductive features reportedly caused by mutations in the KISS1R 

gene [22,23]. Deletions and mutations of KISS1R are associated with severe deficits in the secretion 

of gonadotropins including luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 

[22,24]. Similar flaws have also been discovered in KISS1 knockout (KO) mice [16,25]. In humans, 
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Polycystic Ovarian Syndrome (PCOS), a female infertility risk factor, has been associated with 

low Kisspeptin levels and anomalies of both KISS1 and KISS1R genes [26]. Kallman syndrome 

and isolated hypogonadotropic hypogonadism have both been linked to KISS1R dysfunction 

(27,28). Infertility patients may potentially benefit from genetic molecular diagnosis involving the 

Kisspeptin system if more genetic studies show evidence of its function in human reproduction. 

This study investigated the expression patterns of KISS1 and KISS1R genes in the plasma of PIF 

compared to fertile females to determine the relationship between the pattern of expression of these 

genes and PFI. 

Materials and Methods 

Study design and location 

This study is an age-matched case-control study of Kisspeptin, KISS1 and KISS1R gene 

expression patterns in PIF. This study was carried out in the University College Hospital (UCH) 

Ibadan, Nigeria as a part of a larger study on the role of Kisspeptin system in primary female 

infertility amongst Southwestern Nigerian women. The study location was chosen by purposive 

sampling, while the study participants were recruited by random selection of patients who visited 

the Gynecology and Family Planning clinic of UCH Ibadan and met the study's inclusion criteria 

for both the cases and control groups respectively.  

Sociodemographic, anthropometric and clinical characteristics of study participants 

The sociodemographic, anthropometric and clinical characteristics of the study participants were 

assessed using a clinical proforma. The development, validation and administration of this 

proforma has been documented in our earlier study together with the associated participants’ 

characteristics [27].  

Determination of menarcheal age and BMI of study participants 

Menarcheal age and BMI of study participants were also assessed as proportional and continuous 

variables using a clinical proforma and has been fully described in our previous study [27]. 

Menarcheal age classification used in this study was according to Glueck et al. [28]: early menarche 

(≤10 years), normal menarche (11-15 years), and late menarche (≥16 years); while the BMI 
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Classification used was based on the WHO and CDC classification: underweight (<18.5), normal 

weight (18.5-24.9), overweight (25-29.9), obese (30-34.9), severely obese (35-39.9), morbidly 

obese (>40). However, this present study established the relationship between the Kisspeptin, 

KISS1, and KISS1R and how their relationship with menarcheal age and BMI of PIF and fertile 

females. 

Sample size determination 

The sample size for the KISS1 and KISS1R gene expression was determined using the 

Schlesselman equation for case-control studies and the addition of 10% to cover for attrition [29]. 

Considering an existing study (30) for sample size determination, the minimum sample size 

required for this study was 22 subjects each for both case and control groups. G-power software 

version 3.1 was used to determine the minimum sample size needed to determine significant 

statistical differences in the plasma Kisspeptin levels of the cases and control. The sample size 

with an allocation ratio of 1 was determined as two-way statistical testing at the power of 80% and 

degree of freedom of 0.6 with α probability of error of 0.05. This generated a sample size of 45 

each for the cases and controls. However, with the 10% attrition ~ 5, the total sample size required 

for the study of the plasma Kisspeptin levels is 45 +5 = 50 each for the case and control groups.  

Participant recruitment and selection criteria 

The study recruited females diagnosed with primary infertility as cases, while the control subjects 

were apparently healthy and fertile females. The study participants were between 20 to 44 years 

old and were Nigerian citizens with no history of foreign phylogeny. For the cases, only females 

who have never conceived and have regular (2 - 3 days per week) and unprotected intercourse with 

their partners were recruited. For the controls, only apparently healthy females who have had at 

least a live birth within the last year (as at the time of recruitment) were recruited. 

Blood sample collection  

The WHO phlebotomy protocol was followed in this study [31]. A well-trained phlebotomist was 

recruited to collect a single 5 ml blood sample by venepuncture from both the cases and controls 

for KISS1, KISS1R and Kisspeptin analysis. The blood samples collected from each study 
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participant were divided into two portions and put into anticoagulant bottles for ELISA and qPCR 

analysis, respectively.  

