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Abstract 

Background/Purpose: Cardiogenic shock (CS) is a critical condition characterized by low 
cardiac output leading to end-organ hypoperfusion and often multisystem organ failure, affecting 
up to 50,000 people annually in the United States. Acute myocardial infarction (AMI) is the 
primary cause, responsible for 81% of CS cases. Despite advancements in reperfusion therapies 
improving survival, in-hospital mortality remains high at 40%-67%, with 18.6% of survivors 
readmitted within 30 days. Traditional methods struggle to quantify and process the complex 
interactions among various risk factors, making prediction of readmissions challenging. Machine 
learning (ML) offers a promising solution by capturing intricate patterns and non-linear 
relationships among numerous variables. This study aims to develop an ML-based prediction 
model for 7-day and 30-day readmission rates in CS patients using the 2019 National 
Readmission Database (NRD). Additionally, the study utilizes SHapley Additive exPlanations 
(SHAP) to interpret the outcomes of the applied machine learning methods.  

Method: We conducted a retrospective study using the NRD for 2019. Index hospitalizations 
were identified by non-elective admissions with a primary ICD-10 diagnosis of cardiogenic 
shock. Exclusions included patients under 18, missing length of stay or days to event data, and 
same-day transfers. The primary outcome was readmission within 7- and 30-days post-discharge. 
Welch’s t-test compared continuous variables. Various ML models were evaluated for their 
predictive performance, and SHAP values were used to interpret the most influential features. 

Results: The study included 97,653 adults hospitalized for CS, with a mean age of 65.8 years 
and 38.4% being female. The in-hospital mortality rate was 33.7%. Among 51,976 index 
hospitalizations, 8.3% were readmitted within 7 days, and 21.02% within 30 days. Significant 
predictors of higher readmission rates included younger age, lower income, Medicaid insurance, 
CKD3, drug abuse, chronic pulmonary disease, PHTN, depression, leukemia, lymphoma, 
discharge against medical advice, and certain hospital characteristics. The FT-Transformer (a 
specialized deep neural network approach for tabular data) model achieved the highest AUCs of 
0.76 and 0.78 for 7-day and 30-day readmissions, respectively, outperforming traditional 
methods like Logistic Regression (AUCs: 0.60 and 0.63). 

SHAP analysis revealed a wide array of features contributing to readmission predictions at both 
the population and individual levels. For the general population, the top features included 
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APRDRG, DRG_NoPOA, age, chronic kidney disease, length of stay, number of ICD-10 codes, 
and disposition at discharge. In contrast, for an individual patient, the most influential feature for 
predicting 7-day readmission may differ, though there are some overlaps. This highlights the 
potential of personalized medicine, where individual risk factors are weighted differently 
compared to the general population, providing tailored insights for targeted interventions. 

Conclusion: This study demonstrates that advanced ML models, particularly the FT-
Transformer and Random Forest, significantly outperform traditional methods in predicting 
readmissions in CS patients. The use of SHAP values enhances the interpretability of these 
models, providing actionable insights for healthcare providers. The differentiation between 
general population feature contributions and individual-specific factors underscores the 
importance of personalized medicine. By understanding individual risk profiles, healthcare 
providers can implement more precise and effective interventions, ultimately aiming to reduce 
readmissions and optimize healthcare outcomes. 
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Introduction  

Cardiogenic shock (CS) is a low-output cardiac state with a high-acuity, potentially complex, and 
hemodynamically diverse state of end-organ hypoperfusion that is frequently associated with 
multisystem organ failure [1]. It affects up to 50,000 people annually in the United States, with 
acute myocardial infarction (AMI) as the most frequent cause accounting for 81% of all the CS 
cases [23]. Over the years, tremendous advances in reperfusion therapies have improved survival. 
However, in-hospital mortality remains high ranging from 40%-67% and so do re-admission 
rates [45]. Among patients who survive cardiogenic shock following AMI, about 18.6% get re-
admitted within 30 days 6]. Predictors of re-admission include low economic status, female sex, 
atrial fibrillation, ventricular tachycardia, and mechanical circulatory device placement. 
Congestive heart failure and new myocardial infarction (MI) are the most common causes of re-
admission [7,8,9]. Although those risk factors have been well recognized, physicians still face 
significant challenges in timely quantifying and processing the complex interactions among 
various risk factors. In addition, the challenge lies in predicting their combined impact on 
ultimate healthcare outcomes as they present in diverse combinations across different individuals.  

