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Supplementary Text A 
Steady-State Equations for M/M/1 FIFO Queueing System with Balking and 

Reneging 
 

 

 

Queueing manuscript deriving closed-form equations
Sherrie Xie

March 2024

Our objective is to find closed-form equations to describe the behavior of a modified M/M/1
queueing model. In the following, we use the Markov chain {Xt, t ≥ 0} to denote the number of
customers in the system at time t, i.e., customers either waiting in queue or being served. Balking is
modeled via a modified arrival rate λs,n = λse−αn/µ and reneging is modeled using modified service
rate µn = µ + (n − 1)β whenever there are n customers in the system. Note that sεS, where S is
the set of all selected vaccination sites, and the arrival rate λs is allowed to vary across vaccination
sites depending on the catchment size and the distribution of household travel distances for each site.
However, the service rate µ (the inverse of the time it takes to administer a canine rabies vaccine) is
expected to be constant across sites.

First, we note that {Xt, t ≥ 0} represents a birth-death process with rate λs,n describing transitions
from state n to state n + 1 and rate µn describing transitions from state n to state n − 1. A useful
result given by equations (3.3) and (3.4) in Fundamentals of Queueing Theory1 is that at equilibrium,
the probability of finding n customers (dogs) in a birth-and-death queueing process is equal to pn =
λn−1λn−2...λ0

µnµn−1...µ1
p0 for n ≥ 1 and p0 =

(
1 +

∑∞
n=1

λn−1λn−2...λ0

µnµn−1...µ1

)−1
.

Applying this result to the functional forms of λn,s and µn specified above yields:

ps,n =
e−

α(n−1)
µ −α(n−2)

µ −...−α
µ λn

s∏n
i=1 (µ+ (i− 1)β)

p0

ps,n =
e−

α
µ (1+2+...+(n−1))λn

s

βn Γ(n+µ
β )

Γ(µ
β )

p0

ps,n =
e

−αn(n−1)
2µ λn

sΓ(
µ
β )

βnΓ(n+ µ
β )

p0,

where Γ(z) denotes the gamma function, i.e., Γ(n) = (n − 1)! for any integer n > 0 and Γ(z) =∫
tz−1e−tdt interpolates the factorial function to non-integer values. The probability ps,0 is chosen so

that
∑∞

n=0 ps,n = 1, and thus:

ps,0 =



1 +
∞∑

n=1

e
−αn(n−1)

2µ λn
sΓ(

µ
β )

βnΓ(n+ µ
β )




−1

Note that the rate a which dogs join the queue (i.e., the effective arrival rate) is equal to the
weighted sum of modified arrival rate λs,n multiplied by the probability that the queue is in state n:∑∞

n=0 ps,nλs,n, and the rate that dogs exit the queue before getting vaccinated (i.e., the reneging rate)
is equal to the weighted sum of exit rate (n − 1)β multiplied by the probability that the queue is in
state n:

∑∞
n=1 ps,n(n− 1)β.

1Therefore, the expected rate at which dogs are vaccinated at vaccination site s, after consideration
of balking and reneging, is equal to:

vs =
∞∑

n=0

ps,nλs,n −
∞∑

n=1

ps,n(n− 1)β

and the expected number of dogs vaccinated across all vaccination sites V is equal to:

V =
∑

sεS

vst

Similarly, we can find the expected number of dogs lost to attrition through either balking or
reneging from the above. Note that the balking rate at site s, which we will call bs, is equal to the
difference between the baseline arrival rate and the effective arrival rate for site s:

bs = λs −
∞∑

n=0

ps,nλn

and hence the expected number of dogs lost to balking across all sites B is equal to:

B =
∑

sεS

bst

Finally, the reneging rate at site s, which we denote rs, is equal to:

rs =
∞∑

n=1

ps,n(n− 1)β

and thus the expected number of dogs lost to reneging across all sites R is equal to:

R =
∑

sεS

rst
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Supplementary Text B 
The Hybrid Recursive Interchange-Genetic Algorithm for MDVC Site Optimization 
 
Overview of the hybrid algorithm 
The hybrid recursive interchange-genetic algorithm optimizes the placement of vaccination sites 
through a recursive swap-one-out strategy, also known as a recursive interchange algorithm 
(RI). Because the RI does not guarantee finding a global optimum, we combine it with a genetic 
algorithm (GA), which mimics the biological process of natural selection to improve the “fitness” 
of the solutions obtained. The hybrid algorithm cycles between the RI and GA until the stopping 
condition is reached: when two back-to-back rounds of optimization do not increase the 
expected number of dogs vaccinated beyond any of the previous rounds (Figure S2).  
 
