Percutaneous Coronary Intervention versus Optimal Medical Therapy on Quality of Life and Functional Capacity in Chronic Coronary Syndrome: A Meta-Analysis of Randomized Controlled Trials

Running Title: Percutaneous Coronary Intervention versus Optimal Medical Therapy: A Quality of Life and Functional Capacity Assessment.

Sammudeen Ibrahim, MD¹; Saint-Martin Allihien, MD¹; Basilio Addo, MD¹; Haifz Sulemana, MD²; Jan Camille L.

Ozaeta, MD¹; Abdul-Fatawu Osman³; Kwasi Asamoah Opare-Addo¹; Samuel Dadzie¹; Shreyas Singireddy, MD⁴;

Onoriode Kesiena, MD⁵; Sheriff N. Dodoo, MD⁶; Vedang Bhavsar, MD FACC⁶

- Department of Internal Medicine, Piedmont Athens Regional Medical Center, 1270 Prince Ave Athens, GA 30606, U.S.A.
- 2. Department of Pediatrics, Tamale Teaching Hospital, Tamale, Ghana
- Department of Cardiovascular Medicine, Creighton University School of Medicine–Phoenix, 3100 N.
 Central Ave, Phoenix, AZ. 85012, U.S.A.
- 4. Department of Cardiology, University of Illinois Peoria
- 5. Department of Cardiology, Maine Medical Center, Portland, Maine
- Georgia Heart Institute, Northeast Georgia Medical Center, 743 Spring Street NE, Gainesville, GA 30501,
 U.S.A.

Address of Correspondence:

Sammudeen Ibrahim, MD

Piedmont Athens Regional

1270 Prince Avenue

Athens, GA 30606

United States of America

Phone Number: 706-612-0421

Email: Sahmudeen6@gmail.com

Disclosures:

Keywords: Angina Frequency, Chronic Coronary Syndrome, Coronary Artery Disease Freedom from Angina, Functional Capacity, Optimal Medical Therapy, Percutaneous Coronary Intervention, Quality of Life

ABSTRACT

Background

Previous studies have primarily examined the impact of percutaneous coronary intervention (PCI) compared to optimal medical therapy (OMT) on hard outcomes such as all-cause mortality, cardiovascular death, nonfatal myocardial infarction, and the need for revascularization in patients with chronic coronary syndrome (CCS). However, these studies have not yielded significant findings thus far.

Objective

The goal of this meta-analysis was to assess the effect of PCI plus OMT on quality of life (QoL), functional capacity (FC), and angina-related health status compared to OMT alone in patients with CCS.

Method

Cochrane Central Registry of Controlled Trials, PubMed, Embase, and clininalTrials.gov were searched for studies published up to December 2023. The outcomes of interest were quality of life (QoL), freedom from angina (FFA), angina frequency (AF), and functional capacity (FC) measured with Seatle Angina Questionnaire (SAQ) or its equivalents such as EuroQol-5D (EQ-5D), 36-Item Short Form (SF-36) or RAND-36, and psychological well-being score if none is available. Additionally, the Duke Activity Status Index was also used to assess functional capacity when reported. Fixed-effect model was used for data analysis if I² statistics <50%; otherwise, the random-effect model was used. Sensitivity analysis was performed by using the leave-one-out meta-analysis which alternatively removes a trial from the study to assess its impact on the result as well as the interconversion between fixed-effects and random-effects models. A meta-regression analysis was also performed to evaluate the impact of covariates on QoL. Cochrane Risk of Bias Assessment Tool was used to assess the risk of bias.

Results:

Seventeen randomized controlled trials that enrolled 13,588 patients satisfied our inclusion and exclusion criteria with an average age of 62.3 ± 10 years. PCI plus OMT improved QoL with standardized mean difference (SMD) of 0.27 ([95% CI, 0.14-0.40]; P <0.001) and 0.21 ([95% CI, 0.12-0.30]; P <0.001) when compared to OMT alone at 6 months and 1 year respectively. PCI plus OMT was also associated with significant improvement in FFA (1.17 [95% CI, 1.11-1.24]; P < 0.001),

AF (0.25 [95% CI, 0.20-0.30]; P <0.001), and FC (0.21 [95% CI, 0.12-0.31]; P <0.001) at 6 months and persisted at 3 years (QoL [0.18 [95% CI, 0.06-0.30]; P < 0.001], FFA [1.27 [95% CI, 1.11-1.45]; P < 0.001], AF [0.09 [95% CI, 0.02-0.16]; P = 0.009], FC [0.13 [95% CI, 0.02-0.23]; P = 0.02] respectively). However, there appears to be a reduction in this effect with time. Meta-regression analysis using year of publication as covariate on QoL was performed. There was no statistically significant relationship between the year of publication and QoL at 1 year (P = 0.81).

