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Supplemental Information

PCAI model

The PCAI model describes our overall risk prediction algorithm. It combines the baseline

neural network (BASE) with multiple adaptations for robustness, trustworthiness and

interpretability, namely domain adversarial training (DA) on multiple internal data domains,

the feedback loop of credibility estimation (CE) and color adaptation (CA) during inference,

as well as the cancer indicator (CI) guided patch-selection for biopsies.

Preprocessing

Since histopathological images come in arbitrary shapes and sizes and contain a lot of

redundant background pixels, we use a masking procedure to define the relevant tissue area

in every image for usage in our network. In detail, we first create a tissue mask by separating

foreground and background pixels using Otsu thresholding. In the second step, we create an

anomaly mask by highlighting all foreground pixels with values outside a predefined

deviation of the median of pixel values of the tissue area. This removes pen marks, blood or

other undesired areas of the images, which are especially prevalent on the large biopsy

images. A patch-based approach was used for our risk prediction network, as is common

practice in digital pathology. For this, the images are further cut into equally sized patches of

128x128 pixels at 20x magnification based on the relevant tissue area defined by the masks.

We refer to the entirety of n patches of an individual WSI as “patch bag”. We then assign a

binary label to each patch bag, indicating whether the patient experienced a relapse (defined

as biochemical recurrence, metastasis or PCa-related death) in the first 5 years after



examination.

Data Splitting

The three larger sub-datasets of the UKEhv data, UKE-first, UKE-second and UKE-scanner,

are split into training, validation and test set (70/15/15), and the three smaller sub-dataset

UKE-thin, UKEthick and UKE-long are split into validation and test set (50/50). The data is

split stratified by the binary 5-year survival indicator. Patients that contribute images to

multiple sub-datasets are strictly separated across data splits to avoid leakage. Final numbers

per split slightly deviate from the initial percentages since some images were excluded after

assigning the split due to the image filter criteria. This work uses the training set of the

UKE-first data to train the BASE model and the training sets of the UKE-first, UKE-second

and UKE-scanner data to train the DA model.

The remaining datasets UKE-sealed, JHU, NYU, UPP and MMX are only used for testing.

BASE

The baseline risk prediction network BASE is a binary classifier that assigns the probability

of having a relapse in the first 5 years after examination to a bag of patches per image (Fig.

S2A). Since the relapse information corresponds to the full patch bag and no ground truth for

individual patches is available, information of patches inside one bag needs to be aggregated.

This is referred to as multiple instance learning. In detail, we use the encoder part of

EfficientNet-b0 to extract latent information of all n patches in a bag independently 25. Next, a

self-attention layer (SA), as proposed by Rymarczyk et al. 26, accounts for cross-dependencies

between all patches of a bag. For every patch i, n attention weights are computed, resulting in

the attention matrix ASA∈ Rn×n. ASA contains information about the relevance of each patch i

in relation to every other patch j and is multiplied with the incoming bag feature vector after



the encoder. This creates context-aware embeddings from every patch. This bag of patch

embeddings is further aggregated into a single latent representation in the attention-based

multiple instance learning layer (MIL), as proposed by Ilse et al. 27. For every patch i, one

attention weight is computed, resulting in the attention vector A ∈ Rn. A softmax function

ensures all weights sum to one. Multiplying A with the incoming patch bag yields the

aggregated representation of shape 1×L. This method can be seen as a learnable weighted

averaging function. Finally, the risk classification head, consisting of two fully connected

layers (1280 → 100 → 2 neurons) predicts the probability for both classes, using softmax

activation function. The predicted probability for class 1, corresponding to having a relapse

prior to five years, represents our final risk score. Fig. S2A depicts a schematic of the BASE

architecture.

The BASE model is derived exclusively from the UKE-first dataset. We train our network

end-to-end using 100 randomly over- or undersampled patches per image with a batch size of

16, Adam optimizer and a learning rate of 2.75e-06 for a maximum of 200 epochs, with early

stopping on the 5-year AUROC of the UKE-first validation split data. Dropout rate and

stochastic depth of the EfficientNet backbone are both set to 0.34. The static number of 100

patches allowed for training with batch sizes > 1 and was chosen to be close to the median

number of valid tissue patches across samples in the dataset. Patches were further randomly

transformed with AugMix augmentation before input to the network to increase data variance

and robustness 30. We use class-weighted cross-entropy as our loss function. Hyperparameters

were optimized for maximum 5-year AUROC on the UKE-first validation split data using a

Bayesian search paradigm. During inference, all valid patches per image and no AugMix

augmentations are used. If multiple images of any type are available for a single patient and

examination, we aggregate by taking only the highest risk score predicted by our model as the

final patient score.