The advent of machine learning (ML) in healthcare offers a potential solution to these challenges. 
When compared to traditional predictive methods, it is better at capturing intricate interactions 
and patterns as well as non-linear relationships among a vast number of variables [1011]. It holds 
potential in developing clinical prediction models that are reliable and cost-effective. It has wide 
medical applications ranging from health records management to interpreting imaging, research, 
and personalized medicine [12]. Multiple studies have proposed ML based prediction models as 
clinical decision support tools in CS management and achieved good results [1314,15]. Golas et 
al. used deep neural network to develop a risk prediction model for 30-day re-admissions in heart 
failure patients, which performed better than the traditional methods [16]. Inspired by the success 
of the Transformer neural network across a range of AI applications [17], including computer 
vision, natural language processing, and robotics, Yuri et al. introduced the FT-Transformer 
(Feature-tokenizer Transformer) neural network specifically for tabular data prediction [18]. This 
model has demonstrated superior performance over previous methods on most tabular data 
prediction tasks. Given that our readmission prediction challenge also falls within the realm of 
tabular data prediction, we selected the FT-Transformer as our base model for this study. 

Deep neural network algorithms have the potential to outperform traditional methods. However, 
their lack of interpretability has been a significant obstacle to their application in the medical 
field. Providers need to understand how a prediction model derives its conclusions, especially in 
high-stakes areas such as medicine. To address this challenge, SHapley Additive exPlanations 
(SHAP) method was proposed to interpret the any machine learning prediction results [19], 
including deep neural networks. 
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The national re-admission database is a powerful and unique database designed to support 
various analyses of national re-admissions for all patients, including matrices such as re-
admission rates by diagnosis, procedure, patient demographics, or expected payment source. 
Given its volume and richness in data, we are using the national re-admission database from 
2019 to develop a prediction model via machine learning algorithms for 7-day and 30-day re-
admission rates in patients with CS. To our knowledge, prior studies have yet to be done using 
this database to develop such a prediction model. This study seeks to provide predictions of 7-
day and 30-day re-admissions and the most likely causes. This study employs SHAP method to 
enhance interpretability of predictions, enabling healthcare providers to make informed decision 
and implement targeted interventions to reduce re-admissions and optimize healthcare outcomes.  

 

Method 

Design. The objective of this study was to develop a machine learning model that predicts the 
probability of patient readmission within 7 and 30 days, based on basic patient information. In 
addition to striving for accurate predictions, special attention is given to interpreting the results 
of the machine learning models. 

Data. We performed a retrospective study using the Agency for Health-care Research and 
Quality Health-care Cost and Utilization Project, Nationwide Readmissions Database (NRD) for 
the year 2019. CS index hospitalizations were defined as non-elective admission with a primary 
International Classification of Diseases and Related Health Problems (ICD)-10 diagnosis code of 
cardiogenic shock (R57.0). Index hospitalizations were excluded if: (1) The patients were 
younger than 18 years; (2) there was no information on the length of stay (LOS) or Daystoevent. 
(3) transfer or same-day stay involving multiple discharges (aka :SAMEDAYVENT not equals 
0). Variable “NRD_visitlink” was used to identify the patients and the time between the two 
admissions was obtained by subtracting the variable “NRD_DaysToEvent.” Subtracting length of 
stay of index admissions from time between two admissions provided the interval time to 
readmission. Index hospitalizations were studied between January to November to facilitate 
identification of 7-d and 30-d readmission rates for all discharged patients for the 2019 calendar 
year. For index hospitalizations with more than one readmission within 30 d, only the initial 
admission for calendar year per patient was included for analysis as an index admission. Welch’s 
t test was used to compare continuous variables The primary outcome was defined as CS 
readmission that occurred within the first 7 d and 30 d of discharge from last CS index 
hospitalization.  

Settings.  In this study, ICD-10 (International Classification of Diseases, Tenth Revision) codes 
were truncated to three figures to reduce the dimensionality of our data. For example, the 
original code 'I5023' in NRD database was shortened to 'I50', allowing us to focus on general 
conditions such as “'I50 - heart failure” instead of more specific diseases. This adjustment 
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decreased the number of ICD-10 feature dimensions from 3,687 to 1,182. Reducing the feature 
dimensionality, which results in more patient cases being categorized under each general disease 
category, enables the machine learning models to acquire broader knowledge. This approach 
minimizes the risk of overfitting on specific features, promoting a more generalized model 
performance. 

