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Abstract 

 

Purpose 

To evaluate the impact of a structured tutorial on the use of a large language model 

(LLM)-based search engine on radiology residents’ performance in LLM-assisted brain 

MRI differential diagnosis. 

 

Materials & Methods 

In this retrospective study, nine radiology residents determined the three most likely 

differential diagnoses for three sets of ten brain MRI cases with a challenging yet 

definite diagnosis. Each set of cases was assessed 1) with the support of conventional 

internet search, 2) using an LLM-based search engine (© Perplexity AI) without prior 

training, or 3) with LLM assistance after a structured 10-minute tutorial on how to 

effectively use the tool for differential diagnosis. The tutorial content was based on the 

results of two studies on LLM-assisted radiological diagnosis and included a prompt 

template. Reader responses were rated using a binary and numeric scoring system. 

Reading times were tracked and confidence levels were recorded on a 5-point Likert 

scale. Binary and numeric scores were analyzed using chi-square tests and pairwise 

Mann-Whitney U tests each. Search engine logs were examined to quantify user 

interaction metrics, and to identify hallucinations and misinterpretations in LLM 

responses. 
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Results 

Radiology residents achieved the highest accuracy when employing the LLM-based 

search engine following the tutorial, indicating the correct diagnosis among the top 

three differential diagnoses in 62.5% of cases (55/88). This was followed by the LLM-

assisted workflow before the tutorial (44.8%; 39/87) and the conventional internet 

search workflow (32.2%; 28/87). The LLM tutorial led to significantly higher 

performance (binary scores: p = 0.042, numeric scores: p = 0.016) and confidence (p 

= 0.006) but resulted in no relevant differences in reading times. Hallucinations were 

found in 5.1% of LLM queries. 

 

Conclusion 

A structured 10-minute LLM tutorial increased performance and confidence levels in 

LLM-assisted brain MRI differential diagnosis among radiology residents.  

 

Clinical Relevance Statement 

Our findings highlight the considerable benefits that even low-cost, low-effort 

educational interventions on LLMs can provide. Integrating LLM education in radiology 

training programs could augment practitioners’ capacity to harness AI technologies 

effectively. 
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Introduction 

Large language models (LLMs) are advanced artificial intelligence (AI) systems 

capable of processing and generating human language. Trained on vast amounts of 

text data and based on an innovative transformer architecture, these models have 

demonstrated remarkable performance in various tasks across sectors (1).  

With the rapid technological advancements of LLMs in recent years, numerous studies 

have explored applications of LLMs in radiological workflows. These include the 

definition of imaging protocols (2–4), performing differential diagnosis based on case 

presentations (5–9), error checking in radiology reports (10), generation of 

impressions in radiology reports (11,12), information extraction from free-text 

radiology reports (13–15) and more. Yet, despite the promising applications, the 

integration and adoption of LLMs in radiology is not without challenges. Data privacy 

concerns, bias and error propagation, lack of contextual understanding, and 

overreliance have been pointed out as relevant limitations of LLMs (1,16–19). Against 

this background, the critical role of educating healthcare professionals on the 

appropriate use and potential pitfalls of LLMs has been emphasized (20–22). This may 

include training in prompt engineering, which describes the strategic crafting of a 

textual instruction that serves as input to LLMs (22). 

One area where insufficient human oversight of LLMs could lead to clinical errors is 

radiological differential diagnosis. An earlier study on human-LLM collaboration in 

brain MRI differential diagnosis found that inadequate formulation of prompts can 

result in misleading LLM outputs, and lacking critical validation of LLM responses can 

lead to incorrect conclusions (23).  

However, whether and how radiology readers can be trained to more effectively apply 

LLMs in radiological differential diagnosis has not been investigated yet. This study 
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therefore aimed to evaluate the impact of a structured LLM tutorial on the performance 

of radiology residents in brain MRI differential diagnosis. 
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Methods 

Informed patient consent was waived by the Ethics Committee of the Technical 

University of Munich. 

 

Study Sample 

Thirty challenging brain MRI exams acquired between 01/01/2016 and 12/31/2023 

were selected from the local Picture Archiving and Communication System (PACS) 

system and randomized into three sets (Figure 1). Included exams were deemed as 

sufficiently complex for use in radiological board certification exams by two board-

certified neuroradiologists (DMH and BW) and contained an abnormal finding with a 

confirmed diagnosis (histopathologically or through independent agreement of at least 

two neuroradiologists). In each exam, one or more arrows marked the image finding 

in question. The included exams have been published previously (24). A case 

overview is provided in Supplement 1. 

Nine radiology residents with less than six months of neuroradiology experience were 

recruited from the local departments of radiology and neuroradiology and randomized 

into three groups (Table 1). Informed consent was provided by all participants. 

 

Study Design 

Over the course of three sessions, each reader assessed three sets of ten brain MRI 

cases with varying workflows and provided up to three differential diagnoses for the 

annotated image findings, ranked by likelihood.  Each case was reviewed only once 

per reader. To control for the confounding effects of case difficulty, each set of cases 

was assessed by the same number of readers with each workflow (Figure 1).  For 
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every case, demographic and condensed medical history was provided. Sessions took 

place between 01/03/2024 and 22/05/2024.  