Conclusion:

In this meta-analysis, PCI combined with OMT was associated with better quality of life, greater freedom from angina, reduction in angina frequency, and improved functional capacity compared to OMT alone. These benefits persisted when followed longitudinally for 3 years. However, longer-term outcome data of these trials is needed to determine whether these improvements in quality of life are sustained or attenuated over time.

INTRODUCTION

Coronary artery disease (CAD) is the leading cause of death globally, accounting for 32% of global deaths in 2019¹. The Center for Disease Control (CDC) reported that in the United States (US), 1 person dies from cardiovascular disease every 33 seconds². CAD is therefore undeniably a matter of significant public health concern due to its widespread prevalence, substantial impact on morbidity and mortality, and considerable economic burden on healthcare systems globally³. Chronic coronary syndrome (CCS) represents a critical component of the CAD spectrum, characterized by a variable clinical course that may include chronic progression associated with periods of stability interspersed with unpredictable episodes of instability³. Although the benefit of percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) on hard outcomes including all-cause death, cardiovascular death, and myocardial infarction has been well established, large randomized controlled trials (RCTs) found no benefit when compared to optimal medical therapy (OMT) in patients with CCS^{4,5}. Thus the primary objective in managing patients with CCS has revolved around halting disease progression and enhancing patients' overall health status which encompasses improving quality of life (QoL), functional capacity FC), and addressing symptoms such as angina^{6,7}. By pursuing these goals, healthcare providers may not only extend patients' lifespan but also ensure that they can lead fulfilling and productive lives despite their condition.

The American Heart Association (AHA) recently recommended evaluating patient-reported QoL in patients with CCS⁸. Additionally, a recent study by Spertus et al., reported that invasive treatment strategies were associated with a significant improvement in quality of life compared to OMT alone⁹. Furthermore, a patient-level pooled analysis from the FAME 1 and 2 trials showed that PCI plus OMT was associated with improved quality of life in patients with higher angina class¹⁰. Conversely, Al-Lamee and her colleagues reported no difference in quality of life when PCI plus OMT was compared to OMT plus sham procedure¹¹. While the role of PCI in improving prognosis compared to OMT for patients with CCS remains a topic of debate, guidelines support its use to alleviate chronic angina and its overall impact on QoL that are not adequately managed with medical therapy alone^{12,13}. As treatment options for CCS evolve, the primary therapeutic choices remain OMT alone or PCI combined with OMT¹⁴.

This systematic review and meta-analysis aimed to compare PCI plus OMT to OMT alone in patients with CCS. We evaluated both treatment strategies based on the QoL, angina frequency (AF), freedom from angina (FFA), and FC.

2 METHODS

This meta-analysis complied with the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA)¹⁵ and the Cochrane protocol¹⁶. Additionally, the study was registered under the International Prospective Register of Systematic Reviews (PROSPERO)¹⁷ with registration number *(CRD42024558472)*. This study was exempted from institutional review board approval and informed consent of participants as the included studies were all publicly available, and their clinical data were de-identified in the individual trials ensuring compliance with ethical standards while conducting research involving human subjects.

2.1 Data Sources and Query Strategy

A comprehensive search was conducted across multiple databases, including PubMed, Cochrane Central Registry of Controlled Trials, Embase, and clinicalTrials.gov, to identify all relevant studies published up to December 2023. These trials assessed QoL, FFA, AF, and FC. The study evaluated validated measures such as the Short Form (SF)-36, RAND-36, Seattle Angina Questionnaire (SAQ), and Duke Activity Status Index (DASI)¹⁸⁻²¹. The quality of life was assessed using the SAQ, EuroQol-5D (EQ-5D), 36-Item Short Form (SF-36) or RAND-36, and psychological well-being score based on what the individual trial reported. The Duke Activity Status Index was used to assess functional capacity when reported. The SAQ evaluates four dimensions of angina-related quality of life: anginal symptom frequency, physical function/limitations, angina-specific quality of life, and treatment satisfaction. Additionally, the EQ-5D 0 to 100 visual analog scale was used to assess self-rated global health. The Duke Activity Status Index (DASI) to assess cardiac functional status, and the RAND General Health survey was used to obtain an overall health ordinal rating. These measures collectively provide a comprehensive understanding of patients' well-being and functional status in the context of CCS. The comprehensive search protocol is available in Table S1 in Supplemental Material for detailed reference.