Domain adversarial training

For the DA training, the BASE architecture is extended by a domain discriminator head, as

well as a gradient reversal layer (GRL) between MIL layer and domain discriminator (Fig.

S2B) 23. We extend our UKE-first training dataset by data from the UKE-second and

UKE-scanner sub-datasets and assign a secondary domain label to every image, indicating

from which sub-dataset it originates. We then train our DA model in a dual-task manner,

where the domain discrimination head aims to correctly predict the sub-dataset a given image

stems from. The key concept of domain adversarial training is then applied through the GRL,

which serves identity function during the forward pass, however flips the sign of the gradient

during backpropagation. This enforces adaptation of the weights of the shared network part,

consisting of encoder, SA and MIL layer in the exact opposite direction of the domain

discrimination loss. This leads to the desired adversarial game between an consistently

improving domain discriminator head and the shared network part, which provides latent

representations of the data that contain increasingly less domain-specific information. Since

the main task of binary 5-year relapse classification is trained in parallel, this allows the

network to provide accurate risk predictions on domain invariant features. This method is

inspired by Wilm et al., who prove the positive influence of DA for mitotic figure detection

on histopathological images 24.

We optimize an additional parameter λ that controls the influence of our domain adversarial

loss, resulting in the overall loss function as a sum of the cross-entropy loss of the risk

predictor and the cross-entropy loss of the domain discriminator as
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Training procedure in the DA model is analogous to the baseline model, though here a

learning rate of 9.87e-07, dropout rate of 0.5 and stochastic depth of 0.5 is used. Data from



the UKE-first domain was fed twice per epoch to put a stronger emphasis on the data

containing the most representative spot per patient. We further perform early stopping as well

as hyperparameter optimization on the combined 5-year AUROC of the validation splits of

all UKEhv subdomains.

Credibility estimation

To be applicable in an actual clinical setting, the predicted risk score should be accompanied

with a notion of trustworthiness that quantifies how certain the model is when predicting on a

given image (Fig. S2C). For this we introduce the concept of credibility by computing a score

for every unseen sample based on the distance to the learned distribution of the model. The

underlying assumption is that samples that differ strongly from the data seen during training

should receive a lower credibility score than those close to the learned distribution,

independent of the actual predicted risk score.

In detail, we measure the Mahalanobis distance between the latent representation of an𝑑
𝑀

unseen sample in the output of the MIL layer to the center of the latent representation of all

training samples. To further transform the Mahalanobis distance to the training center into𝑑
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a normalized representation of model uncertainty, ideas from the concept of conformal

prediction (CP) are employed 32. CP is a post-hoc method to measure uncertainty in

pre-trained prediction models by providing sets of valid class predictions that exceed a given

significance level. Here, we first define as the non-conformity measure that assesses the𝑑
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strangeness of an unseen sample. Next, we derive a separate calibration set

with samples that stem from the same distribution as the𝑆
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High p-values indicate high conformity with the training distribution, since most calibration

examples expressed higher non-conformity scores than 33.𝑥
𝑢

The maximum p-value among both 5-year relapse classes is defined as the credibility 𝐶𝑟𝑒𝑑
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This credibility score quantifies how close a given sample is to the model's learned

distribution, based on the unseen calibration dataset, and is expected to correlate with the

validity of the final risk prediction.

The validation split of those UKEhv sub-domains present in the training set serves as the

calibration data when applying the Credibility Estimation setup to PCAI and the baseline

model, such that it consists of data from the UKE-first, UKE-second and UKE-scanner

datasets for the former and of data from UKE-first only for the latter.

Color adaptation

With the aim to enable valid predictions even on images where PCAI shows a low credibility,

a color adaptation setup to map the color of those images to the color scheme of the training

distribution is established (Fig. S2C, S3, S4A). Color is a strong separator between datasets

used in this work. In detail, we propose a cluster-based histogram matching procedure, which

Dietrich et al. found to improve over matching randomly to a training domain image (Fig. S3)



34. For this, we first derive 8 k-means clusters from the histograms of the training data in the

HSV space, using Wasserstein distance as the distance measure. This clustering approach

smoothes the effect of outliers while preserving inherent type differences inside the dataset.

Using the CE setup described above, we define a threshold on the credibility scores such that

75% of the calibration set (i.e. the validation data of the training domains UKE-first,

UKE-second and UKE-scanner) expresses higher credibility scores. During inference of the

PCAI model, we then match the histograms of samples of the test set that express credibility

scores below the defined threshold with the histogram of the closest cluster in the training

data and feed those adapted samples through the deep learning network again (Fig. S4A). The

75% threshold as well as the number of 8 clusters was chosen by optimizing the increase in

5-year AUROC on the validation sets of the internal UKEhv sub-domains. Performance

metrics of PCAI reported in this manuscript are calculated on the predictions of the resulting

combination of raw and color adapted samples, based on their credibility. Fig. S4B shows

histograms and patches of an exemplary sample from the MMX dataset before and after color

adaptation.