First, conventional internet research was conducted to support differential diagnosis, 

either using web-based search engines, e.g. Google Search, or directly accessing 

trusted websites (Conventional). Residents were instructed to behave as they would 

in a clinical routine setting, mimicking the current practice in clinical care. Second, 

readers utilized an LLM-based search engine (© Perplexity AI Inc., San Francisco, 

USA) but didn’t receive any training beforehand (LLM-Pre-Training). PerplexityAI had 

been chosen as LLM interface for its ability to access real-time web content and 

provide source citations. Search queries were powered by GPT-4-Turbo (Generative 

Pre-trained Transformer 4 Turbo) by OpenAI. Third, another subset of ten cases was 

evaluated with the assistance of PerplexityAI. This time, however, the session was 

preceded by a structured tutorial on how to effectively use the tool (LLM-Post-Training). 

Tutorial details are provided below. In both LLM-assisted workflows, participants were 

allowed to conduct additional internet search to validate LLM suggestions. 

Reading times were recorded using a time tracking software (Toggl Track, © Toggl 

OÜ, Talinn, Estonia). Confidence levels were documented for each case on a 5-point 

Likert scale (1: not at all confident, 5: very confident). Following the second and third 

session, readers completed questionnaires to evaluate the experience with the LLM-

assisted workflow. 

 

LLM Tutorial 

In a short tutorial of no more than 10 minutes, readers were given tips on how to 

effectively utilize the LLM-based search engine. The content of the tutorial was based 

on two earlier studies on the application of LLMs for brain MRI differential diagnosis. 
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One study evaluated the contribution of varying multimodal input elements on the 

diagnostic performance of GPT4(V) and identified the textual description of 

radiological image findings as the key element (24). The other demonstrated superior 

accuracy of LLM-assisted differential diagnosis over a workflow supported by a 

conventional search engine, but also determined several pitfalls in human-LLM 

interaction (23). The full script of the tutorial is provided below: 

 

“A detailed description of image findings is by far the most important factor for accurate 

LLM responses. The description should include details about location, contrast 

enhancement, morphology, size and more. An accurate description of the finding location 

is particularly critical, an inaccurate specification of the location can result in misleading 

suggestions. 

Providing relevant information about the medical history can improve the accuracy of LLM 

responses. However, clinical information unrelated to the image finding might result in 

misleading LLM outputs. Therefore only clinical information deemed to be relevant for the 

image finding in question should be provided.  

Uploading screenshots of key image findings can help improve LLM responses, although 

their effect is only marginal. 

Use of connotative terminology can lead to bias and should be avoided (e.g. the term 

‘juxtacortical’ is strongly associated with multiple sclerosis). 

Instructions can be made regarding the extent (number of differential diagnoses 

mentioned) and format (bullet points, table) of the LLM output.“ 

 

Readers were further encouraged to use the following prompt template:  
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“You are a senior neuroradiologist. Below, you will find information regarding a brain 

MRI scan. Based on this information, identify the three most likely differential 

diagnoses, ranked by their likelihood. Present your findings in a table format with the 

following columns: ‘Rank’, ‘Differential Diagnosis’, and ‘Explanation’.  

[Medical history]  

[Image description]” 

 

Analysis 

To ensure performance did not solely depend on prior knowledge but the quality of 

research, cases where the correct diagnosis could be determined confidently without 

further research were excluded. 

Accuracy of differential diagnoses was determined using two different scoring systems, 

as described previously (23). The first method used a binary scoring system, where 

responses were labeled as "correct" if the correct diagnosis was included among the 

submitted differentials, and "incorrect" if it was not. The second approach assigned 

scores ranging from 0 to 3 based on the rank of the correct diagnosis within the 

response (0: correct diagnosis not included, 1: correct diagnosis ranked third, 2: 

correct diagnosis ranked second, 3: correct diagnosis ranked first). Cases where a 

correct but less granular response was indicated were rated in consensus (by SHK 

and SS). For binary scores, a chi-square test was initially applied across all groups, 

followed by pairwise chi-square tests. For numeric scores and confidence levels, a 

Kruskal-Wallis test was used to assess differences among all groups, with subsequent 

pairwise comparisons conducted using the Mann-Whitney U test. To control for false 

discovery rates, p-values were adjusted using the Benjamini-Hochberg procedure for 

both scores and confidence. Reading times were analyzed using an ANOVA test 
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across all workflows, followed by pairwise t-tests. The significance level was set at p 

< 0.05. 5-point Likert-scale questionnaire results are reported using descriptive 

statistics. 