Determination of plasma Kisspeptin levels 

The blood plasma Kisspeptin levels were determined using MELSIN Human Kisspeptin ELISA 

kit (catalog number: EKHU-2171) with an assay range of 0-16 ng/mL, 0.1ng/mL sensitivity, intra-

assay CV of <10%, and inter-assay CV of <15%. Patient blood samples were collected in EDTA 

containers and centrifuged for 30 minutes at 3000g at 2-8°C within 30 minutes. The plasma was 

retrieved and stored at -20°C until analysis. The stored plasma was thawed, and all sample reagents 

(20x wash solution - diluted with distilled or deionized water 1:20) were prepared before starting 

the assay procedure. The standards and samples were added in duplicate to the ELISA plates. The 

standard and testing sample wells were set, and 50µl and 10µl were added to the standard wells, 

respectively. 10µl sample diluent was added to the testing sample well, and 100µl of HRP-

conjugate reagent. The wells were covered with an adhesive strip, incubated for 60 minutes at 

37°C, aspirated, and repeatedly washed five times using a wash solution (400 µl). After the last 

wash, the remaining wash solution was removed by aspiration or decanting. The plates were 

inverted and blotted against clean paper towels. Chromogen solution A (50 µl) and Chromogen 

solution B (50 µl) were added to each well, mixed, and incubated for 15 minutes at 37°C. The 

plates were protected from light. 50 µl stop solution was added to each well with a gentle tap to 

the plate for thorough mixing before reading the Optical density (OD) at 450nm using a microtiter 

plate reader within 15 minutes. The standard curve was used to determine the amount of Kisspeptin 

in the samples. The standard curve was generated by plotting the average OD (450nm) obtained 

for each of the standard concentrations on the vertical (Y) axis versus the corresponding 

concentrations on the horizontal (X) axis. The concentration of the samples was determined by 

locating the OD value on the Y-axis and extending a horizontal line to the standard curve to find 

a point of intersection. The standard concentration was 16, 8, 4, 2, 1 and 0 ng/mL. 

KISS1 and KISS1R RNA Isolation 

RNA was isolated from the blood using the Jena Bioscience total RNA purification Kit (catalog 

number: PP-210S). To lyse the blood cells, 500 µl of lysis buffer (2-ME added) was added to 200µl 

of noncoagulating blood sample in a microcentrifuge tube and vortexed for 10 seconds. For column 
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activation, a spin column was placed into a 2 ml collection tube and added a 100 µl activation 

buffer for centrifugation at 10000g for 30 seconds. The flowthrough was discarded while the lysate 

was added a 300 µl isopropanol and vortexed. The mixture was then transferred directly into the 

spin column and centrifuged at 10000 for 30 seconds before discarding the flowthrough. To wash 

the primary column, 700 µl of blood washing buffer (ethanol added) was applied to the spin 

column and centrifuged at 10000g for 30seconds, discarding the flowthrough. This step was 

repeated with a secondary washing buffer (ethanol added) before another 2 minutes of 

centrifugation at 10000g to remove residual ethanol. To elute the RNA, the spin column was then 

placed into a DNase/RNase-free microcentrifuge tube and added 40-50 µl elution buffer to the 

center of the column membrane before incubation for one minute. Centrifugation was performed 

at 10000g for one minute to elute the RNA. The remaining genomic DNA was removed from the 

RNA preparations using the Jena Bioscience DNA Removal kit (Catalogue number: PP-219). The 

integrity of the RNA was verified by 1% agarose gel electrophoresis. The isolated RNA was stored 

at -20 or -80°C until further analysis.  

KISS1 and KISS1R gene detection using conventional PCR  

As a confirmatory test for the presence of the target DNA, a conventional PCR was performed. 

According to the manufacturer's specification, the extracted total RNA was retro-transcribed and 

amplified using One Taq One-Step RT-PCR kit (catalog number NEB E5315S) by New England 

Biolabs incorporation. The MJ research Peltier thermal cycler polymerase chain reaction machine 

used selected primers to target lymphocyte genes. The PCR was performed in a 50 μl volume 

reaction mixture containing 25 μl volume of one Taq one-step reaction master mix (2x), 2 μl 

volume of One Taq one-step enzyme mix (2x), 2 μl volume of each gene-specific forward primer 

(10 μM), 2 μl volume of each gene-specific reverse primer (10 μM), 9 μl volume of nuclease-free 

water and 10 μl volume of the RNA template was added. Negative control samples for the RT-

PCR consisted of a mixture to which all reagents were added except RNA. The PCR was started 

immediately as follows: Reverse transcriptase at 48°C for 30 seconds, initial denaturation at 94°C 

for 1 minute, denaturation at 94°C for 15 seconds, annealing at Tm - 5°C (the lowest melting 

temperature of each set of KISS1 gene) for 30 seconds, extension at 68°C for 1 minute, 

denaturation step for 39 cycles, final extension at 68°C for 5 minutes and final holding at 4°C, 

forever. The gene nucleotide sequence (5'- 3') for all the primers used are listed in Table 1. The 
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gel was prepared with 1gram of agarose gel powder to 50ml of TBE in a bottle which was melted 

for 2mins and poured on the plate, while TBE was prepared with 10ml of the stock to 490ml of 

distilled water. For gel electrophoresis, 1ul of sybr DNA stain was added on a clean foil paper and 

a 3ul of the template was added and mixed. The mixture was dispensed into the gel-containing 

wells. 