The first round of optimization with the hybrid algorithm proceeds with 1,000 independent 
iterations of the RI, where each iteration begins with a different randomly sampled starting set of 
vaccination sites.  All subsequent rounds of the algorithm begin with the GA, which mates 
optimized “parent” solutions from the RI to obtain “offspring,” which are then fed to the RI as 
subsequent starting sets. At the end of each round, the best solution and its associated score 
(expected number of dogs vaccinated) are retained to assess the stopping condition.  
 
To facilitate the process of crossover in the GA, the study area was split into four zones (Figure 
S3a). The boundaries between the two zones in the north (Zones 1 and 2) and between Zone 2 
and the zones in the south (Zones 3 and 4) follow the natural barriers formed by dry water 
channels that run across the area. The boundary between Zones 3 and 4 in the south were 
drawn to divide the region into zones of roughly equal populations. Detailed descriptions of the 
RI and GA are provided below.   

 
Recursive interchange algorithm 
 
The RI uses a recursive, swap-one-out strategy to find a locally optimal solution for a given 
starting set of vaccination sites (see the supplementary video). The objective function for the RI 
is the expected number of dogs vaccinated, which can be obtained one of two ways depending 
on whether queueing attrition is accounted for in the optimization: 

● For queue-conscious optimization, the expected number of dogs vaccinated is equal to 
𝑉 = ∑ 𝑣!𝑡!"# , where 𝑣! is the queue-dependent vaccination rate at site s and t is the total 
time that each MDVC site operates (equations 5-6 in the main text). 

● For queue-naive optimization, there is no queueing attrition so all dogs that arrive are 
assumed to get vaccinated. Thus the expected number of dogs vaccinated is simply 
equal to λt, or the total dogs that arrive in time t. 

 
The steps of the RI are as follows:  

1. Specify the starting set to use in the RI, which will defer between the first and 
subsequent rounds of the hybrid algorithm 

○ On round 1: Select a random set of 20 vaccination sites (out of the 70 candidate 
sites).   

○ On round n (where n = 2, 3, 4, …): Start with a set of 20 vaccination sites that 
were obtained from the RI in the previous round of optimization.   
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2. For the starting set of sites, use the MDVC participation probability function to determine 
the expected number of arrivals at each site and divide this number by t (total 
operational time, which is assumed to equal 16 hours) to obtain the hourly arrival rate λ 
at each site. 

3. Calculate the expected number of dogs vaccinated at each site (Vt for queue-conscious 
optimization and λt for queue-naive optimization) and sum across all sites to calculate 
the total number of dogs vaccinated. 

4. Exchange one selected site with all non-selected candidate locations and keep the one 
that maximizes the total number of dogs vaccinated. 

5. Repeat step 3 with remaining sites to obtain a locally optimized set of sites (each 
optimized set is treated as a parental set in the GA that is detailed below). 

6. Perform steps 1-5 over 1,000 iterations to obtain 1,000 parental sets, which are 
subsequently used as input for the GA in the following round of optimization if the 
stopping condition has not been reached. 

 
Genetic algorithm 
A GA mimics the process of natural selection to find solutions to optimization problems with a 
large and complex search space. The GA employed in our hybrid algorithm includes the 
biologically inspired operations of crossover and mutation. The crossover step of our GA 
imitates the process of genetic recombination, which promotes diversity by combining sites from 
each parental set but also preserves spatial information in the parental sets by conserving the 
selection of sites in the same zone.  Mutation is performed to introduce random changes to the 
offspring set to increase diversity in the offspring population. Mating pairs include pairings 
between two “optimized” parents that were output by the RI in the previous round and pairings 
between an optimized parent and a “random” parent that was generated using a spatially-
structured random sampling approach (see subsection below for details). The latter pairing 
further increases the diversity of the offspring sets. 
 
The steps of the GA are as follows: 

1. Pair parental sets for mating. There will be 1,000 mating pairs: 
○ Five hundred pairs will comprise two optimized parents.  
○ Five hundred pairs will comprise one optimized parent and one random parent.  

2. Perform CROSSOVER (Figure S2b): randomly sample two zones from Parent 1 and 
retain all sites from those zones; then obtain all sites of the remaining two zones from 
Parent 2. 