In our machine learning experiments, the patient population was divided into three distinct sets: 
60% for model training, 20% for validation, and 20% for testing. The models were trained on the 
training set, with the validation set used for parameter tuning. After training, the performance of 
the models was evaluated on the test data using the AUC-ROC (Area Under the Receiver 
Operating Characteristic Curve) metric. 

Prediction Model.  In this study, we utilized FT-Transformer [18] as our base prediction model. 
This model integrates the Feature Tokenizer (FT), which converts input numerical and 
categorical features—such as age and diagnosis of heart diseases—into vector embeddings. 
Subsequently, the Transformer neural network, a novel architecture with attention mechanisms, 
is employed to predict the probability of readmission. For comparative purposes, we also 
conducted experiments using a range of established methods, including Random Forest, SVM 
(Support Vector Machine), XGBoost (Extreme Gradient Boosting), LightGBM (Light Gradient 
Boosting Machine), Decision Tree, AdaBoost (Adaptive Boosting), and Logistic Regression. 

Interpretation of outcome.  Understanding the rationale behind a model's prediction is often as 
crucial as the accuracy of the prediction itself, especially in medical applications. However, 
achieving the highest accuracy on large modern datasets frequently involves complex models 
that are challenging to interpret, such as ensemble or deep learning models. In this study, we 
employed SHAP (SHapley Additive exPlanations) [19] to analyze feature contributions and 
provide interpretability to the models' predictions. SHAP assigns an importance value to each 
feature for a specific prediction, facilitating a deeper understanding of the decision-making 
process within any prediction model.  

Results 

Baseline characteristics. The study included 97,653 adults who was hospitalized for CS. 38.4% 
of those patients were female. The mean age was 65.8 years. 32,881 of them died during their 
presentation with a mortality rate of 33.7%. Index hospitalizations were 51,976; 7-day 
readmission was 4317, 7-day readmission rate was 8.3%; 30-day readmission was 10,927, 30 
day readmission rate was 21.02%.  

Table 1 summarizes the baseline characteristics of populations during index hospitalization. We 
reported only the 10 statistically significant factors in Table 1. For a full version of the baseline 
characteristics, please refer to Table A. 1 in the appendix. A p-value of <0.05 is considered 
statistically significant, while a p-value of <0.001 is considered highly significant. Table 1 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.08.24310102doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.08.24310102
http://creativecommons.org/licenses/by-nc-nd/4.0/


reveals that factors significantly associated with higher 7-day and 30-day readmission rates 
include younger age, lower income, Medicaid insurance, drug abuse, chronic pulmonary disease, 
diabetes mellitus with complications, hypertension, and discharge against medical advice. 
Conversely, factors such as private insurance and routine discharge are associated with lower 
readmission rates. 

Table 1 Baseline Characteristics of Study Population (10 Statistically Significant Factors) 

 

Characteristics 

Index 
Admission 

(%) 

7-day readmission rate (%) 30-day readmission rate (%) 

readmission no readmission p value readmission no readmission p value 

Mean age  65.90 65.11 65.97 <0.001 65.27 66.06 <0.001 

Lowest income  28.80 30.00 28.60 0.050 30.70 28.20 <0.001 

Medicaid 13.70 16.80 13.40 <0.001 16.50 13.00 <0.001 

Private insurance 19.20 16.70 19.40 <0.001 15.80 20.10 <0.001 

Drug abuse 3.10 4.60 3.00 <0.001 4.20 2.80 <0.001 

Chronic pulmonary 
disease 

27.30 30.30 27.10 <0.001 30.40 26.50 <0.001 

Diabetes mellitus 
with complications 

3.40 4.90 3.30 <0.001 4.50 3.10 <0.001 

Hypertension 11.80 8.50 12.10 <0.001 7.60 12.90 <0.001 

Routine 33.60 29.40 34.00 <0.001 29.80 34.60 <0.001 

Against medical 
advice 

1.30 3.00 1.10 <0.001 2.40 1.00 <0.001 

 

