
Supplemental Methods 1. Study Population 

AI-Hub dataset consisted of 30,000 echocardiographic examinations retrospectively collected 

from five tertiary hospitals, including Chungnam National University Hospital, Hanyang 

University Hospital, Seoul National University Bundang Hospital, Severance Hospital, and 

Soonchunhyang University Seoul Hospital, over the period from 2012 to 2021. It encompasses 

a wide range of cardiovascular disease categories, from normal cases to ischemic heart disease, 

cardiomyopathy, pulmonary hypertension and embolism, pericardial disease, valvular heart 

disease, cardiac mass, and congenital heart disease. 

 

The AI-based frameworks introduced here were all developed using data extracted from the 

AI-Hub dataset. Specifically, the DL-based AVS continuum assessment algorithm was 

developed using the Developmental Dataset (DDS) sourced from the AI-Hub. During the 



assembly of DDS, data from Severance Hospital were deliberately excluded and used for 

external validation. We initially screened transthoracic echocardiography (TTE) data from 

4,563 patients diagnosed with aortic valve stenosis (AVS). After excluding those who had 

undergone aortic valve (AV) replacement or open-heart surgery, those with moderate or greater 

AV regurgitation, or cases where the severity of AVS could not be determined, 4,018 AVS 

patients have remained. To ensure the model's accuracy, 628 cases exhibiting discordant 

findings among aortic valve (AV) peak velocity (Vmax), mean pressure gradient (mPG), and 

aortic valve area (AVA) regarding the severity of AVS were excluded. These cases were later 

used separately for validating the model. Among the 3,390 AVS-diagnosed patients included 

in the model development, 2,500, 516, and 374 were categorized into mild, moderate, and 

severe AVS, respectively. Additionally, for the purpose of model training, TTE examinations 

were extracted for 3,290 individuals demonstrating normal AV morphology and function and 

1,747 individuals exhibiting signs of AV sclerosis—characterized by degenerative changes in 

the AV but not meeting the diagnostic criteria for AVS. Consequently, TTE data from a total of 

8,427 individuals were compiled into the DDS. These data were split in an 8:1:1 ratio for 

training, validation, and internal testing purposes. 

  The Distinct Hospital Dataset (DHDS) was compiled by reviewing data from 

Severance Hospital that were not included in the DDS sourced from the AI-Hub dataset. A total 

of 719 AVS patients were reviewed, none of whom had undergone AV replacement or open-

heart surgery. After excluding 60 patients with moderate or greater AV regurgitation, the dataset 

included 659 AVS patients (209 mild, 251 moderate, and 199 severe). Adding 1,037 normal 

patients, the DHDS totaled 1,696 patients. Since Severance Hospital does not commonly use 

the diagnosis of AV sclerosis, a separate AV sclerosis category was not included.  

 For the Temporally Distinct Dataset (TDDS), we screened TTE data conducted in 



2022 at Seoul National University Bundang Hospital, identifying 520 eligible patients with 

AVS. After excluding cases with a documented history of AV replacement or open-heart surgery, 

those with moderate or greater AV regurgitation, or cases where the severity of AVS could not 

be determined, a total of 443 patients with AVS remained (313 mild, 75 moderate, and 55 

severe). Additionally, 55 individuals with normal AV and 274 with AV sclerosis, identified 

during the same period, were included, resulting in a total of 772 cases included for this dataset. 

 



Supplemental Methods 2. View Classification Networks Update 

To enhance our echocardiographic view classification algorithm, we expanded our datasets and 

refined the classification algorithm to include new views. Building upon our previous work, 

which utilized 67,553 data points, the dataset was broadened to encompass more granular 

classifications and additional views.1 Specifically, we differentiated the parasternal long-axis 

(PLAX) zoomed view into four distinct categories: PLAX zoomed aortic valve (AV) (779 

videos), PLAX zoomed mitral valve (MV) (279 videos), PLAX zoomed both AV and MV 

(1,357 videos), and PLAX zoomed aorta (502 videos). Additionally, we incorporated 663 CW 

Doppler AV images obtained from the right parasternal view. These enhancements are crucial 

for accurately measuring AV stenosis (AVS) parameters, such as left ventricular outflow tract 

(LVOT) diameter, AV maximum velocity (Vmax), mean pressure gradient (mPG), and AV area 

(AVA), which are critical for evaluating the severity of AVS. The new data points were 

annotated using a Developmental Dataset (DDS), and the view classification network was 

subsequently retrained with this enriched dataset, employing the methodology previously 

detailed in our research.1 

  



Target Views for Current Version of View Classification Algorithm. 