3. Add/delete sites to ensure there are k = 20 sites total: 
○ If total sites > 20 ... remove sites at random until 20 sites are left (all chosen sites 

have an equal probability of being removed). 
○ If total sites < 20 ... add sites at random until 20 sites are left (all unchosen sites 

have an equal probability of being added). 
4. Perform MUTATION (Figure S2c): each site has a 10% chance of mutating in which it is 

replaced by an unchosen site from the same zone.  
5. The resulting 1,000 offspring sets serve as inputs (starting sets) for the RI in the current 

round of optimization.  
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Generating random parental sets for mating 
The spatially-structured random sampling approach that was used to generate random parents 
consisted of the following two steps: 

1. Sample four sites in each of the four zones (to obtain 16 sites total).  
2. Sample four additional sites at random with equal probability (to obtain 20 sites).  
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Supplementary Text C 
Characterizing the relationship between number of arrivals and MDVC site 

performance for different time-varying arrival densities 

The closed-form equations for the MDVC queueing system that can be used to estimate the 
expected number of dogs vaccinated and losses to attrition are derived under the assumption of 
a constant arrival rate (Supplementary Text A and equations 1-6 in the main text). Thus, a 
different approach was required to estimate these performance metrics for time-varying arrival 
rates. The general approach employed was to estimate the expected number of dogs 
vaccinated and losses to attrition for a range of total arrival populations based on the median 
value obtained in repeated simulations. 

Eight scenarios were considered: four time-varying arrival density functions (figure S4) at both 
low- and high-attrition values for α and β. Stochastic simulations were performed for each 
scenario over a range of total number of arriving dogs (8-2,000) as follows: 

1. The time-varying arrival densities for a given function shown in figure S4 were multiplied 
by N to determine the number of dogs arriving in each half-hour interval, and then that 
number was divided by 0.5 hr to determine the arrival rate λ for each half-hour interval. 

2. The arrival rates were used to generate arrival times for each half-hour interval by 
drawing interarrival times from an exponential distribution with rate λ. 

3. The MDVC queueing system was simulated over four hours, beginning with zero dogs at 
time zero, to simulate a single day of the campaign, and the total number of dogs 
vaccinated and lost to attrition were recorded. 

4. Steps 1-3 were repeated four times to simulate the outcome for the MDVC at a given 
site (to mimic the campaign, which takes place over four four-hour days for each fixed-
point vaccination site). 

5. Steps 1-4 (representing a single iteration of the simulation) were repeated 1,000 times. 

The results of these simulations (medians and interquartile ranges) are plotted in figure S11. 
The median values for both the number of dogs vaccinated and lost to attrition were obtained 
from the simulations and were then fit using natural splines with seven degrees of freedom 
(figure S11). 

These spline functions were used in place of the closed-form equations (equations 5-6) to 
estimate the number of dogs vaccinated and lost to attrition when the low- and high-attrition 
solutions were applied to the eight scenarios. For each configuration of vaccination sites (either 
the low- or high-attrition solution), the spline functions were used to transform the number of 
dogs that were expected to arrive at each site to the number vaccinated and the number lost to 
attrition. 
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Supplementary Figures 

 
 
Figure S1. Overview of the hybrid recursive interchange-genetic algorithm that was used 
to optimize the placement of MDVC sites. The stopping condition for the algorithm is reached 
when the best solutions of the two latest rounds have a score (i.e., expected number of dogs 
vaccinated) that does not exceed the best score in all the previous rounds. More details about 
the algorithm can be found in the Methods section of the main text and Supplementary Text B.  
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Figure S2. Illustration of the genetic algorithm. Panel a shows how the study area was 
divided into geographic zones to facilitate crossover. The seventy candidate sites are depicted 
as red diamonds, and the locations of houses are shaded gray. Panel b illustrates the process 
of crossover, in which two zones are randomly selected from each parent to generate an 
offspring. Panel c illustrates the process of mutation, in which all sites have a 10% change of 
mutating, and mutated sites are swapped with a non-selected site. 
 