Logs of the LLM-based search engine (Perplexity AI) were examined to quantify the 

number of queries and source references. Queries were categorized by query type 

(keyword-based vs instruction-based) and by content (differential diagnosis, 

radiographic features, sample images, anatomy, other). Sources were classified into 

journal articles and other online sources. The content of LLM responses were 

screened for incorrect or inconsistent information by two radiology residents (SHK and 

SS; 1.5 and 2.5 years of experience in reading brain MRI exams) and confirmed by a 

certified neuroradiologist (DH). As described previously (25), incorrect responses were 

classified into hallucinations (inconsistent with widely accepted radiological 

knowledge), misinterpretations (miscomprehending a question and giving contextually 

irrelevant replies), and clarifications (lacking comprehension of a prompt requiring its 

rephrasing). Radiographic features described in LLM responses were checked against 

reference articles of www.radiopaedia.org, which is a validated source of radiological 

knowledge. 

Data curation, analysis and visualization were performed using Python (version 3.9.7).  
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Results 

8 out of 270 responses (3.0%) were excluded from the analysis as readers were able 

to determine the correct diagnosis confidently without requiring further research. A 

sample LLM query and its results are shown in Figure 2. 12 out of 262 cases (4.6%) 

required a consensus decision because the reader provided a correct but less specific 

diagnosis (e.g. “encephalitis” was counted as correct in a case of limbic encephalitis). 

 

Binary and Numeric Scores 

Based on the binary scoring system, 62.5% (55/88) of responses in the LLM-Post-

Training workflow were correct, compared to 44.8% (39/87) in the LLM-Pre-Training 

and 32.2% (28/87) in the Conventional group (Figure 3). An initial chi-square test 

across all groups indicated a significant overall difference (p < 0.001). Subsequent 

pairwise chi-square tests showed significant differences between LLM-Pre-Training 

and LLM-Post-Training (p = 0.042), as well as between LLM-Post-Training and 

Conventional (p < 0.001), but not between LLM-Pre-Training and Conventional (p = 

0.119) (Table 2). 

Comparison of numeric scores revealed a median score of 3 in the LLM-Post-Training 

group, compared to 0 for both the LLM-Pre-Training and Conventional groups (Figure 

3). The Kruskal-Wallis test confirmed significant overall differences among the 

workflows (p < 0.001). Pairwise comparisons using the Mann-Whitney U test revealed 

significant differences between LLM-Pre-Training and LLM-Post-Training (p = 0.016) 

and between LLM-Post-Training and Conventional (p < 0.001), but not between LLM-

Pre-Training and Conventional (p = 0.092) (Table 3). 
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Confidence 

Median confidence ratings were highest in LLM-Post-Training (median = 4), followed 

by LLM-Pre-Training (median = 3) and Conventional (median = 3). The proportion of 

high or very high confidence ratings (4 or 5) was 18% for Conventional, 31% for LLM-

Pre-Training, and 54% for LLM-Post-Training (Figure 4). The Kruskal-Wallis test 

showed a significant overall difference in confidence (H = 27.20, p < 0.001). Pairwise 

Mann-Whitney U tests revealed a highly significant difference between Conventional 

and LLM-Pre-Training (p = 0.006), LLM-Pre-Training and LLM-Post-Training (p = 

0.006) as well as between Conventional and LLM-Post-Training (p < 0.001). 

 

Reading Times 

Mean reading times amounted to 07:43 min (Conventional), 08:59 min (LLM-Pre-

Training) and 08:35 min (LLM-Post-Training) (Figure 5). An ANOVA test showed a 

statistically significant overall difference (p = 0.030). Pairwise t-tests showed 

significant differences between Conventional and LLM-Pre-Training (p = 0.013), but 

not between LLM-Pre-Training and LLM-Post-Training (p = 0.403) or between 

Conventional and LLM-Post-Training (p = 0.069). 

 

Questionnaire Results 

The proportion of readers satisfied or very satisfied with the LLM-assisted diagnostic 

workflow increased from 55.6% (5/9) to 88.9% (8/9) following the tutorial. 55.6% (5/9) 

of readers indicated they would consider using the tool in clinical practice before the 

training, compared to 88.9% (8/9) after the training. 88.9% (8/9) of readers found the 

tutorial helpful or very helpful. 
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Reader Feedback and Observations 

Before the tutorial, most readers tended to use keyword-based queries rather than 

detailed instructions, similar to how conventional search engines operate. In general, 

the LLM tool was found particularly useful in generating an initial list of possible 

differential diagnoses to be evaluated through additional searches. In addition, the 

possibility to pose follow-up questions to initial query results was perceived as an 

advantage over conventional search engines. When using the provided prompt 

template, readers overwhelmingly appreciated the concise tabular format of the results 

which also included the rationale for the suggestion. However, some readers struggled 

to formulate accurate image descriptions, owing to their insufficient knowledge of 

neuroanatomy and brain MRI sequences. 

 

LLM Response Evaluation 

A total of 413 LLM queries in 169 patient cases were examined (2.44 queries per case). 

In 11 out of 180 cases, LLM logs were not available because the user did not perform 

any LLM queries or because logs could not be retrieved due to technical errors of 

PerplexityAI. 5.8% of queries included incorrect inputs, such as inaccurate 

descriptions of finding locations or imaging characteristics. 7.3% of queries included 

screenshots of MRI findings.  