Prediction performance. Figure 1 presents the ROC curves and ROC-AUC scores of various 
machine learning methods for predicting 7-day and 30-day readmissions. The FT-Transformer 
consistently outperformed other models, achieving AUCs of 0.76 and 0.78, respectively. Random 
Forest also demonstrated strong performance with AUCs of 0.71 and 0.76. SVM showed 
moderate effectiveness with AUCs of 0.73 and 0.70, as did XGBoost with AUCs of 0.68 and 
0.73, and LightGBM with AUCs of 0.66 and 0.72. Decision Tree, Logistic Regression, and 
AdaBoost had the lowest AUCs, ranging from 0.60 to 0.64, indicating less reliable performance. 
Notably, Logistic Regression, a traditional analytical method, had AUCs of 0.60 and 0.63, 
significantly lower than FT-Transformer and Random Forest. These results suggest that the FT-
Transformer is the most effective model for predicting readmissions in this patient population, 
offering valuable insights for targeted interventions to reduce readmission rates. It is important to 
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Figure 1 ROC Curves for Different ML Algorithms. This figure compares the performance of various machine 

learning algorithms in predicting (a) 7-day readmission and (b) 30-day readmission. 

note that 7-day readmission is a more class-imbalanced problem, with far fewer positive samples 
(7-day readmissions) compared to negative samples (no 7-day readmissions). Random Forest's 
performance was significantly impacted by this issue, with a 9% reduction in AUC (from 0.76 to 
0.70) when predicting 7-day readmission compared to 30-day readmission. However, the FT-
Transformer's performance drop was much smaller, at about 3%. This comparison highlights the 
superior predictive capabilities of advanced machine learning models, such as FT-Transformer, 
over traditional methods like Logistic Regression.   

 

 

Feature importance.  Figure 2 demonstrates the contributions of top 10 most influential features 
to predicting 7-day readmission in patients with cardiogenic shock using SHAP values from a 
FT-transformer model. SHAP value denotes the importance of each feature. Notably, no single 
feature dominates the prediction. The top 10 features, including APRDRG, DRG_NoPOA, age, 
chronic kidney disease, length of stay, number of ICD-10 codes, disposition at discharge, 
essential hypertension, other medical care, and COPD, each contribute SHAP values between 
0.01 and 0.03. Meanwhile, the cumulative contribution of the remaining 1190 features is 0.39. 
This distribution indicates that the prediction of cardiogenic shock readmission is highly 
complex and multidimensional, relying on a wide array of factors rather than a few predominant 
ones. Understanding this complexity can help healthcare providers better target interventions to 
reduce readmission rates. 

(a) 7-d readmission (b) 30-d readmission 
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Figure 2 Feature contributions to predicting 7-day readmission in study population. APRDRG: All patient

refined diagnosis related groups, which is an index of case severity and complexity used for insurance

reimbursement; DRG_NoPOA: Diagnosis related groups assignment made without the use of the present

on admission flags for the diagnoses; CKD: Chronic kidney disease; HTN: Essential hypertension; Other

medical care: including palliative care, blood transfusion, chemotherapy or radiation therapy for

neoplasm or other unspecified medical care; COPD: chronic obstructive pulmonary disease and heart

failure. 

Similarly,  Figure 3 demonstrates the contributions of the top 10 most influential features for
predicting 30-day readmissions in patients. Several key features overlap with those identified for
7-day readmission predictions, such as DRG_NoPOA, length of stay, APRDRG, number of ICD-
10 codes, and disposition at discharge. However, unique to the 30-day prediction are significant
features such as DNR status and heart failure. Despite these differences, no single feature
overwhelmingly dictates the prediction outcomes, similar to the 7-day predictions. The top 10
features contribute SHAP values ranging from 0.02 to 0.04, while the cumulative contribution of
the remaining 1,190 features totals 0.69.  
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Figure 3 Feature Contributions to Predicting 30-Day Readmission. 
Interpretation of outcome.  Figure 2 and  Figure 3 illustrate the overall importance of features
across all datasets. However, statistical averages may not always be relevant to individual cases.
A key aspect of our study is the ability to interpret specific prediction outcomes for individual
cases. We utilize bar plots of SHAP value to display the impact of each feature on the prediction
outcome, providing a clear and direct visualization of how various factors contribute to the
model’s predictions.  