KISS1 and KISS1R cDNA synthesis 

The cDNA was synthesized from the isolated RNA using the SCRIPT cDNA synthesis Kit from 

Jena Bioscience (catalog number: PCR-511.0001). Water, RNA, and primers were mixed before 

adding other components (Reverse transcriptase, RT buffer, dNTP mix, stock solution, hexamers, 

oligo-(dT)20 primer, RNase inhibitor, positive control RNA, RNase-free water), which were added 

to a nuclear-free microtube and mixed by gentle pipetting. To prepare the RNA template/primer 

mix, RNase-free water, RNA template, and primer were mixed according to the kit's 

recommendation and incubated at 65-70°C for 6 mins and placed a room temperature to initiate 

denaturation and prime annealing. RNase-free water SCRIPT RT, buffer, dNTP mix, DTT stock 

solution, and RSA inhibitor and sample RT were added to a nuclease-free microtube and mixed. 

A 10µl was added and mixed before another incubation at 50°C. The quantity and purity of the 

cDNA were evaluated through spectrophotometry. 

Determination of KISS1 and KISS1R gene Expression  

The gene expression levels of KISS1 and KISS1R were determined by quantitative Polymerase 

Chain Reaction (qPCR) using qPCR SybrMaster (Jena Bioscience PCR-372S, PCR-372L). A 

master mix was prepared by mixing all the components (qPCR SybrMaster, primer forward, primer 

reverse, PCR-grade water) as specified in the kit protocol. The master mix was vortexed 

thoroughly to assure homogeneity and the mix was dispensed into real-time PCR tubes or wells of 

the PCR plate. Sample/template cDNA (x μl) was added to each reaction vessel containing the 

master mix, and the tubes were sealed. The microtubes were centrifuged before cycling to remove 

possible bubbles. Pipet with sterile filter tips were used, and exposure of the master mix to light 

was minimized. No-template controls were included in all amplifications. The cycle conditions 

were as follows: Initial denaturation and polymerase activation – x cycles at 95°C for 2mins, as 

determined optimal; denaturation – 35-45x cycles at 95°C for 15 sec; annealing and elongation - 
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35-45x cycles at 60-65°C for 1 min. A random expression test was run for a few cases and control 

samples to estimate significant differences between groups and determine the optimal PCR cycle 

at which fluorescence gave a better exponential cycle. Sampling and analysis time differences did 

not exceed 48 hours to ensure the maximum yield of genomic DNA and gene expression. 

Table 1: The gene nucleotide sequence for KISS1, KISS1R and GAPDH primers  

Primers  Sequence 

KISS1 forward TGAACTCACTGGTTTCTTGG 

KISS1 reverse CGAAGGAGTTCCAGTTGTAG 

KISS1R forward CTTCATGTGCAAGTTCGTC 

KISSIR reverse  CACCAGGAACAGCTGGAT 

GAPDH forward GGCTGCTTTTAACTCTGGTA 

GAPDH reverse GACTGTGGTCATGAGTCCTT 

Data Analysis  

All data were recorded in Microsoft excel, sorted, cleaned, and then transferred to IBM SPSS 

version 25 for analysis. The group differences in KISS1 and KISS1R gene expression levels and 

plasma Kisspeptin levels were determined using an independent t-test, while the association 

between these variables was determined by Spearman correlation and multiple regression analysis. 

Association between the BMI, menarcheal age and the study participants' gene expression levels 

were also determined. All data were screened for normality before analysis using the Shapiro-

Wilks's test. Data were considered significant at p< 0.05.   

The similarity in the distribution of mean Kisspeptin levels among the categories of primary 

infertile women based on BMI and menarche classifications were tested using one-way ANOVA 

while BMI and menarche subgroup analyses for Kisspeptin, KISS1, and KISS1R gene were 

analyzed using the Kruskal-Wallis’s test. Post hoc tests were not performed for Kisspeptin levels 

in PIW because at least one group has fewer than two cases. The group means of Kisspeptin levels 

and mean fold changes in KISS1 and KISS1R genes were used for the graphical representation of 

the category distribution analysis instead of the median due to the lack of extreme values and the 

varying sample sizes of within the sub-groups.  
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A correspondence analysis with symmetrical normalization was done to determine the relative 

association between menarche and BMI subtypes in both fertile and primary infertile women. The 

cross-tabulated frequencies between the variables were used as weight cases for each group 

analysis. BIPLOT could not be drawn for the corresponding analysis of BMI and menarche in 

fertile women because there is only one plot dimension because of zero values in some variable 

categories. For the correspondence analysis of primary infertility whose biplot was drawn, on at 

least one case of the weight variable, the value was zero. This study did not consider the principal 

component analysis (PCA) on the Kisspeptin, Kiss1 and Kiss1R gene variables. The exploratory 

PCA performed with Varimax rotation method showed that observed data did not meet the Kaiser-

Meyer-Olkin test for sampling adequacy and showed a low correlation of <0.3 for all components. 