2.2 Study Selection

Two authors (SI and SA) independently screened all studies identified through the literature search, adhering strictly to predefined eligibility criteria derived from both inclusion and exclusion criteria. Any discrepancies between the two authors were resolved by a third author (OA). Ultimately, 17 RCTs that met the eligibility criteria were included in the final evaluation.

Eligible studies for inclusion comprised RCTs involving adult participants aged 18 years and above. These trials compared PCI plus OMT to OMT alone. We also included three-arm RCTs that compared PCI plus OMT versus OMT alone versus CABG in which the three comparative groups were clearly delineated and reported at least one outcome measures of interest. Exclusion criteria comprised studies lacking sufficient statistical data for comparison between the two treatment groups, those examining only one treatment modality, investigations conducted on non-human subjects, and ongoing trials lacking relevant published data. Additionally, case reports, reviews, editorials, commentaries, and conference abstracts were also excluded from the analysis.

2.3 Data Extraction

After identifying and removing all duplicated data, the relevant studies were exported to the Endnote Reference Manager (version x5: Clarivate Analytics). The prespecified variables from the selected studies were then incorporated into a dataset. This process was independently verified by another author (SND).

Study characteristics, including the first author, publication year, study design, sample size, patient population, key inclusion and exclusion criteria, and year of publication, were extracted. Additionally, baseline characteristics such as age, sex, race, LDL, medical therapy used, statin use, stent use, and comorbidities were extracted. The clinical endpoints of interest including QoL, FFA, AF, and FC were also extracted from the selected studies. These have been summarized in Table 1.

2.4 Included Studies and Quality Assessment

The PRISMA flow diagram depicting the selection process for studies included in the final analysis is presented in Figure S1 in Supplemental Material. A total of 17 RCTs^{4,5,11,22–39}. Table 1 outlines the characteristics of these studies, while their quality assessment is depicted in Figure S2 in Supplemental Materials. The quality of the included studies was independently assessed by two authors (SI and SND) using the modified Cochrane Collaboration's risk of bias tool for RCTs⁴⁰. Additionally, publication bias was evaluated through visual inspection and funnel plot analysis, conducted independently by the same authors (SI and SND).

2.5 Statistical Analysis

All the statistical analyses were conducted using Review Manager (version 5.4.1; Copenhagen: The Nordic Cochrane Center, the Cochrane Collaboration, 2014) and Open Meta-Analyst. Mantel-Haenszel Summary statistics were presented using odds ratios (ORs) with corresponding 95% confidence intervals (CIs) for categorical variables. For continuous variables, standardized mean differences (SMDs) with 95% CIs were utilized. To assess heterogeneity between study protocols, Cochran's Q and I² statistics were employed. Heterogeneity was considered significant at a P value < 0.05 and an I² value exceeding 50%. Depending on the degree of heterogeneity observed, either a fixed-effect model or a random-effect model was utilized to derive the pooled effect estimate.

To evaluate the robustness of the results of the meta-analysis, sensitivity analyses were performed using the leave-oneout analysis by systematically removing one trial at a time from the pool. This analysis allowed for an assessment of the impact of each individual trial on the overall result. Finally, sensitivity analysis was also conducted by interconversion between fixed-effects and random-effects models.

Analyses were stratified based on the use of fractional flow reserve (FFR) assessment prior to intervention and the inclusion of chronic total occlusions (CTOs) in culprit vessels in the studies. This stratification aimed to evaluate their impact on outcomes. We estimated the difference between the estimates of these subgroups using a test for interaction. Additionally, a meta-regression analysis was conducted to examine the relationship between the year of

trial publication and QoL. This analysis was performed to determine whether the results differ in more recent trials in

the setting of contemporary therapy modalities.