Figure 4 presents the interpretation of FT-Transformer model's 7-day readmission prediction for
an individual patient, where the true label is positive, indicating an expected readmission within
7 days. The predicted readmission probability by the FT-Transformer is p=0.99, confirming that
the model accurately anticipated the readmission. In our visualization, red bars (positive) indicate
features that increase the readmission probability, whereas blue bars (negative) indicate features
that decrease it. Notably, the presence of portal vein thrombosis, marked as '1= Portal vein
thrombosis' in the figure (where 1 indicates positive), significantly increases the readmission
probability by 37%. Additionally, an APRDRG value of 11 increases the probability by 7%.
Other contributing factors include COPD, which increases the likelihood by 5%, and conditions
like atrioventricular and left bundle-branch block (AV and LBBB) and hypertension (HTN). In
contrast, dysphagia slightly reduces the readmission probability by 2%. The collective impact of
the remaining 1,191 features accounts for a 22% increase, illustrating that while they contribute
to the overall prediction, portal vein thrombosis remains the dominant factor for this case. It is
important to note that the contributions of individual features are not isolated but are
interconnected, resulting in a combined effect on the overall prediction. 
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Figure 4 Feature Contributions for Predicting 7-Day Readmission. This figure displays the feature 

contributions for a specific individual who was readmitted within 7 days. The model predicted the 

readmission with a high probability of 0.99. 

Similarly, Figure 5 presents the interpretation of FT-Transformer model's 30-day readmission
prediction for an individual patient, where the true label is positive, indicating an expected
readmission within 30 days. The predicted readmission probability by the FT-Transformer is
p=0.99, confirming that the model accurately anticipated the readmission. Notably, the presence
of Drainage, significantly increases the readmission probability by 16%. Additionally, an Pleural
effusion increases the probability by 10%. Other contributing factors include COPD, which
increases the likelihood by 6%. In contrast, a disposition at discharge coded as '4' slightly
decreases the probability by 5%. Collectively, the impact of the remaining 1,191 features
accounts for a 25% increase in readmission probability.  n the appendix, additional interpretation
results are provided, as depicted in Figure A. 1 and Figure A. 2. 
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Figure 5 Feature Contributions for Predicting 30-Day Readmission. This figure displays the feature 

contributions for a specific individual who was readmitted within 30 days. The model predicted the 

readmission with a high probability of 0.99. 

 

Discussion  

Statistical Study. This retrospective study utilizing the 2019 Nationwide Readmissions
Database (NRD) provides valuable insights into the readmission rates of patients with
cardiogenic shock (CS). Our analysis included 97,653 adults, revealing a mean age of 65.8 years
and a 33.7% mortality rate during initial hospitalization. Index hospitalizations totaled 51,976,
with 7-day and 30-day readmission rates of 8.3% and 21.02%, respectively. Key factors
associated with higher readmission rates include younger age, lower income, Medicaid insurance
chronic kidney disease (CKD3), drug abuse, chronic pulmonary disease, pulmonary hypertension
(PHTN), depression, leukemia, lymphoma, and discharge against medical advice. Conversely,
private insurance and routine discharge were linked to lower readmission rates. 

Machine Learning Study. Machine learning models were employed to predict readmission rates
with the FT-Transformer demonstrating superior performance (AUCs: 0.76 and 0.78) compared
to other methods. In contrast, traditional methods like Logistic Regression had significantly
lower AUCs (0.60 and 0.63). The advanced machine learning models outperformed Logistic
Regression by providing better discrimination between readmitted and non-readmitted patients.
Logistic Regression, while useful for understanding linear relationships and providing
interpretable coefficients, falls short in capturing the complex, nonlinear interactions that
machine learning models can identify. This underscores the enhanced predictive capabilities of
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advanced machine learning techniques, which are particularly valuable in high-dimensional 
datasets common in healthcare 