Ethical Considerations 

The study protocol was approved by the University of Ibadan/University College Hospital 

(UI/UCH) Ethics Committee (Assigned number: UI/EC/20/0220; Registration Number: 

NHREC/05/01/2008a). All the necessary information regarding the study (objectives, 

requirements of the participants, and duration of the study) were made available to all prospective 

study participants on an information sheet in English (translated verbally to the native language 

when requested) to ensure an informed decision to participate in the study. Informed consent was 

obtained from all the study participants. The study complied with the ethical principles for medical 

research involving human subjects according to the World Medical Association Declaration of 

Helsinki.  

Results 

Plasma Kisspeptin, KISS1 gene and KISS1R gene expression levels in fertile and primary 

infertile women  

The mean plasma Kisspeptin levels in both the FW and PIW were not significantly different 

(p=0.78) (Figure 1). The mean fold relative change in KISS1 and KISS1R gene expressions in 

both FW and PIW does not vary significantly (p=0.39 and 0.18 respectively) (Figure 1). 
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Figure 1: The plasma Kisspeptin levels and mean fold changes of KISS1 and KISS1R relative 

gene expressions in FW and PIW 

 

BMI subgroup analysis of Kisspeptin, KISS1 and KISS1R gene expression in fertile and 

primary infertile women 

There was no significant difference in the plasma Kisspeptin levels of FW (p=0.67) and PIW 

(p=0.56) based on their BMI classifications. The mean fold relative expression of KISS1 gene in 

FW and PIW based on their BMI classifications were not significantly different (p=0.57 

respectively). Also, no substantial change exists in the mean fold relative expression of KISS1R 

gene in FW (p=0.37) and PIW (p=0.76) based on their BMI classifications (Figure 2-4).  
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Figure 2: The distribution of mean Kisspeptin levels of FW and PIW according to BMI 

classification.  

 

Figure 3: The distribution of KISS1 gene expression in FW and PIW according to BMI 

classification.  
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Figure 4: The distribution of KISS1R gene expression in FW and PIW according to BMI 

classifications.  

Menarche subgroup analysis of Kisspeptin, KISS1 and KISS1R gene expression in FW and 

PIW 

There was no significant difference in the Kisspeptin levels of FW based on their menarche types 

(p=0.76). However, there was a slightly significant difference in the Kisspeptin levels of PIW 

based on their menarche categories (p=0.048). PIW with early menarche showed a significantly 

lower level of Kisspeptin compared to PIW with normal menarche (p=0.03). There was no 

significant difference in the mean fold relative expression of KISS1 gene in FW based on their 

menarche types (p=0.48). However, there was a significant difference in the mean fold relative 

expression of KISS1 gene in PIW according to menarche types (p=0.04). The mean fold relative 

expression of KISS1R gene in FW (p=0.85) and PIW (p=0.44) based on their menarche types 

showed no statistically significant difference (Figure 5-7). 
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Figure 5: The distribution of mean Kisspeptin levels of FW and PIW according to menarche type.  

 

Figure 6: The distribution of KISS1 gene expression in FW and PIW according to menarche type.  
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Figure 7: The distribution of KISS1R gene expression in FW and PIW according to menarche 

type.  

The relationship between BMI, menarche and Kisspeptin system (Kisspeptin, KISS1 and 

KISS1R genes) in FW and PIW 

Table 2 shows the correlation between BMI, menarche and Kisspeptin level, KISS1 and KISS1R 

genes. There exists no significant correlation (p>0.05) between BMI and Kisspeptin level, KISS1 

or KISS1R genes in both FW and PIW. Menarche shows a similar correlation trend (p>0.05) in 

both FW and PIW, except in fertile women where it shows a slightly significant moderate positive 

correlation with Kisspeptin levels (r=0.38, p=0.04). 

Table 2: Correlation between BMI, menarche and Kisspeptin levels, KISS1 and KISS1R 

genes. 

Parameters  Kisspeptin 

(ng/mL) 

KISS1 gene KISS1R gene 

FW PIW FW PIW FW PIW 

BMI 

(m/kg2) 

Pearson 

Correlation 

-.044 .062 .171 .136 .039 -.022 

 Sig. (2-

tailed) 

.819 .681 .327 .346 .822 .880 

 N 30 46 35 50 35 48 
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Menarche 

(years) 

Pearson 

Correlation 

.379 -.030 -.122 .173 -.072 -.116 

 Sig. (2-

tailed) 

.039 .845 .485 .229 .683 .430 

 N 30 46 35 50 35 48 

N = sample size; BMI = body mass index; FW = fertile women; PIW = Primarily infertile women 

Prediction analysis for Kisspeptin levels, KISS1 and KISS1R gene expression with BMI and 

menarche using multiple regression analysis  

The regression prediction of Kisspeptin levels, KISS1 and KISS1 gene expressions with BMI or 

menarche showed no significant model for both FW and PIW (p>0.05) (Table 3).  