The proportion of instruction-based queries increased substantially from 35.2% to 95.4% 

after the tutorial, while keyword queries decreased inversely from 64.8% to 4.6%. 

Whereas the majority of queries prior to the training were classified as “Other” (58.4%), 

most queries following the tutorial were directed at relevant differential diagnoses 

(56.7%) and sample images of those (34.0%). Overall, 45.3% of sources indicated by 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.03.24309779doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309779


PerplexityAI were peer-reviewed journal articles, with only minor differences between 

queries before and after the tutorial (49.2% and 40.6% each). 

Hallucinations were observed in 5.1% of LLM queries (12.4% of cases; 20 responses 

in total). The LLM tutorial resulted in only a minor change in hallucination frequency 

(Pre-Training: 4.6%, Post-Training: 5.7%). 35.0% of hallucinations involved the 

misinterpretation of MRI screenshots provided as input or the LLM returning sample 

MRI images irrelevant to the context of the query. Hallucination details are provided in 

Supplement 2. Misinterpretations were found in 1.0% of queries (2.4% of cases), while 

clarifications occurred in 1.2% of queries (3.0% of cases). 
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Figure 1: Study Design. 
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Figure 2: Screenshot of the PerplexityAI user interface. The correct diagnosis in this case was 
cytotoxic lesion of the corpus callosum (CLOCC).
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Figure 3: Diagnostic performance by workflow. A: Binary scores. Responses were classified 
as either correct (1) or incorrect (0).  B: Numeric scores. Responses were assigned a score 
between 0 and 3, depending on the rank of the correct diagnosis within the response (3: 
correct diagnosis ranked first, 0: correct diagnosis not included in response).  * p < 0.05. *** p 
< 0.001. ns: not significant. 

A

B
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Figure 4: Confidence (5-point Likert scale rating) by workflow. ** p < 0.01. *** p < 0.001. 
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Figure 5: Reading time by workflow. * p < 0.05. ns: not significant.
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Figure 6: Evaluation of LLM queries and responses. A: LLM queries by content. B: LLM 
queries by type.  C: Relative frequency of hallucinations, misinterpretations and clarifications 
per query. 
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Trait Value 

Total Number of Readers 9 

Gender Distribution 7 Male (77.8%) / 2 Female (22.2%) 

Mean radiology experience (in months) 18.56 ± 15.93 

Mean neuroradiology experience (in months) 2.22 ± 2.05 

Readers who have used LLMs before 6/9 (66.7%) 

Readers who have used LLMs for diagnosis before 1/9 (11.1%) 

Table 1: Overview of readers. 

 

Comparison Chi2 Statistic p p (adjusted) 

LLM-Pre-Training vs LLM-Post-Training 4.81 0.028 0.042 

LLM-Pre-Training vs Conventional 2.43 0.119 0.119 

LLM-Post-Training vs Conventional 14.93 < 0.001 < 0.001 

Table 2: Pairwise testing for inter-group differences in binary scores. Adjusted p-values have 
been corrected for a false-discovery rate of 0.05. 

 

Comparison U Statistic p p (adjusted) 

LLM-Pre-Training vs LLM-Post-Training 3049.5 0.011 0.016 

LLM-Pre-Training vs Conventional 4267.5 0.092 0.092 

LLM-Post-Training vs Conventional 5057.5 < 0.001 < 0.001 

Table 3: Pairwise testing for inter-group differences in numeric scores. Adjusted p-values 
have been corrected for a false-discovery rate of 0.05.
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Discussion 

This study evaluated the impact of a structured 10-minute LLM tutorial on the 

performance of radiology residents in LLM-assisted brain MRI differential diagnosis. 

We found that readers displayed higher performance, confidence levels and overall 

satisfaction after completing the tutorial. Compared to differential diagnosis supported 

by conventional internet search, both LLM-assisted workflows resulted in better 

performance, although only the post-training workflow showed a statistically significant 

difference.  

Analysis of reader-LLM interactions revealed that following the tutorial, almost all 

queries were phrased as specific instructions, whereas most queries before the 

training consisted of mere keywords, resembling conventional search engine queries. 

This observation is consistent with “Jakob’s Law” which is a well-known phenomenon 

in user experience (UX) stating that users prefer systems to behave like other familiar 

ones (26). Similar to hallucination rates described previously (25), we found 

statements inconsistent with widely accepted medical knowledge in 5.1% of LLM 

responses. Many of these involved incorrect interpretations of MRI screenshots 

provided as input, confirming earlier studies demonstrating low performance of current 

state-of-the art LLMs in diagnostic tasks based on radiological images (27–30). 

Interestingly, hallucinations were even found with PerplexityAI, which – unlike other 

Chatbots such as ChatGPT - combines LLMs with real-time information retrieval from 

the internet to support its answers with relevant sources (31). Additional research is 

needed to develop further safeguarding measures against potentially harmful effects 

of hallucinations in clinical LLM applications. Notably, in 5.8% of queries misleading 

responses were generated not because of undesired LLM behavior, but due to 
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incorrect finding descriptions provided by readers, emphasizing the essential role of 

conventional radiological skills in effectively employing LLMs for diagnostic tasks. 