Interpretation of machine learning models. SHAP values provide a means to interpret the 
contributions of various features in a machine learning model’s prediction. At the population 
level, SHAP values are averaged across all instances (patients) in the dataset. This approach 
helps identify features that consistently contribute to predictions across the entire patient 
population. In our study, the population-level SHAP analysis did not reveal a single dominating 
predictor. Instead, it showed that multiple features such as APRDRG -an index of case severity 
and complexity, DRG_NoPOA, which identifies diagnoses not present at admission and assesses 
hospital-acquired conditions, age, chronic kidney disease, and length of stay, each contributed 
modestly to the prediction of 7-day readmission, with individual SHAP values ranging from 0.01 
to 0.03, as shown in Figure 2. At the individual level, SHAP values reflect the contribution of 
each feature to the prediction for a specific patient. This can result in a single feature having a 
dominant influence on the model’s prediction. For instance, in one patient's case as shown in 
Figure 4, portal vein thrombosis had a SHAP value of +0.37, making it the dominant predictor 
for that individual's readmission risk. The discrepancy between SHAP values at the population 
level and individual level highlights the complexity and variability of predictive factors in 
patients with cardiogenic shock. While general trends are valuable for understanding broad risk 
factors, individual predictions enable tailored interventions that address specific patient needs 
with goal of personalized medicine. This type of personalized analysis has the potential to reduce 
readmission rates. For instance, the interpretation provided indicates that portal vein thrombosis 
is a key contributor to the readmission risk for the patient shown in Figure 4, it's crucial to note 
that these interpretations, derived from mathematical calculations, should serve as references for 
healthcare providers to consider if targeted interventions could effectively reduce readmission 
risks. 

 

Conclusion 

This study shows the complexity of predicting 7-day and 30-day readmission rates in patients 
with cardiogenic shock. Advanced machine learning models like FT-Transformer outperformed 
traditional machine learning methods, capturing complex, nonlinear interactions for more 
accurate predictions. SHAP value analysis revealed interpretation of contributing features in a 
study population level as well as individual level. These findings can help healthcare providers 
target interventions to reduce readmission rates, highlighting the potential of integrating 
advanced machine learning into clinical practice for better patient outcomes and resource 
optimization. 

•  APRDRG: All Patient Refined Diagnosis Related Groups, an index that measures case 
severity and complexity, utilized for insurance reimbursement purposes. 
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•  DRG_NoPOA: Diagnosis Related Groups assignment made without considering the 'Present 
on Admission' flags for diagnoses. 
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Appendix 

Baseline characteristics. Table A. 1 summarizes the baseline characteristics of populations 
during index hospitalization. 

Table  A.1 Baseline Characteristics of Study Population 

 

Characteristics 

Index 
Admission 
(%) 

7-day readmission rate (%) 30-day readmission rate (%) 

readmission No 
readmission 

p value readmission  No 
readmission  

 p value 

Female  36.10 35.90 36.10 0.741 36.70 35.90 0.133 

Mean age  65.90 65.11 65.97 <0.001 65.27 66.06 <0.001 

Lowest 
income  

28.80 30.00 28.60 0.050 30.70 28.20 <0.001 

Highest 
income  

19.60 18.70 19.70 0.091 18.30 20.00 <0.001 

Medicare 61.30 61.60 61.30 0.683 63.20 60.80 <0.001 

Medicaid 13.70 16.80 13.40 <0.001 16.50 13.00 <0.001 

Private 
insurance 

19.20 16.70 19.40 <0.001 15.80 20.10 <0.001 

Self-pay 2.50 2.00 2.50 0.031 1.90 2.60 <0.001 

CKD3 16.20 17.70 16.10 0.008 18.60 15.60 <0.001 

CKD4 4.80 5.00 4.80 0.384 5.30 4.60 0.003 
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CKD5 0.50 0.60 0.40 0.050 0.50 0.40 0.143 