Table 3: Prediction of Kisspeptin, KISS1 and KISS1R gene expression in FW and PIW using 

BMI and menarche 

Hypothesis Beta 

Coefficient 

R2 F t-value p-value Hypothesis 

supported 

FW 

BMI 

significantly 

predicts the 

mean fold 

changes in 

Kisspeptin  

-.001 .14 2.26 -.04 .12 No 

BMI 

significantly 

predicts the 

mean fold 

changes in 

KISS1 gene 

.001 .04 .68 .161 .52 No 

BMI 

significantly 

.00 .01 .1 .03 .91 No 
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predicts the 

mean fold 

changes in 

KISS1R 

gene 

Menarche 

significantly 

predicts 

mean fold 

changes in 

Kisspeptin  

.14 .14 2.26 2.11 .12 No 

Menarche 

significantly 

predicts 

mean fold 

changes in 

KISS1 gene 

-.001 .04 .68 -.11 .52 No 

Menarche 

significantly 

predicts 

mean fold 

changes in 

KISS1R 

gene 

-.001 .01 .1 -.07 .91 No 

PWI 

BMI 

significantly 

predicts the 

mean fold 

changes in 

-.01 .004 .10 .06 .91 No 
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Kisspeptin 

level 

BMI 

significantly 

predicts the 

mean fold 

changes in 

KISS1 gene 

.002 .05 1.32 1.07 .28 No 

BMI 

significantly 

predicts the 

mean fold 

changes in 

KISS1R 

gene 

-.001 .02 .34 -.033 .72 No 

Menarche 

significantly 

predicts 

mean fold 

changes in 

Kisspeptin 

levels 

-.01 .004 .1 -.03 .91 No 

Menarche 

significantly 

predicts 

mean fold 

changes in 

KISS1 gene 

.01 .05 1.32 1.31 .28 No 

Menarche 

significantly 

predicts 

-.01 .02 .34 -.12 .72 No 
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mean fold 

changes in 

KISS1R 

gene 

 

Correspondence analysis showing the relative association between menarche and BMI 

subtypes in PIW 

The two-dimensional correspondence analysis revealed no relationship between any of the 

menarcheal categories and BMI subtypes in PIW (Figure 8). 

 

Figure 8: A two-dimension correspondence analysis showing the relative association between 

menarche and BMI subtypes in PIW 
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The relationship between Kisspeptin levels, KISS1 and KISS1R gene expressions in FW and 

PIW 

There was no relationship between Kisspeptin levels and KISS1R in both PIW (r= .05, p = .78) 

and FW (r=0.09, p= 0.57) (Table 4 and 5). However, there was a weak negative correlation 

between the Kisspeptin levels and KISS1 gene expression in PIW (r=-.031, p=.04). The KISS1 

gene expression in FW showed a significant moderate positive correlation with KISS1R (r=.52, 

p<0.01) while it showed no significant relationship with KISS1R gene expression in PIW (r=-.09, 

p=.54). 

Table 4. Correlations between Kisspeptin levels, KISS1 and KISS1R gene expression levels in 

FW 

Variables Kisspeptin KISS1R KISS1 

Kisspeptin Pearson 

Correlation 

1 .054 -.151 

Sig. (2-tailed)  .778 .427 

N 30 30 30 

KISS1R Pearson 

Correlation 

.054 1 .518** 

Sig. (2-tailed) .778  .001 

N 30 35 35 

KISS1 Pearson 

Correlation 

-.151 .518** 1 

Sig. (2-tailed) .427 .001  

N 30 35 35 

**. Correlation was significant at the 0.01 level (2-tailed). N= sample size 

Table 5: Correlations between Kisspeptin levels, KISS1 and KISS1R gene expression levels in 

PIW 

 

Variables Kisspeptin KISS1R KISS1 

Kisspeptin Pearson 

Correlation 

1 .089 -.305* 
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Sig. (2-tailed)  .565 .039 

N 46 44 46 

KISS1R Pearson 

Correlation 

.089 1 -.090 

Sig. (2-tailed) .565  .544 

N 44 48 48 

KISS1 Pearson 

Correlation 

-.305* -.090 1 

Sig. (2-tailed) .039 .544  

N 46 48 50 

*. Correlation is significant at the 0.05 level (2-tailed). N= sample size 

Multiple regression and prediction analysis of KISS1 gene expression using Kisspeptin and 

KISS1R gene expression 

The prediction of mean fold changes in KISS1 gene expression in FW using mean plasma 

Kisspeptin levels and mean fold change in KISS1R gene showed a significant model [F (2,27) 

=5.45; p=.01] with only 29% of the variations in KISS1 gene expression (R2 = .29) being explained 

by changes in Kisspeptin levels and KISS1R gene expression. Mean fold changes in KISS1R was 

a significant predictor of mean fold changes in KISS1 gene expression in FW (p=.004) with a unit 

change in KISS1R expression causing 0.58-unit increase in KISS1 gene expression (B=0.58) 

(Table 6).  