Our findings indicate that even minor, low-cost educational interventions for LLMs can 

yield remarkable outcomes, and support the notion that courses focused on the 

practical application of AI should become a core part of medical curricula and training 

programs (32–34). Yet, given the novelty of the technology, validated educational 

content on the effective utilization of LLMs for specific clinical tasks is extremely scarce. 

The tutorial provided to the readers in this work was based on two previous studies 

specifically focusing on human-LLM collaboration and prompt engineering in brain MRI 

differential diagnosis (23,24). As the corpus of scientific evidence on LLM applications 

grows, medical societies should provide guidelines and courses on their appropriate 

use. Furthermore, platforms should be created to allow for healthcare professionals to 

exchange validated and effective prompts, similar to previous initiatives by radiological 

societies for sharing structured reporting templates (35–37).  

Unlike diagnostic performance, reading times did not improve with either of the LLM-

assisted workflows. As prior work on AI-based image analysis algorithms and 

structured reporting has illustrated (38,39), integration of technologies into the local IT 

infrastructure is critical for user acceptance and can boost efficiency. Vendors of 

radiology reporting solutions and Picture Archiving and Communication Systems 

(PACS) should explore ways to seamlessly embed LLM-based features supporting 

differential diagnosis and other tasks. 

 

Limitations 

The following limitations need to be acknowledged.  
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First, only radiology residents with very little neuroradiology experience were included. 

This study design ensured that most cases could not be solved by readers with prior 

knowledge alone and allowed to investigate the isolated effect of distinct web research 

workflows, but limits generalizability of the findings to more experienced readers. Yet, 

our observation that inexperienced readers showed performance improvements 

ensuing the LLM tutorial despite struggling to formulate image descriptions suggests 

that moderately experienced readers, who are proficient enough to create accurate 

finding descriptions but not yet skilled enough to conduct differential diagnoses without 

assistance, might benefit even more. 

Second, the findings in question were presented with annotations to isolate readers' 

classification performance, but this approach reduced the realism of the scenario. It is 

likely that in actual practice, some of the more subtle findings would have been missed, 

as remarked by several readers. 

Third, this study employed only a single LLM (GPT-4 by OpenAI) accessed through a 

specialized search engine (PerplexityAI). Future studies should compare several 

closed-source and open-source LLMs with respect to their utility in supporting 

radiology readers in differential diagnosis, including ones fine-tuned with domain-

specific training data. 

 

In conclusion, a concise but structured 10-minute LLM tutorial increased performance 

and confidence levels in LLM-assisted brain MRI differential diagnosis among 

radiology residents. These findings highlight the considerable benefits that even low-

cost, low-effort educational interventions on LLMs can provide. 
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ID Age Range Sex Correct Diagnosis Condensed Medical History 

1.1 36 - 40 F Midline glioma Intracranial mass in external CT scan, headache 
1.2 31 - 35 F ICA dissection Recurring visual impairment on the left side, headache 
1.3 31 - 35 M Hemangioblastoma Dizziness, headache 
1.4 41 - 45 M Chiari malformation type 1 Right-sided headache, dizziness, right facial hypaesthaesia 
1.5 41 - 45 M Periorbital phlegmone Periorbital swelling, headache, fever 
1.6 56 - 60 F Cerebral venous thrombosis Acute desorientation 

1.7 51 - 55 F Chondrosarcoma 
Newly diagnosed left sixth nerve palsy with diplopia, severe headaches for 2 days, left 
facial numbness for several weeks 

1.8 36 - 40 F Tumefactive multiple sclerosis (MS) Sensory-motor hemiparesis left 

1.9 46 - 50 M 
Multinodular and vacuolating neuronal tumor 
(MVNT) 

Subacute ptosis, right oculomotor palsy, diplopia 

1.10 36 - 40 M Cerebral cavernous venous malformation Incidental finding in left temporal lobe in external imaging 

2.1 31 - 35 F 
Cytotoxic lesions of the corpus callosum 
(CLOCC) 

Headache, history of Cesarean section and HELLP syndrome 3 weeks ago, HSV 
pneumonia 

2.2 61 - 65 M Cerebral amyloid angiopathy Aphasia since yesterday, mild right hemiparesis 

2.3 41 - 45 F Echinococcosis 
Headache, vomiting, mood disturbances 
Suspected brain abscess, patent foramen ovale 

2.4 41 - 45 M Pontine myelinolysis History of alcoholic liver cirrhosis, suspicion of hyperactive delirium 
2.5 36 - 40 M Creutzfeldt Jakob disease Gait ataxia, dysarthria, depression 
2.6 41 - 45 M Ecchordosis physaliphora Incidental clival finding in external imaging, patient is asymptomatic 

2.7 51 - 55 M Miller-Fisher syndrome 
Speech impairement since two weeks, double vision since three days, progressive 
swallowing disorder 