Table 1: Study and Baseline Characteristics of Included Studies

Study	y Chai	acter	istics				1		1			1		1			
Study Nam e	ACM E 1	ACM E 2	ALK K	AVER T	BARI 2D	СОМЕ Т-СТО	COUR AGE	DEF ER	EUR OCT O	FAME 2	GZFF R	ISCH EMI A	MAS S 1	MASS 2	ORBIT A	RITA 2	TIME
e Year Desig n	1992 Pros pecti ve, rand omiz ed, open - label ed trial	1997 Pros pecti ve, rand omiz ed, open - label ed trial	2003 Ope n- label ed, mult icent er, rand omiz ed, trial	1999 Open - label ed, multi cente r, rand omiz ed, trial	2009 Open- labele d, multic enter, rando mized, trial	2021 Prospe ctive, multic enter, rando mized, open- labele d trial	2007 Open- labele d, multic enter, rando mized, trial	2001 Mult icent er, ope n- label ed, rand omiz ed trial	2018 Pros pecti ve, rand omiz ed, multi cent er, open - label ed contr	2014 Open- labele d, rando mized, multic enter trial	2020 Rand omiz ed, singl e cent er, open - label trial	A 2020 Mult icent er, pros pecti ve, rand omiz ed, open - label trial	1995 Pros pecti ve, rand omiz ed, singl e cent er, open - label trial	2004 Prospe ctive, rando mized, single center, op en- label trial	2018 Multic enter, rando mized, sham- control led, trial	1997 Prospe ctive, rando mized, multic enter, open- label trial	2004 Rand omiz ed, multi cente r, open -label trial
Medi cal Thera py Descr iptio n	Aspir in, BB, CCB, Nitra tes	Aspir in, BB, CCB, Nitra tes	BB, CCB, Nitra te	Statin	Aspirin , ARB/A CEi BB, CCB, Insulin , Nitrate s, Statin,	Antipla telet, Antian ginal, Statin	Antipl atelet, ARB/A CEi, BB, CCB, Nitrat es, Statin, Ezetim ibe	BB, Nitra tes, Stati n	olled trial Antip latel et, Antia ngin als	Antipla telet, ACEi, BB, Antidia betics	Antia ngin als, Stati ns	Anti plate let, Antia ngin als, Stati n	Aspir in, BB, Nitra tes	Aspirin , ACEi. BB, CCB, Nitrate s, Statin	Antian ginal, DAPT, Statin	Aspirin , BB, CCB, Nitates , LLD	Antia ngina ls, Antip latele t, LLD
Key Inclus ion Criter ia	Patie nts with requi red to have stabl e angi na pect oris, a mark edly posit ive exer cise trea dmill test resul t, or a docu	Patie nt a histo ry of angi na, rece nt MI, or signi fican t ST depr essio n on stres s tests ; ≥70 % sten osis in the proxi mal two-	Stabl e patie nts 8-42 days after a ST elev ation acut e MI, signi fican t sten osis or CTO of the infar ct- relat ed arter arter y, and the	Patie nts with ≥50% steno sis in at least one coron ary arter y unde rgoin g PCI, asym ptom atic or mild angin a (CCS or II), stress test comp letion	Patient s with ≥50% stenosi s of a major corona ry artery with a positiv e stress test, or ≥70% stenosi s with classic angina , and typ e 2 diabet es mellitu s.	Patient s with stable angina pectori s and/or objecti ve proof of myoca rdial ischem ia and/or proof of myoca rdial viabilit y in the territo ry of CTO	Patien ts with ≥70% stenos is in at least one proxi mal artery, induci ble ische mia on stress testing , or ST depres sion or T- wave inversi on on resting EKG.	Patie nts with >50 % sten osis in a nativ e coro nary arter y and FFR ≥0.7 5, with out evid ence of reve rsibl e isch emia on	Sym ptom atic patie nts with at least one CTO for at least 3 mont hs durat ion, in a majo r coro nary arter y with a vess el diam	Patient s with stable angina (CCS I- III), or stabiliz ed CCS Class IV angina after medic al manag ement for at least 7 days, or atypica l chest pain with docum ented silent ischem ja on	Patie nts with untr eate d obstr uctiv e coro nary disea se in anot her arter y with a diam eter of ≥2m m.	Patie nts with mod erate to sever e ische mia with eGFR ≥30.	Patie nts with singl e- vesse l coro nary arter y disea se chara cteriz ed by ≥80% sten osis in the LAD arter y befor e the first diago nal	Patient s with ≥70% stenosi s in multipl e proxim al corona ry arterie s and docum ented ischem ia on stress testing or moder ate angina (CCS II or III).	Patient s with angina or similar sympt oms and at least one corona ry artery stenosi s ≥70% in a single vessel deeme d suitabl e for PCI.	Patient s with ≥50% stenosi s in at least one major artery suitabl e for percut aneous translu minal corona ry angiop lasty (PTCA), who have experi enced unstab le angina within the	Patie nts aged 75 years or older referr ed to Swiss cente rs for evalu ation of chest pain refra ctor to at least two antia ngina medi catio ns.