B-mode 

Parasternal long-axis left ventricle 

Parasternal long-axis zoomed AV 

Parasternal long-axis zoomed MV 

Parasternal long-axis zoomed AV & MV 

Parasternal long-axis zoomed aorta 

Parasternal short-axis, level of great vessels 

Parasternal short-axis, level of mitral valve 

Parasternal short-axis, level of papillary muscle 

Parasternal short axis, level of apex 

Apical four-chamber 

Apical four-chamber zoomed left ventricle 

Apical four-chamber right ventricular-focused 

Apical five-chamber 

Apical two-chamber 

Apical two-chamber zoomed left ventricle 

Apical three-chamber 

Apical three-chamber zoomed left ventricle 

Subcostal four-chamber 

Subcostal long axis IVC 

M-mode 

M-mode through left ventricle 

M-mode through aorta and left atrium 

M-mode tricuspid annular plane systolic excursion 

Spectral and tissue 

Doppler 

PW Doppler mitral valve 

TDI mitral valve lateral annulus 

TDI mitral valve septal annulus 

CW Doppler mitral stenosis 

CW Doppler mitral regurgitation 

PW Doppler left ventricular outflow tract 

CW Doppler aortic valve 

CW Doppler aortic valve in parasternal 

CW Doppler aortic regurgitation 

CW Doppler tricuspid regurgitation 

PW Doppler right ventricular outflow tract 

CW Doppler pulmonic valve 

CW Doppler pulmonic regurgitation 

Pulmonary vein flow 

AV, aortic valve; CW, continuous wave; IVC, inferior vena cava; MV, mitral valve; PW, pulse wave; 

TDI, tissue Doppler imaging 

  



Supplemental Methods 3. DL-based AVS Continuum Assessment Algorithm  

Given an input video 𝒙, we extract a feature 𝒛 using the r2plus1d architecture.2 Importantly, 

we modified the backbone network to avoid temporal down-sampling by maintaining a stride 

of 1 along the temporal axis. From this feature 𝒛, we employ four decoders, three of which are 

designed to predict continuous variables such as AV Vmax, mPG, and AVA. Each auxiliary 

decoder is constructed to predict these continuous variables through regression. Each auxiliary 

decoder consists of two hidden layers with 512 units each, batch normalization and ReLU 

activation, followed by an output layer with a single unit and a Softplus activation function to 

ensure positive output values. 

We then implemented a fusion module, termed the Adaptive Feature Fusion Module 

(AFFM), that generates a score for each continuous feature and then fuses them into one feature 

by a weighted sum of all features according to their scores. For features 𝑧𝑣𝑚𝑎𝑥
, 𝑧𝑚𝑃𝐺 , 𝑧𝐴𝑉𝐴 

from the three auxiliary decoders before the output layer with a single unit, the fusion module 

computes a weight 𝑤𝑣𝑚𝑎𝑥
, 𝑤𝑚𝑃𝐺 , 𝑤𝐴𝑉𝐴 for each feature 𝑧𝑣𝑚𝑎𝑥

, 𝑧𝑚𝑃𝐺 , 𝑧𝐴𝑉𝐴  using a fully 

connected layer followed by batch normalization, ReLU activation, and a final fully connected 

layer with sigmoid activation. The fused feature 𝑧𝑓𝑢𝑠𝑒𝑑  is then computed as a weighted sum 

of the features:  𝑧𝑓𝑢𝑠𝑒𝑑 = 𝑤𝑣𝑚𝑎𝑥
𝑧𝑣𝑚𝑎𝑥

+𝑤𝑚𝑃𝐺𝑧𝑚𝑃𝐺 +𝑤𝐴𝑉𝐴𝑧𝐴𝑉𝐴 

The fused feature 𝑧𝑓𝑢𝑠𝑒𝑑  is then concatenated with the original feature 𝑧 from the 

r2plus1d backbone, resulting in the final feature 𝑧𝑓𝑖𝑛𝑎𝑙  : [𝑧; 𝑧𝑓𝑢𝑠𝑒𝑑] . The final classifier 

classifier processes this concatenated feature 𝑧𝑓𝑖𝑛𝑎𝑙 by linear function followed by a sigmoid 

function: 𝑦𝑓𝑖𝑛𝑎�̂� = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑧𝑓𝑖𝑛𝑎𝑙 + 𝑏). 