2.8 61 - 65 F Progressive multifocal encephalopathy (PML) Progressive right-sided hemiparesis, history of chronic lymphocytic leukemia 
2.9 56 - 60 M Limbic encephalitis Organic psychosyndrome for 3 months, psychomotor retardation, dysarthria 
2.10 41 - 45 F Spinocerebellar ataxia Progressive gait ataxia, upper limb ataxia for 2 years 
3.1 61 - 65 M Superficial siderosis Severe left sensorineural hearing loss 
3.2 21 - 25 F Moya Moya disease Left hemiparesis for several weeks 

3.3 31 - 35 M Sarcoma 
Scalp lesion DDx lipoma DDx atheroma, Pt. noticed swelling a few months ago, has grown 
since 

3.4 56 - 60 F Huntington's disease 
Repeated orofacial dyskinesias, parathymic behavior. Generalized brain atrophy in CT. 
DDx neurodegenerative disease 

3.5 56 - 60 M Subependymoma 
Incidental intracranial mass lesion in external images 
Patient is asymptomatic 

3.6 36 - 40 M Toxoplasmosis Dysarthria, dysphagia, psychomotor slowing, suspected HIV infection, intracerebral lesions 
3.7 26 - 30 M Central neurocytoma Headache and papilledema 

3.8 21 - 25 F Benign enhancing foramen magnum lesion 
Ski injury with head impact, retrograde amnesia, initial confusion, subsequent 
improvement, MRI preferred due to young age 

3.9 56 - 60 F 
Posterior reversible encephalopathy syndrome 
(PRES) 

Confusion, immunosuppression post-kidney transplant 

3.10 76 - 80 M Diffuse axonal injury Recent history of high-speed trauma with traumatic SAH and hematopneumothorax 

Supplement 1: Case Overview. 
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Reader Prompt Hallucinatory Output Explanation 

[Standard Prompt Introduction] 
Male in his 30s, scalp lesion differential lipoma differential atheroma, 
patient noticed swelling a few months ago and the lesion has grown 
since 
The brain MRI shows a large extradural lesion emerging from the 
dura of the left frontal lobe. It measures roughly 33 x 48 mm on the 
coronal view. The lesion expands out of the calotte, destroying the 
bone, and extends out of the skull. The skin is intact. The contrast 
image shows inhomogeneous gadolinium enhancement of the 
lesion. The lesion seems composed of cystic components. There is 
compressive effect upon the parenchyma of the left hemisphere. The 
midline is shifted slightly to the right. 

"The inhomogeneous enhancement with gadolinium and the 
presence of cystic components are also characteristic features of 
meningiomas" 

 
Meningiomas typically exhibit intense and 
homogeneous contrast enhancement. The LLM 
response indicates that inhomogeneous 
enhancement and cystic components are 
characteristic features of meningioma, which is 
incorrect. 

[Standard Prompt Introduction] 
Female in her 20s, ski injury with head impact, retrograde amnesia, 
initial confusion, subsequent improvement 
The brain MRI shows a small roundly-shaped FLAIR hyperintense 
solid mass infratentorially anterior to the left cerebellar hemisphere. 
The contours are patchy. It is surrounded by cerebrospinal fluid. 
There is no diffusion restriction or microhemorrhage. The brain 
nerves are emerging from the brain stem in close proximity to the 
lesion but are not compressed. 

"[…] The description of the lesion being surrounded by cerebrospinal 
fluid and its infratentorial location anterior to the cerebellum could 
suggest an arachnoid cyst." 

Arachnoid cysts are not FLAIR-hyperintense (as 
indicated in the prompt). 

[Standard Prompt Introduction] 
female in her 50s, confusion, immunosuppression following kidney 
transplant. Bilateral occipital FLAIR hyperintensities that do not 
involve the cortex. TOF MRA without any pathological finding. No 
diffusion restriction 

"The symmetric FLAIR hyperintensities in the occipital lobes and 
cerebellum are typical of PRES, although the absence of diffusion 
restriction is less typical" 

DWI signal is usually normal in PRES, restricted 
diffusion is presented in a quarter of cases 
(Radiopaedia). 

Generate a list of differential diagnoses for a MRI scan of a patient 
with the following incidental imaging finding on brain MRI: 
[images of subependymoma in the left lateral ventricle] 

"Based on the provided MRI images, which appear to show an 
incidental finding within the brain, a list of differential diagnoses 
could include: 
[…] 
3. Pineal cyst: A benign, fluid-filled sac located in the pineal gland in 
the brain. 
4. Rathke's cleft cyst: A noncancerous cyst that occurs in the 
pituitary gland." 

Based on two images showing an intraventricular 
lesion, the LLM mentioned "pineal cyst" and 
"Rathke's cleft cyst" as differential diagnoses, 
although the respective regions were not shown 
in the images.  

Generate a list of differential diagnoses for a MRI scan of a patient 
with dysarthria, dysphagia and HIV and the following brain lesion: 

"Progressive Multifocal Leukoencephalopathy (PML): Caused by the 
JC virus, PML can occur in people with severe immunodeficiency, 
including those with HIV/AIDS. MRI findings often show non-
enhancing white matter lesions without mass effect." 