	myo cardi al infar ction withi n the previ ous 3 mon ths. Diam eter vess el sten osis > 70% in the proxi mal 2/3 of a singl e coro nary arter y.	third s of one or two coro nary arter ies (sing le- vess el CAD data from ACM E-1).	infar ct vess el clear ly iden tifia ble.	witho ut ische mia, LDL ≥115 mg/d L, and trigly cerid es <500 mg/d L.				noni nvas ive testi ng in the past 2 mon ths.	eter of at least 2.5 mm	noninv asive testing . These patient s must have at least 50% stenosi s in one major native corona ry art ery (≥2.5 mm diamet er) supplyi ng viable myoca rdium.			bran ch.			last 7 days prior to rando mizati on.	
Key Exclu sion Criter ia	NR	Patie nts with medi cally refra ctory unst able angi na, previ ous PCI, non- CAD cardi ac diag nosis , ≥50 % left main sten osis, 3- vess el CAD, LVEF ≤30 %.	CCS class III or IV, sten osis >70 % in anot her coro nary arter y, a CAB G as infar ct vess el, an indic ation for CAB G surg ery or a nonc ardia c dise ase redu cing life expe ctan cy of the	Patie nts with left main disea se, 3- vesse l CAD, unsta ble angin a, recen t MI (withi n 2 week s), or LVEF <40%	Patient s needin g immed iate revasc ulariza tion, left main diseas e, creatin ine >2 mg/dL, HbA1c >13%, Class III or IV heart failure, hepati c dysfun ction, or recent PCI/CA BG (within 12 month s).	Patient s with signific ant stenosi s in the non- CTO corona ry artery, MI in the previo us 90 days, contrai ndicati ons for DAPT, CTO of the by- pass graft, LVEF 25%, cerebr ovascu lar insult or TIA in the last 6 month s, advanc ed renal fail ure	Patien ts with severe CCS Class IV angina , signific ant ST depres sion or hypot ension during Bruce protoc ol stage I stress testing , refract ory heart failure or cardio genic shock, LVEF <30%, recent revasc ulariza tion within the past 6 month s, or	Patie nts with CTO of the targ et arter y, Q- wav e infar ction , unst able angi na, or smal l targ et arter ; smal l targ et	Patie nts who will not toler ate DAPT or need for elect ive non- cardi ac surg ery withi n 6 mont hs.	Patient s who are candid ates for CABG due to left main corona ry artery diseas e needin g revasc ulariza tion, recent (within one week) STEMI or NSTE MI, prior CABG, contrai ndicati on to dual antipla telet therap y, LVEF <30%, and severe	Patie nts with eithe r stabl e angi na or resid ual non- culpr it disea se after NSTE MI or STE MI follo wing treat ment of the culpr it vess el	Patie nts with EF <35 %, kno wn unpr otect ed left main disea se, NYH A Class III–IV hear t failur e, persi stent sever e angi na desp ite maxi medi cal ther apy, rece nt ACS withi	Patie nts with CTO, long lesio ns (>12 mm), ostial invol veme nt, exte nsive calcif icatio n, sever e twisti ng of arteri es, left main arter y disea se, unsta ble angin a, prior heart attac k, signif icant heart	Patient s with acute MI requiri ng urgent revasc ulariza tion, ventric ular aneury sm requiri ng surger y, LVEF <40%, history of PCI or CABG, single- vessel corona ry artery diseas e, conge nital heart diseas e, valvula r heart diseas e, cardio myopa	Patient s with ≥50% stenosi s in a non- target corona ry artery, ACS, history of CABG surger y, left main CAD, contrai ndicati ons to drug- eluting stents, CTO, severe valvula r diseas e, severe left ventric ular systoli c dysfun ction, moder ate-to- severe	Revasc ulariza tion for sympt om relief or progno sis, prior revasc ulariza tion, signific ant left main diseas e, recent ACS, hemod ynamic ally signific ant valve diseas e, or life- threat ening non- cardiac illness.	Patie nts with recen t acute MI (<10 days) , conc urren t valvu lar or other heart disea ses, cong estiv e heart failur e, sever e como rbidit ies (e.g., canc er, adva nced renal failur e), and inabil ity to