The prediction of mean fold changes in KISS1 gene in PIW using mean plasma Kisspeptin levels 

and mean fold changes in KISS1R gene showed a significant model [F (2,41) =6.29; p=.004] with 

24% of the variations in KISS1 gene expression (R2 = .24) being explained by changes in 

Kisspeptin levels and KISS1R gene expression. Mean Kisspeptin levels was a significant predictor 

of the mean fold changes in KISS1 gene of primary infertile women (p>.001) with a unit change 

in Kisspeptin levels causing 0.03-unit decrease in KISS1 gene expression (B=-0.03) (Table 6).  

Table 6: Prediction of KISS1 gene expression using mean Kisspeptin levels and mean fold 

changes in KISS1R gene expression  
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Hypothesis Beta 

Coefficient 

R2 F t-value p-value Hypothesis 

supported 

FW 

Kisspeptin 

levels 

significantly 

regulates 

the mean 

fold 

changes in 

KISS1 gene  

-.01 .29 5.45 -1.1 .28 No 

KISS1R 

significantly 

regulates 

mean fold 

changes in 

KISS1 gene  

.58 .29 5.45 3.17 .004 Yes 

PIW 

Kisspeptin 

levels 

significantly 

regulates 

the mean 

fold 

changes in 

KISS1 gene 

-.03 .24 6.29 -3.47 >.001 Yes 

KISS1R 

significantly 

regulates 

mean fold 

.02 .24 6.29 -.42 .68 No 
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changes in 

KISS1 gene 

 

Discussion 

This study observed the changes in the Kisspeptin system (Kisspeptin, KISS1 gene, and KISS1R 

gene) in the plasma of PIW compared to FW (Figure 1). The Kisspeptin levels in the plasma of 

PIW compared to the FW were comparable and did not differ significantly. This is the first known 

study reporting Kisspeptin levels in PIW. However, some studies reported the level of Kisspeptin 

in PCOS, one of the clinical diagnoses of PFI [32–36]. Many of these studies fail to classify their 

patients according to the type of infertility – one could assume that the population is mixed - 

making it difficult to compare with this present study. Howbeit, it may be beneficial to use the data 

on PCOS - being an important factor in PFI – to contextualize the findings of this present study. It 

is important to note that available studies investigated the Kisspeptin levels of PCOS women in 

both serum and plasma. The fact that the degradation of Kisspeptin in the serum varies compared 

to plasma may have also affected the outcome of these studies [37].    

Recent research indicates that women with PCOS have increased Kisspeptin levels and a higher 

LH/KP ratio [33,36]. A systematic review reported increased Kisspeptin levels in the serum or 

plasma of eight out of twelve studies reviewed [38], while a recent meta-analysis of nine studies 

concluded that there was a statistical difference in the serum Kisspeptin level between PCOS and 

non-PCOS women [39]. As much as the diagnosis of PFI may not be heterogeneous, the diagnosis 

of the different causes may also affect the result seen in this present study. The determination of 

the Kisspeptin level in women with a known cause of PFI may be more insightful than a 

generalization of PIW. Though the different clinical diagnoses of PFI of participants included in 

this present study have been earlier reported [27], the sample sizes of each subgroup were small to 

allow a scientifically valid comparison of Kisspeptin levels between the FW and PIW.  

KISS1 and KISS1R gene expression in the blood equally showed no statistical difference amongst 

FW and PIW. This finding corroborates the reported Kisspeptin levels in plasma because of the 

production relationship between the Kisspeptin and KISS1 gene. KISS1 and KISS1R genes have 

been mainly investigated in other specimens (cumulus cells, decidua cells, trophoblasts, granulosa 

cells) other than the blood [40–46]. Despite the low detection of KISS1/KISS1R in the blood [47], this 
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study investigated the KISS1/KISS1R gene expression in the blood, with validated procedures to 

ensure maximal detection. This is the first study describing KISS1 or KISS1R gene expression in 

PIW. To be considered a potentially safe and less invasive diagnostic marker for PFI, a blood 

investigation of KISS1 or KISS1R gene expression should be more appropriate and desired.  

Studies which utilized other tissues for investigating KISS1 and KISS1R gene expression showed 

interesting results. In patients with endometriosis, KISS1 gene expression was not found in any 

endometrial sample collected [48]. Also, the level of KISS1 expression was statistically 

substantially greater in endometriosis lesions than in eutopic glandular endometrium, suggesting 

the role of the KISS1 gene in the etiology of endometriosis [48] which was earlier reported to be 

part of the clinical diagnosis of primary infertility in the present study cohort [27]. Similarly, Blasco 

and colleagues [40] discovered that endometriosis patients' cumulus cells had more KISS1R mRNA 

than healthy oocyte donors' cumulus cells. As a result, the researchers concluded that elevated 

KISS1R gene expression might be one of the mechanisms in the etiology of endometriosis and 

associated infertility. Other studies on placental and decidual tissues showed that women who 

experienced spontaneous abortion in the first trimester significantly reduced KISS1 gene 

expression compared to women who underwent elective termination [41]. Kisspeptin and KISS1R 

expressions in syncytiotrophoblasts and cytotrophoblasts were decreased in women with recurrent 

spontaneous abortion compared to women with voluntary abortion. While Kisspeptin levels 

reduced significantly in decidua of these women, there were no significant changes in KISS1R 

gene expression when women with recurrent spontaneous abortion were compared to women with 

voluntary abortion [43,46]. In this present study, women who had any records of abortion were 

excluded as they do not meet the definition of PFI. However, the above findings by previous 

studies on abortion and Kisspeptin system changes are useful because abortifacient factors are 

implicated in PFI [49,50]. 