Input videos were resized to 224 x 224, and normalization was applied to a [0, 1] range 

for both training and inference. During training, if the number of frames exceeded the specified 



clip length (16 frames), a random start index was selected. If the number of frames was fewer, 

indices were evenly spaced to fit the clip length. For inference, the videos were divided into 

four intervals and stacked. If the frames were insufficient for multiple intervals but exceeded 

the clip length, the video was sampled, and the clip was replicated to match the intervals. If the 

frames were fewer than the clip length, indices were evenly spaced, and the clip was duplicated 

to match the intervals. The stacked inputs from the inference phase are averaged to enhance 

the model's generalization capabilities. The final DL index for AVS continuum (DLi-AVSc) 

was rescaled to 0-100 by multiplying the model output after the sigmoid function by 100. 

During training, a class sampler was used to balance the sampling of normal and AVS 

classes by assigning higher weights to the less frequent class. The Adam optimizer was used 

with a learning rate of 0.0001 and a batch size of 28. No learning rate scheduler was utilized. 

Early stopping was implemented with a tolerance of 300 epochs, monitoring the validation loss 

as the metric. 

  



 Deep Learning Architecture for DLi-AVSc 

 



Supplemental Methods 4. Automated Conventional AVA Assessment Algorithm  

4.1 Automatic Measurement of Spectral Doppler Echocardiography  

The Doppler segmentation network employs the BiSeNetV2 architecture, which has been 

thoroughly described in our previous publication.3-5 The BiSeNetV2 is specifically designed to 

balance accuracy and computational efficiency, making it suitable for real-time applications. 

During the training process, the network was optimized using standard cross-entropy loss. 

Notably, our Doppler segmentation network did not include training data for the AV continuous 

wave (CW) Doppler from the right parasternal view. However, this view can be inferred as a 

vertically flipped version of the CW Doppler AV in the apical view. During inference, we 

preprocess the input by flipping the image vertically before running it through the network, 

allowing us to utilize the same trained model for both views without additional training data.5  

AV CW Doppler from apical and right parasternal view 

 



4.2 Segmentation Network for Parasternal Long-Axis (PLAX) View  

For the PLAX segmentation network, we utilized the SegFormer architecture, which includes 

a transformer encoder that provides multiscale features without needing positional encoding 

and a lightweight multi-layer perceptron (MLP) decoder integrating local and global attention 

for efficient segmentation.6 A weighted cross-entropy loss was applied during training to 

account for the relatively small size of the mitral valve (MV) and AV in the PLAX view. A total 

of 2,369 PLAX videos were annotated by experienced sonographers. The images were resized 

into 512 x 512 and normalized to [-1,1]. We used the Adam optimizer with a learning rate of 

0.001 and incorporated RandAug, enhanced with echocardiography-specific augmentations 

such as shadow, depth attenuation, and haze, to improve model robustness.7,8 Additionally, a 

cosine annealing learning rate schedule was employed to optimize the training process.9 

Complete videos are presented in Video S1.  

 

Human Expert Annotation and AI Predicted Mask in PLAX View 

  



Supplemental Methods 5. Quantifying Uncertainty in Predicted Segmentation  

Quantifying uncertainty in segmentation predictions is a meticulous process, crucial because 

segmentation errors can significantly impact the accuracy of subsequent automatic 

measurements. This uncertainty arises from two primary sources: epistemic uncertainty, which 

arises from a lack of knowledge of the DL model, and aleatoric uncertainty, which results from 

inherent noise in the data. To quantify these uncertainties, we calculate predictive entropy from 

the segmentation network's probability map, which provides a measure of the total uncertainty 

by combining both aleatoric and epistemic uncertainties. The entropy is computed for each 

pixel in the segmentation map, allowing us to identify regions with high uncertainty. The 

entropy is calculated using the equation: 

𝐻[𝒑𝒊𝒋] = ∑ 𝑝𝑖𝑗
𝑐 log 𝑝𝑖𝑗

𝑐
𝑐 , 

where i, j represent pixel coordinates and c represents the class. 

For quantifying uncertainty in the LVOT measurements in the PLAX view, we focus 

on regions of interests (ROIs) that directly affect the performance of LVOT measurement. 

Using the detected two points marking the annulus, we set a 50 × 50 ROI (10% of the resized 

image) centered on these points, as shown in the figure below. We then summed the entropy of 

each pixel within this ROI to assess uncertainty. For Doppler measurements, we evaluated 

uncertainty for the Doppler signal in each single beat. With the detected significant Doppler 

flow, we create an ROI and crop the entropy map to the corresponding ROI, normalizing it to 

64 x 64. By summing the entropy values within the normalized ROI, we obtain the quantified 

uncertainty for each Doppler signal by beat. Complete videos are presented in Video S2.  