The provided screenshot did not show any white 
matter lesions. 

Generate a list of differential diagnoses for a MRI scan of a patient in 
his 30s with a headache and the following imaging finding: 
[image] 

"Based on the provided MRI scan and the symptoms of a headache, 
here is a list of potential differential diagnoses: 
[…] 
Cerebral venous sinus thrombosis: A blood clot in the brain's venous 
sinuses, which can cause increased intracranial pressure and 
headaches. 
Encephalitis: Inflammation of the brain, often caused by an infection. 
Multiple sclerosis: A disease of the central nervous system that can 
present with lesions in the brain and cause headaches." 

In a case of an intraventricular lesion (central 
neurocytoma), several differential diagnoses not 
applicable to the intraventricular location are 
mentioned (cerebral venous sinus thrombosis, 
encephalitis, multiple sclerosis). 
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Generate a list of differential diagnoses for a MRI scan of a young 
female patient after skiing accident with the following imaging 
finding: [Image] 

"[…] 
Ligament Injury: Injuries to the cruciate or collateral ligaments are 
common in skiing accidents due to twisting forces on the knee. 
Meniscal Tear: The menisci are cartilage structures in the knee that 
can be torn during accidents involving forceful twisting or rotation of 
the knee. 
Bone Contusion or Fracture: Direct impact or stress from an 
awkward fall can lead to bone bruises or fractures. 
Muscle Strain or Tear: The force exerted on muscles during a skiing 
accident can cause strains or tears, particularly in the quadriceps or 
hamstrings. 
Tendon Injury: Tendons, such as the patellar tendon, may be 
strained or torn if overstretched during an accident. 
[...]" 

In a case of a foramen magnum lesion, multiple 
differential diagnoses not applicable to the 
location of the lesion are suggested  (meniscal 
tear, bone contusion, muscle strain, patellar 
tendon injury, bursitis). 

show an MRI example of Guillain-Barré Syndrome (GBS) where the 
facial nerve is enhanced  

Images of spinal GBS manifestations are 
provided. 

Bilateral diffusion disorder with FLAIR correlate in the dorsal corpus 
callosum 

"Such MRI findings can occur in a variety of diseases and conditions, 
including 
Mild Encephalopathy with Reversible Splenial Lesion (MERS): a 
form of mild encephalopathy characterized by reversible lesions in 
the splenium of the corpus callosum. This disease is often 
associated with infections and can occur in children and adults. 
Cytotoxic Lesions of the Corpus Callosum (CLOCCs): This category 
includes various conditions that lead to cytotoxic edema in the 
corpus callosum, often associated with infections, metabolic 
disorders, or abrupt discontinuation of antiepileptic drugs. 
[...]" 

Lists "Mild Encephalopathy with Reversible 
Splenial Lesion (MERS)" and "Cytotoxic Lesions 
of the Corpus Callosum (CLOCCs)" as two 
distinct differential diagnoses, although these are 
synonyms. 

What are the reasons for diffusion disorders in the pons without 
contrast agent uptake? 

"Mild Encephalopathy with Reversible Splenial Lesion (MERS): 
MERS is a rare disease characterized by reversible lesions in the 
corpus callosum, but can also affect other brain regions including the 
pons. These lesions show restricted diffusion without contrast 
uptake, indicating reversible intracellular swelling." 

MERS / CLOCC is by definition located in the 
corpus callosum. The LLM response inaccurately 
indicates that it can be located in the pons. 

which causes can lead to a bilateral diffusion disorder in the basal 
ganglia 

"Movement disorders: The basal ganglia play a central role in the 
regulation of movement. Disorders such as restless legs syndrome, 
periodic movement disorders of the extremities and stereotypies can 
be associated with changes in the basal ganglia." 

Movement disorders are possible clinical 
manifestations of basal ganglia pathologies, not 
the cause of basal ganglia pathologies. 

Waller degeneration after chemotherapy in CLL 

"Chemotherapy: The sources describe that chemotherapy-induced 
polyneuropathy (CIPN) is a common side effect of various 
chemotherapeutic agents. This form of neuropathy can result from 
the toxic effects of chemotherapeutic agents on nerve fibers. 
Although the sources do not explicitly mention Waller degeneration 
as a consequence of CIPN, it is plausible that the nerve damage 
caused by chemotherapy can trigger degenerative processes similar 
to those described in Waller degeneration." 

The LLM response incorrectly describes that 
chemotherapy can trigger processes similar to 
those in Waller degeneration, while admitting not 
to have found a source for this information. 

[Standard Prompt Introduction] 
Male patient in his 30s, no symptoms. The MRI shows multiple dot-
like FLAIR hyperintensities grouped in the cortex of the left insula." 

"Enlarged Virchow-Robin spaces can sometimes appear as dot-like 
hyperintensities on MRI. These are perivascular spaces that can be 
prominent in certain individuals and are generally considered a 
normal variant." 