In this present study, there exists no difference in the distribution of Kisspeptin levels, KISS1 and 

KISS1R gene expression following the subgroup analysis of FW and PIW based on their BMI 

classification (Figures 2-4). As earlier published [27,51], more than half of the study participants 

have an abnormal BMI classification, with their BMI average being in the overweight category. 

There was no relationship between the BMI of both FW and PIW and any of Kisspeptin, KISS1, 

and KISS1R gene expression levels (Table 2 and 3). This finding is comparable with a study of 
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Saudi females with normal and abnormal weight, which found no correlation between BMI and 

serum Kisspeptin level. They also reported that Kisspeptin levels in the overweight/obese group 

did not differ significantly with women with normal weight. However, the subjects were not 

reported to have any form of infertility [52]. In another study involving females with PCOS, there 

were significantly decreased Kisspeptin levels in underweight, overweight, and obese women 

compared to women with normal weight groups. More importantly, Kisspeptin levels decreased 

with increase in BMI [53]. A recent review created a network of functional association between 

Kisspeptin and obesity-related genes and identified gonadotropin-releasing hormone 1 (GNRH1) 

as one of the twelve signalosome hubs which will provide novel insight into the body’s energy 

homeostasis. An earlier study on mice showed evidence that Kisspeptin signaling influences body 

weight, energy expenditure, and glucose homeostasis in a sexually dimorphic and partially sex 

steroid-independent fashion; therefore, changes in Kisspeptin signaling might contribute, to some 

aspects of human obesity [54]. Hence, future studies should focus on determining where the 

metabolic effects of Kisspeptin signaling occur in humans and if similar phenotypes exist in 

humans who do have decreased expression or non-functional Kisspeptin, KISS1 and KISS1R 

genes [55].  

The Kisspeptin system plays a role in puberty development, which menarche represents, through 

its direct regulation of GnRH [56]. Precocious puberty has been associated to increased Kisspeptin 

secretion [57–60] whereas this present study shows a reduced Kisspeptin level for PIW with early 

menarche compared to PIW with normal menarche (Figure 5). In contrast, PIW with early 

menarche had a significantly increased mean fold KISS1 gene expression than PIW with normal 

menarche (Figure 6). This finding relates to the slightly significant moderate positive correlation 

between menarcheal age of PIW and their plasma Kisspeptin levels (Table 2). An abnormal 

puberty development could lead to delayed or early menarche, which could result from Kisspeptin 

dysregulation [61–65]. Combined, it could be hypothesized that the early onset of puberty induces 

some form of subfertility in the future, associated with reduced Kisspeptin levels which may 

depend on some heritable genetic factors [66].  

The findings of this present study add to the justification for Kisspeptin supplementation for GnRH 

stimulation and suggest that supplementation may be needed by PIW who present with a history 

of early menarche. Kisspeptin supplementation has been used in clinical trials as KP-10 and KP-
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54 isoforms in females with hypothalamic amenorrhoea [67–69], PCOS [35], or infertile women 

requiring IVF, with a need to prevent OHSS or stimulate ovulation [70–73]. The trials mentioned 

above have shown no noticeable side effects across various doses, times, and routes of 

administration. Kisspeptin can stimulate effective GnRH release and has been optimally functional 

when administered in the preovulatory period [67] and with reduced sex steroid [68]. The clinical 

outcomes and the role of Kisspeptin supplementation in human reproduction have been critically 

reviewed in the literature highlighting areas for future research and clinical policy considerations 

[74,75]. There are still no supplementation protocols for clinical settings to date despite the success 

of Kisspeptin supplementation trials in women.  

This present study showed no significant prediction of plasma Kisspeptin level, KISS1 and 

KISS1R gene expression with BMI or menarcheal age of FW or PIW (Table 3). It is important to 

note that no relative association exists between the categorized BMI and menarcheal age subtypes 

in both FW and PIW following a correspondence analysis (Figure 8), which agrees with the earlier 

finding on the uncategorized BMI and menarcheal age [27,51].  