Regions of Interest marked for assessing uncertainty 

 

From the validation set used for training, we find thresholds to reject the frames or 

beats by identifying the top percentage of frames or beats with the highest uncertainty. 

Specifically, we reject the top 5% of frames with the highest uncertainty from PLAX AV 

zoomed videos and the top 1% of beats with the highest uncertainty from Doppler images. We 

calculate the mean of entropy scores and add 1.96 × s.d. for PLAX frames and 2.33 × s.d. 

for Doppler images. The distributions of the entropy scores for both PLAX and Doppler images 

are shown in the figure below, illustrating how the thresholds are set.  

Distribution of Entropy Scores 

 

  



Supplemental Methods 6. Automatic Measurement of LVOT Diameter  

From the predicted segmentation mask, we identify points where the MV intersects with the 

aorta and where the septum intersects with the aorta to determine annulus points. Using these 

points, we measure the LVOT diameter at three locations: 1) at the annulus, 2) 2.5mm away 

from the annulus towards the LV cavity, and 3) 5mm away from the annulus towards the LV 

cavity. This approach reflects differing opinions on the appropriate location for measuring the 

LVOT diameter.10 Complete videos are presented in Video S1.  

 

Automatic LVOT Measurements From the Predicted Segmentation Mask 

 

 

  



For this study, the measurements taken at the annulus were used for analysis as they showed 

the highest agreement with the ground truth data.  

 



Supplemental Methods 7. Availability of Ground Truth Measurements and Success Rate 

of Auto-Measurements in the AVS Group 

The availability of ground truth measurements and the success rate of our algorithm's auto-

measurements in the AVS group are as follows. 

 
Ground truth 

(% of the overall case) 

Auto-measurement 

(% of the overall case) 

Matching case 

(% of available GT cases) 

ITDS (n=328)    

AV Vmax 328 (100) 328 (100) 328 (100) 

AV mPG 320 (97.6) 328 (100) 320 (100) 

LVOT VTI 166 (50.6) 164 (50.0) 164 (98.8) 

LVOT diameter 159 (48.5) 290 (88.4) 141 (88.7) 

AVA 156 (47.6) 143 (43.6) 133 (85.3) 

DHDS (n=659)    

AV Vmax 83 (12.6) 652 (98.9) 83 (100) 

AV mPG 602 (91.4) 652 (98.9) 598 (99.3) 

LVOT VTI 438 (66.5) 583 (88.5) 367 (83.8) 

LVOT diameter 425 (64.5) 618 (93.8) 405 (95.3) 

AVA 560 (85.0) 543 (82.4) 457 (81.6) 

TDDS (n=443)    

AV Vmax 443 (100) 443 (100) 443 (100) 

AV mPG 440 (99.3) 443 (100) 440 (100) 

LVOT VTI 235 (53.0) 233 (52.6) 233 (99.1) 

LVOT diameter 228 (51.5) 419 (94.6) 212 (93.0) 

AVA 227 (51.2) 219 (48.8) 209 (96.5) 

AV, aortic valve; AVA, aortic valve area; LVOT, left ventricle outflow tract; mPG, mean 

pressure gradient; Vmax, peak aortic valve velocity; VTI, velocity time integral. 

 

  



Supplemental Results 1. Baseline Clinical Characteristics 

Variables ITDS DHDS TDDS 

Entire study population, n 841 1,696 772 

Age, years 69 (47-79) 57 (41-70) 77 (49-83) 

Male, n (%) 424 (50.4) 842 (50.3) 390 (50.5) 

Body mass index, kg/m2 24 (22-26) 23 (21-25) 25 (22-27) 

Patients with AVS, n 328 659 443 

Hypertension, n (%) 87 (26.5) 412 (64) 96 (21.7) 

Diabetes, n (%) 51 (15.5) 179 (27.8) 78 (17.6) 

Values are given as numbers (percentage) or median (interquartile range) 

Abbreviations: AVS, aortic valve stenosis; DHDS, Distinct Hospital Dataset; ITDS, Internal Test Dataset; TDDS, 

Temporally Distinct Dataset 

  