Cancer indicator

To indicate cancer-containing regions, the CI is trained on patch-wise cancer vs non-cancer

labels extracted from segmentation masks of the PANDA dataset 22. Fig. S1 shows an

exemplary slide of the PANDA dataset with mask overlay in green for healthy tissue and red

for cancerous regions with exemplary patches with a side length of 256 pixels with healthy,

cancerous, or rejected labels. A total of 4,459,674 training and 504,027 test set patches were

extracted from the dataset. The CI model consists of an CNN-encoder, specifically the

Efficientnet-b0 architecture, and a subsequent fully connected classification layer. The CI is

trained using patch-wise labels extracted from segmentation annotations provided by expert



(uro-) pathologists in the PANDA challenge. With this, it achieves an AUROC of 0.94 on the

PANDA test set patches of previously unseen slides. In the overall PCAI model, CI is utilized

to reduce noise and redundancy in our risk prediction on biopsies. It is used to predict cancer

heatmaps on our biopsy datasets and select the 100 patches with the highest predicted cancer

during inference into our PCAI model.

PCAI risk groups

To enhance interpretability of our PCAI risk score, we can stratify the patients into risk

groups by k-means clustering on survival curves by taking the risk ri∈ R for each individual

i and perform a 1-dimensional k-means clustering algorithm to obtain k distinct groups of

patients 35. To estimate the maximum number of groups that are statistically significant in

terms of outcome, a Fleming Harrington-weighted pairwise log-rank test was used on a

separate validation set as suggested by Li et al. 36. P-values for the pairwise logrank test can

be found in the appendix in Fig. S5.
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Supplemental Figures & Tables

Table S1 Basic patient characteristics of all UKEhv sub-dataset experiments showing number

of unique patients (that is the same as the number of images), age, PSA level at RP, censoring

rate, median survival and follow-up time in months, the event type classification

(BCR=biochemical recurrence, META=metastasis, FU=lost to follow-up), ISUP, pathological

T-, N- and M-stage.



Table S2 Basic image properties of this work's image datasets showing the dataset's tissue

type (TMA=T or biopsy=B), mean +- std of the number of pixels on the long and short edge

of each image, used scanner vendor (APE=Leica Aperio, 3DH=3DHistech,

HAM=Hamamatsu, VEN=Ventana), mag.=maximum magnification level and the resulting

physical resolution in µm per pixel.



Figure S1 Exemplary slide with cancer and tissue mask of the PANDA dataset. A-H

Visualization of potentially extracted patches from the slide. Gray patches are rejected, red

patches are labeled as cancerous, and green patches as healthy. Note that the segmentation

masks extend not only in the tissue but also in the background in patches in D-F.



Figure S2 Architecture and training regime of A the BASE risk prediction network, B the

BASE model including the DA module, and C PCAI with added CI based patch sampling,

CE, and CA. CNN Enc. = Convolutional neural network encoder; SA = Self-attention layer;

MIL= Attention-based multiple instance learning layer; GRL = Gradient reversal layer; Risk

Clas. = Risk classifier; Domain Disc. = Domain discriminator; DA = Domain adversarial; CI

= Cancer indicator; CE = credibility estimation; CA = color adaptation.



Figure S3 Overview of color variations across all datasets. A Example patches of all datasets

used in this study. Color-coded margins depict data origin. B UMAP of the HSV histograms.

C Aggregated hue, saturation, and value histograms of all valid foreground pixels of all

images per dataset.



Figure S4 Credibility-guided color adaptation in PCAI A Feedback loop of the

credibility-guided color adaptation (CE-CA) procedure. If during initial processing of the

image in the deep learning network (blue) sufficient credibility is not reached, the color of the

problematic sample is adapted by matching its histogram with the training distribution. If

sufficient credibility is still not reached, grading of the images can be conferred to the

pathologist . B Exemplary HSV histograms of a sample before and after applying CE-CA. C

Improvement in 5-year AUROC in PCAI when using the proposed CE-CA procedure over

predicting on un-altered images only.



Figure S5 Results of the pairwise logrank test for the UKEhv datasets based on PCAI

predictions. Values below p=0.05 were interpreted as statistically significant.



Figure S6 KM curves in A with the corresponding at-risk table in B for the UKEhv test

dataset to visualize the discriminative performance of the PCAI risk grouping.



Figure S7 BASE and PCAI performance compared to human annotators for the UPP and

MMX biopsy datasets. The 2-10 year AUROC is shown for each prediction (gray for BASE,

blue for PCAI) and human annotation (orange shades). It is interesting to observe that for

almost every temporal (year) threshold the PCAI model performs best.