Unspecified 
HF  

4.20 4.20 4.20 0.969 4.00 4.20 0.219 

Right HF  1.10 1.00 1.10 0.465 1.00 1.10 0.577 

Chronic 
systolic HF  

7.80 7.60 7.80 0.595 7.60 7.80 0.413 

Heart 
transplant  

0.10 0.10 0.10 0.691 0.10 0.00 0.075 

Acute MI 30.50 29.90 30.50 0.352 26.90 31.40 <0.001 

LVAD Present 0.80 0.90 0.80 0.753 1.00 0.80 0.017 

Drug abuse 3.10 4.60 3.00 <0.001 4.20 2.80 <0.001 

Chronic 
pulmonary 
disease 

27.30 30.30 27.10 <0.001 30.40 26.50 <0.001 

PHTN 16.50 16.60 16.50 0.869 17.90 16.10 <0.001 

Dementia 3.40 3.30 3.50 0.566 3.20 3.50 0.155 

Peripheral 
Vascular 
Disease 

4.00 4.60 4.00 0.050 4.60 3.80 <0.001 

BMI >35 10.50 10.40 10.50 0.802 10.70 10.40 0.383 

Diabetes 
mellitus with 
complications 

3.40 4.90 3.30 <0.001 4.50 3.10 <0.001 

Hypertension 11.80 8.50 12.10 <0.001 7.60 12.90 <0.001 

Cerebral 
infarction 

3.20 3.20 3.20 0.919 3.20 3.20 0.903 

Cerebral 
hemorrhage 

0.70 0.50 0.80 0.074 0.60 0.80 0.060 

Depression 8.80 9.40 8.80 0.168 9.50 8.70 0.005 

Leukemia 1.20 1.50 1.20 0.093 1.50 1.10 0.004 

Lymphoma 1.90 2.20 1.80 0.103 2.20 1.80 0.004 

Solid tumor 1.40 1.20 1.40 0.385 1.40 1.30 0.969 

Metastatic 1.90 1.80 1.90 0.534 2.10 1.80 0.129 
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cancer 

Small bed size 10.90 11.60 10.90 0.154 10.40 11.10 0.050 

Medium bed 
size 

23.60 23.90 23.50 0.595 23.20 23.70 0.263 

Large bed size  65.50 64.50 65.60 0.158 66.40 65.20 0.022 

Metropolitan 
teaching 

81.50 81.90 81.50 0.552 82.30 81.30 0.021 

Metropolitan 
non-teaching 

15.20 14.90 15.20 0.685 14.80 15.30 0.210 

Non-
metropolitan  

3.30 3.20 3.30 0.633 2.90 3.40 0.013 

Routine 33.60 29.40 34.00 <0.001 29.80 34.60 <0.001 

Transfer to 
facility 

33.00 33.60 32.90 0.374 35.30 32.30 <0.001 

Home health 
care 

27.40 27.00 27.40 0.518 28.10 27.20 0.075 

Against 
medical 
advice 

1.30 3.00 1.10 <0.001 2.40 1.00 <0.001 

Table A. 1 

 

Interpretation of outcome.   In Figure 4 and Figure 5, we interpret the outcomes of the 
prediction model using bar plots of SHAP values. In this section, we illustrate the outcomes 
using a waterfall plot of SHAP values. Figure A. 1 presents the interpretation of the FT-
Transformer model’s 30-day readmission prediction with a waterfall plot of SHAP values, where 
the true label is positive, indicating an expected readmission within 30 days. The predicted 
readmission probability by the FT-Transformer is p=0.988, confirming that the model accurately 
anticipated the readmission. The figure shows that the base predicted readmission rate is 0.234, 
������� � 0.234, derived from the statistics of the training data, indicating that approximately 
23.4% of cases in the training set were readmitted. The feature contributions are as follows: 
1,191 other features collectively increase the readmission probability by 12%. Additionally, 
certain early complications of trauma and the NCHS urban-rural classification scheme increase 
the likelihood by 3% and 5%, respectively. A length of stay of 31 days increases the likelihood 
by 7%, while being classified under PCLASS_ORPRC as '2' increases it by 8%. disorders of 
pancreatic internal secretion increase it by 8%. Unspecified diseases of blood and blood-forming 
organs decrease the likelihood by 10%. Drainage increases it by 10%, APRDRG coded as '22' 
increases it by 11%, and DNR status, as the most significant factor, increases the likelihood by 
21%. These contributions combine to yield a predicted probability of 0.988, ���� � 0.988. 
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Figure A. 1  Feature Contributions for Predicting 30-Day Readmission. This figure displays the feature 

contributions for a specific individual who was readmitted within 30 days. The model predicted the 

readmission with a high probability of 0.988. 

Figure A. 2 presents the interpretation of negative sample with waterfall plot of SHAP values.
This figure illustrates the prediction model’s interpretation for a case with a true negative label,
indicating no readmission within 30 days. The FT-Transformer model predicted a readmission
probability of p=0.006, accurately forecasting the lack of readmission. Mirroring the approach in
Figure A. 1, the base expected readmission rate is 0.234. Feature contributions show that 1,191
other features collectively decrease the readmission probability by 1%. Notably, a 4-day length
of stay significantly reduces the probability by 11%. These contributions combine to yield a
predicted probability of  0.006, . 
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Figure A. 2 Feature Contributions for Predicting 30-Day Readmission. This figure illustrates the feature 

contributions for a specific individual who was not readmitted within 30 days. The model predicted a low

readmission probability of 0.006, effectively indicating a negligible likelihood of readmission. 
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