Supplemental Results 2. View Classification Performance in Each Dataset 

ITDS  

  n Precision Recall F1-score Accuracy 

PLAX 1,525 0.985 0.991 0.988 

0.996 

PLAX zoomed AV 197 0.985 0.685 0.808 

PLAX zoomed AV & MV 663 0.896 0.979 0.936 

PSAX at the level of AV 1,819 0.990 0.971 0.981 

PW doppler LVOT 886 0.965 0.998 0.981 

CW Doppler AV  

from apical views 
1,282 0.914 0.966 0.939 

CW Doppler AV  

from the right parasternal view 
38 0.864 1.000 0.927 

Other 74,885 0.999 0.998 0.998  

AV, aortic valve; CW, continuous wave Doppler; ITDS, internal test dataset; LVOT, left ventricle outflow tract; MV, mitral 

valve; PLAX, parasternal long-axis view. PSAX, parasternal short-axis view; PW, pulsed wave Doppler 

 

 

 



DHDS  

  n Precision Recall F1-score Accuracy 

PLAX 3,280 0.971 0.998 0.984 

0.995 

PLAX zoomed AV 1,313 0.989 0.909 0.948 

PLAX zoomed AV & MV 89 0.510 0.876 0.645 

PSAX at the level of AV 3,040 0.947 0.994 0.970 

PW doppler LVOT 2,182 0.999 0.998 0.998 

CW Doppler AV  

from apical views 
2,275 0.987 0.968 0.977 

CW Doppler AV  
from the right parasternal view 

20 0.810 0.850 0.829 

Other 92,460 0.998 0.997 0.997 

AV, aortic valve; CW, continuous wave Doppler; DHDS, Distinct Hospital Dataset; LVOT, left ventricle outflow tract; MV, 

mitral valve; PLAX, parasternal long-axis view. PSAX, parasternal short-axis view; PW, pulsed wave Doppler 

 

 

 



TDDS 

  n Precision Recall F1-score Accuracy 

PLAX 1,377 0.984 0.992 0.988 

0.994 

PLAX zoomed AV 193 0.907 0.404 0.559 

PLAX zoomed AV & MV 683 0.840 0.993 0.910 

PSAX at the level of AV 1,829 0.995 0.948 0.971 

PW doppler LVOT 833 1.000 1.000 1.000 

CW Doppler AV  

from apical views 
1,670 0.905 0.992 0.947 

CW Doppler AV  
from the right parasternal 

view 

88 0.917 1.000 0.957 

Other 67,453 0.998 0.997 0.997 

AV, aortic valve; CW, continuous wave Doppler; TDDS, Temporally Distinct Dataset; LVOT, left ventricle outflow tract; 

MV, mitral valve; PLAX, parasternal long-axis view. PSAX, parasternal short-axis view; PW, pulsed wave Doppler 

 

 

 



Supplemental Results 3. Distribution of DLi-AVSc in Discordant Cases of AVS Severity 

In this study, discordant cases were defined as those where AV Vmax, mPG, and AVA did not 

consistently fall into a single AVS severity class, resulting in interpretations spanning two 

classes, such as mild to moderate, moderate to severe, or cases of low-flow, low-gradient AVS 

where reduced stroke volume results in a lower pressure gradient despite significant stenosis. 

These cases were excluded from training, validation, and testing in the DDS. However, when 

included in the internal test dataset (ITDS) for comparison, the distribution of DLi-AVSc was 

as follows. This result suggests that DLi-AVSc can be helpful in cases where traditional 

parameters are discordant, making the assessment of AVS severity challenging. 

 

LFLG Mod, low-flow low-gradient moderate aortic stenosis; LFLG Sev, low-flow low-gradient severe aortic stenosis  



Supplemental Results 4. Distribution of DLi-AVSc According to Conventional AVS 

Parameters 

 



Supplemental Results 5. UMAP Visualization of AVS Continuum Using Different Approaches  

 

M
u

lt
i-

c
la

s
s

c
la

s
s
if
ic

a
ti
o

n

C
o

n
ti
n

u
o

u
s
 m

a
p

p
in

g
 

w
it
h

 o
rd

e
re

d
 l
a

b
e

ls
 o

n
ly

TDDSDHDSITDS

Normal

Mild

Moderate

Severe

AV Sclerosis

In the first row, multi-class classification uses standard 5-class cross-entropy loss with one-hot encoding. In the second row, the network is 

trained using only continuous mapping with ordered labels, without multi-task learning with auxiliary tasks. 



Supplemental Results 6. Explainability Analysis using Saliency Map 

 

Given our use of video input with an r2plus1d network, we selected the frame with the 

maximum saliency value based on pixel-wise summation to provide a 2D saliency map image. 

Complete videos are presented in Video S3.  
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