The lesions were described as FLAIR-
hyperintense. The LLM response does not take 
into account that enlarged Virchow-Robin spaces 
would appear FLAIR-hypointense (isointense to 
CSF). 
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[Standard Prompt Introduction] 
male in his 40s, incidental clival finding in external imaging patient 
asymptomatic 
MRI features: T2 hyperintense, FLAIR iso to hypointense  

When asked for sample images of clival 
differential diagnoses, the LLM presented images 
of a chondrosarcoma of the humerus. 

you are a radiologist: MRI corpus callosum, FLAIR hyperintense, 
diffusion restricted lenticular lesion 
These are some pictures of the lesion: [images] 

"The provided MRI images show various views of the brain, including 
axial, coronal, and sagittal planes." No sagittal images were provided. 

"you are a radiologist, female patient with vomiting, suspected brain 
abscess, headache. These are some MRI findings" 
[image] 

"Based on the provided MRI image and the clinical history of a 
female patient with vomiting and headache, the MRI findings suggest 
the presence of a large encapsulated peripherally enhancing lesion 
within the brain. This lesion is characterized by an abnormal signal 
intensity on the right side of the brain, which could be located in the 
temporal or parietal lobe. The peripheral enhancement is indicative 
of a rim that is likely isointense to hyperintense on T1-weighted 
images and hypointense on T2-weighted images, as is typical for an 
abscess." 

No post-contrast images were provided. The 
pathology is located on the left side, not right 
side. 

"you are a radiologist; psychomotor retardation, dysarthria, organic 
psychosyndrome for 3 months, male patient in his 50s, mri findings 
are left side region of limen insulae, FLAIR hyperintense, T2 heme 
hyperintense, slight diffusion restriction, differential diagnosis" 

"[…] The MRI findings described include left-sided FLAIR 
hyperintensity, T2 hyperintensity suggestive of hemorrhage (haem 
hyperintense), and slight diffusion restriction in the region of the 
limen insulae. These imaging characteristics help narrow down the 
potential causes." 

"T2 heme hyperintense" does not indicate that 
there is hemorrhage. Hemorrhage typically shows 
low signal intensity in the T2 heme sequence. 

[Standard Prompt Introduction] 
[severe left sensoineural heraing loss, male in his 60s] 
[cerebellum, intraVENTRICULAR FLAIR isointense tumor] 

"The severe left sensorineural hearing loss and the presence of an 
intraventricular FLAIR isointense tumor in the cerebellum are highly 
suggestive of a vestibular schwannoma (acoustic neuroma), which is 
a benign tumor arising from the vestibular nerve sheath." 

The LLM response suggests vestibular 
schwannoma as the most likely diagnosis for an 
intraventricular tumor in the cerebellum. However, 
vestibular schwannomas appear in the 
pontocerebellar angle, not within the ventricles.  

[Standard Prompt Introduction]  
male in his 30s, dysarthria, dysphagia, psychomotor slowing, 
intracerebral lesions, suspected HIV; FLAIR hyperintense, edema, 
multiple lesions, ADC hyperintense, peripherally enhancing, T2 
hyperintense, white matter" 

"Arachnoid cysts can occur in the posterior fossa near the fourth 
ventricle. They often appear as well-defined cystic lesions with rim 
enhancement on MRI, similar to the described findings. However, 
they usually do not demonstrate restricted diffusion."  

Rim enhancement is highly unusual for arachnoid 
cysts. 

[Standard Prompt Introduction] 
male in his 30s old dizziness headache 
cystic lesion in or close to the fourth ventricle contrast enhancement 
at the rims diffusion restriction" 

"The FLAIR hyperintense lesion with contrast enhancement near the 
posterior horn of the left lateral ventricle, along with the sensory-
motor hemiparesis on the left side, is highly suggestive of a lacunar 
stroke in the region of the posterior limb of the internal capsule. 
Lacunar strokes are small infarcts that typically occur in the deep 
brain structures, such as the thalamus, basal ganglia, or brainstem, 
and can cause pure motor, pure sensory, or mixed sensory-motor 
deficits." 

Based on a lesion near the posterior horn of the 
left lateral ventricle, the presence of a lacunar 
stroke in the posterior limb of the internal capsule 
is suggested. These are two totally different 
anatomical structures.  

Supplement 2: Hallucinatory LLM responses. “Standard prompt introduction” indicates the following part of the prompt template provided to the 
readers: “You are a senior neuroradiologist. Below, you will find information regarding a brain MRI scan. Based on this information, identify the 
three most likely differential diagnoses, ranked by their likelihood. Present your findings in a table format with the following columns: ‘Rank’, 
‘Differential Diagnosis’, and ‘Explanation’.” 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.03.24309779doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309779

	1Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
	Abstract
	Introduction
	Methods
	Study Sample
	Study Design
	LLM Tutorial
	Analysis

	Results
	Binary and Numeric Scores
	Confidence
	Reading Times
	Questionnaire Results
	Reader Feedback and Observations
	LLM Response Evaluation

	Discussion
	Limitations

	References