There exist some linear relationships between the components of the Kisspeptin system based on 

the findings from this present study. There was a significant weak negative correlation between 

the KISS1 gene expression and Kisspeptin levels in PIW (r=-.031, p=.04). An inverse relationship 

was observed between the KISS1 gene and its peptide, Kisspeptin, describing a slight chance for 

the two variables to move in different directions in PFI. The negative correlation, albeit weak, seen 

between KISS1 and Kisspeptin could explain the possibilities of other internal or external 

influences on its expression in the human blood. There is lack of data on the control of the 

Kisspeptin system in human blood. However, there exists well-documented evidence in animals 

implicating aging and sex steroids (testosterone, dihydrotestosterone, and estrogen) as major 

players, with slight variation across species and sites of detection [76–81]. Evidence from rats and 

mice shows that the circulating levels of estrogen determine the expression level of the Kisspeptin 

and KISS1 gene [76,77]. This relays the negative and positive feedback control of estrogen on GnRH. 

There is usually an atypical production of estrogen during premature ovarian failure or premature 

ovarian insufficiency, which could affect the expression of the KISS1 gene leading to the 

antagonistic relation between the gene and its encoded protein, Kisspeptin. In this present study, 

the KISS1 gene expression in FW showed a significant moderate positive correlation with KISS1R 
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gene expression (r=.52, p<0.01), adjudging a similar trend in the changes across the two variables. 

There may be a potentially identical regulatory effect on KISS1 and KISS1R. In other animals, 

estrogen and testosterone have no control on the expression of  KISS1R compared to their 

significant impact on the KISS1 gene [82,83]. Hence, studying these regulations in humans is crucial 

to understanding the true relationship between the Kisspeptin system genes. 

This present study utilized a linear multinomial regression model to predict the mean fold change 

of mRNA levels of the KISS1 gene using Kisspeptin and KISS1R mean fold change. The 

regression model used was significant in both FW and PIW. While 24% of changes in KISS1 gene 

expression in PIW result from changes in Kisspeptin and KISS1R, 29% of variations in KISS1 

gene expression in FW result from changes in Kisspeptin and KISS1R gene expression levels. The 

mean fold changes in KISS1R are a significant predictor of mean fold changes in the KISS1 gene 

of FW (p=.004), with a unit change in KISS1R expression causing a 0.58-unit increase in KISS1 

gene expression (B=0.58). However, in PIW, the mean Kisspeptin levels are a significant predictor 

of the mean fold changes in the KISS1 gene of PIW (p>.001), with a unit change in Kisspeptin 

levels causing a 0.03unit decrease in KISS1 gene expression (B=-0.03).  

One of the significant limiting features of gene expression studies is the propensity for small 

sample size, even when the sample size was appropriately determined. The evidence submitted in 

this study relies on a small sample size, especially for the subgroup analysis, where it became 

impossible to compare some group with another due to zero value. For example, the 

correspondence analysis biplot could not be drawn for the BMI and menarcheal age association in 

FW because of zero values in some variable categories. This was the case for many published 

studies on Kisspeptin system gene expression in different tissues [41,43,46,72,84]. However, this 

current study is one of the few studies  [43,85,86] that reported the expression of KISS1/KISS1R in 

the blood or blood cells. Other KISS1/KISS1R expression studies [41,43,44,46] have focused on other 

tissues due to the low level of expression of these genes in the blood.  This study did not assess 

the karyotypes of all patients recruited to avoid possible effects of chromosomal abnormalities 

on Kisspeptin expression in the study participants.  

Conclusion 
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The plasma Kisspeptin levels, KISS1 and KISS1R gene expressions in FW and PIW are 

comparable and do not hold potential for the molecular diagnosis of PFI. However, early 

menopause is a potential driver for primary infertility through decrease in plasma Kisspeptin and 

increase in KISS1 gene expression in the blood. This finding justifies the Kisspeptin or KISS1R 

agonist supplementation in women already showing promise [35,67–73], which could also be helpful 

for PIW with history of early menarche. KISS1 gene expression in the blood is central to the role 

of the Kisspeptin system and may be a significant regulator of its effect within the human blood; 

it could be used to predict KISS1R gene expression in FW but plasma Kisspeptin levels in PIW.  

This study recommends further studies that will unbundle the primary infertility cohort focusing 

on women with early menarche. To model the multifactorial nature of primary infertility, a highly 

powered study should study the genetic expression of the Kisspeptin system genes and plasma 

Kisspeptin levels in multiple reproductive disorders, including women from various clinical 

settings, to cover for genetic variety. More importantly, future studies should include karyotyping 

of participants to exclude chromosomal abnormalities that could affect the gene expression levels. 

However, more outcomes in human studies on KISS1/KISS1R gene expression in other organs 

like the gonads, pituitary, uterus, and placenta will be very vital in giving holistic evidence on the 

peripheral actions of Kisspeptins and the role of Kisspeptin in female reproduction. The 

elucidation of this scientific query will help reveal the whole set of pathophysiologic, diagnostic, 

and therapeutic implications of Kisspeptin/KISS1/KISS1R in female reproduction. 
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