 
  



10 

 
 
Figure S3. Arrival times observed in the 2017 MDVC. Arrival times observed at three 
different MDVC sites and on four separate days. The number of arrivals is binned in 30-minute 
intervals. 
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Figure S4. Hypothetical time-varying arrival densities used to assess the relaxation of the 
constant arrival rate assumption. The x-axis shows time progression over a 4-hour day at an 
MDVC site, and the y-axis gives the density of arrivals as the proportion of total arrivals for that 
day. 
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Figure S5. The MDVC participation probability function. Historical post-MDVC survey data 
are binned in 30-m distance increments to the closest MDVC site and visualized as dots that are 
colored by year and scaled by the number of houses per bin. The Poisson regression curve fit to 
survey data is shown by the solid, black line. 
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Figure S6. Comparison of simulations with theoretical results. The theoretical results 
obtained from equation 6 are shown by the solid black line, and simulation results are shown in 
red (median shown by the red, dotted line and the interquartile range shown by the red shaded 
area). Simulations were conducted for low- and high-attrition parameter regimes (low: α = 0.01 
and β = 0.02; high: α = 0.1 and β = 0.1) and for a range of arrival rates (0.5-37.5 dogs/hour in 
increments of 0.5 dogs/hour or, equivalently, 8-600 total dogs arriving over 16 hours in 
increments of 4 dogs). The service rate μ = 30 hr-1 for both the simulations and the input for 
equation 6. Each simulation consisted of four independent four-hour-long trials and compared to 
the output of equation 6 with t = 16 hours. Simulations were repeated over 1,000 iterations for 
each set of parameter values. 
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Figure S7. Arrivals histograms for sites selected by queue-naive vs. queue-conscious 
optimization for the high-attrition system (α = 0.1, β = 0.1). The height of each stacked bar 
represents the expected number of dogs that arrive at a selected vaccination site. Bars are 
subdivided by color according to whether dogs ultimately get vaccinated (blue) or are lost to 
attrition, either through balking (dark red) or reneging (light red). The text above the bars give 
the total number of arrivals, total lost to attrition, and overall vaccination coverage achieved for 
each algorithm. While the queue-naive sites were obtained by the hybrid algorithm without 
considering attrition, the number of dogs vaccinated and the number of dogs lost to attrition for 
both queue-naive and queue-conscious sites were determined assuming high-attrition 
parameter values using equation 6 and the equations outlined in the Supplementary Text A. 
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Figure S8. Queue-naive vs. queue-conscious optimization for the high-attrition system (α 
= 0.1, β = 0.1). The locations of selected vaccination sites are indicated by white circles that are 
labeled and scaled according to the expected number of arriving dogs, which were calculated 
using equation 6. Houses in the study area are small dots colored according to their catchment, 
representing the area in which a MDVC site is the closest site for houses in terms of travel 
distance. Areas in which queue-conscious optimization concentrated more sites compared to 
queue-naive optimization are indicated by ellipses with solid lines, and areas in which queue-
conscious optimization selected fewer sites are indicated by ellipses with dotted lines. 
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Figure S9. Sensitivity of results to the constant arrival rate assumption: comparing 
queue-conscious vs. queue-naive optimization. Panels illustrate how the low- and high-
attrition solutions perform in the presence of different time-varying arrival rates compared to the 
queue-naive solution. Panel a shows the additional dogs vaccinated beyond the number 
achieved with the queue-naive solution, and panel b shows the reduction in attrition compared 
to the queue-naive solution.The time-varying arrival densities labeled A-D are shown in figure 
S4. 
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Figure S10. Sensitivity of results to the constant arrival rate assumption: comparing 
estimates for constant vs. nonconstant arrival rates. Panels illustrate how the low- and high-
attrition solutions perform in the presence of different time-varying arrival rates compared to 
their performance when the constant arrival rate assumption holds. Panel a shows the reduction 
in the number of dogs vaccinated compared to when the arrival rate is constant, and panel b 
shows the increase in attrition compared to when the arrival rate is constant. The time-varying 
arrival densities labeled A-D are shown in figure S4. 
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Figure S11. Simulation results and regression splines for sensitivity analysis of constant 
arrival rate assumption. Each plot shows either the number of dogs vaccinated or the number 
of dogs lost to attrition for a simulated campaign at an MDVC site. The simulations were run 
with one of the time-varying arrival rate densities shown in figure S4 and assuming either low- (α 
= 0.01 and β = 0.02) or high-attrition (α = 0.1 and β = 0.2) parameter values; the total number of 
dogs arrived was varied from 8-2,000 for each combination of arrival densities and attrition 
parameters. Each set of simulation conditions was repeated over 1,000 iterations. The median 
values obtained by each set of 1,000 iterations are shown by either the blue or red points, and 
interquartile ranges are shown by the shaded areas. The median values from the simulation 
form the basis for a continuous line approximation obtained by natural splines with seven 
degrees of freedom. These functions are shown as black lines and serve as input to the 
optimization model in the case of nonstationary arrival patterns. 