patie	corona	left	n the	valve	thy,	pulmo	opti
nt.	ry	ventric	past	issue	left	nary	mize
	anato	ular	2	s,	main	hypert	medi
	my	hypert	mon	heart	artery	ension	cal
	unsuit	rophy.	ths,	musc	stenosi	, life	thera
	able		or	le	s	expect	py.
	for		rece	disea	≥50%,	ancy	
	PCI.		nt	se,	inabilit	less	
			PCI/	impa	y to	than 2	
			CAB	ired	compl	years,	
			G	left	y with	and	
			withi	ventr	protoc	inabilit	
			n the	icular	olor	y to	
			past	funct	follow-	provid	
			2	ion,	up,	e	
			mon	and	and	consen	
			ths.	histo	suspec	t.	
				ry of	ted or		
				heart	confir		
				arter	med		
				у	pregna		
				proc	ncy.		
				edur			
				es			
				like			
				PC			
				or			
				CAB			
				G.			

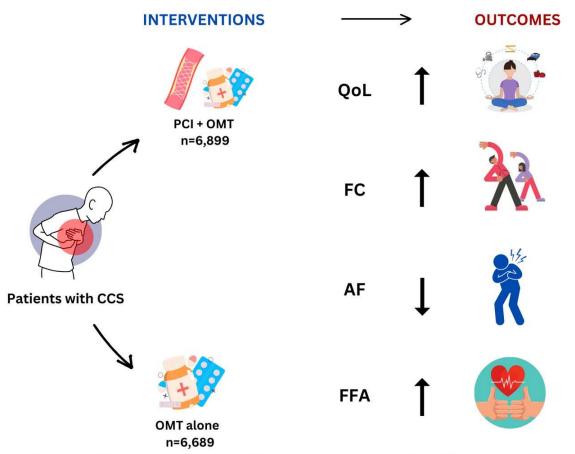
Base	line C	harac	cterist	ics													
Samp le Size	212	101	300	341	2368	100	2287	181	396	888	104	5179	214	611	200	518	301
Age, y	63	60	58	58	62	62	62	61	65	64	61	64	56	60	66	58	80
Follo w-up	3 у	5 y	4.7 y	1.5 y	5 y	1 y	4.6 y	5 y	3 у	5 y	1 y	3.3 y	5 y	5 y	12 w	7 y	4 y
Mean LDL, mg/d L	106	NR	NR	144	96	NR	144	NR	NR	NR	NR	83	151	148	NR	NR	NR
Basel ine Angin a																	
Stati n Use > 50% in OMT Grou p	Νο	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No
Stent use > 50% in PCI Grou p	No	No	No	No	Yes	Yes	No	Νο	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes

Comorbidities

Нуре	53	NR	39	45	52	86	67	37	72	78	72	73	36	58	69	NR	NR
rten si																	
on, %																	
Diabe	18	NR	39	16	100	32	34	12	30	27	23	42	18	30	18	NR	NR
tes,																	
%																	
CHF	2	NR	16	NR	NR		5	NR	NR	NR	NR	4	NR	NR	NR	NR	NR

Curre nt Smok er, %	31	NR	60	22	22	33	NR	26	70	20	33	12	36	30	13	NR	NR
Clinid	cal En	dpoir	nts														
Quali ty of Life	N	N	N	N	Y	Y	Y	Ν	Y	Y	Y	Y	N	Y	Y	Y	Y
Freed om from Angin a	Y	Y	Y	Y	N	N	Y	Y	Ν	γ	N	N	Y	Υ	N	N	N
Angin a Frequ ency	N	N	Ν	Ν	N	Y	Y	N	Y	Ŷ	Y	Y	N	Ν	Y	Ν	N
Funct ional Capa city	Y	N	N	N	Y	Y	Y	N	Y	Ν	Y	Y	N	Y	Y	Y	Y

Y = Yes; N = No


3. RESULTS

3.1 Characteristics of Study Participants

Seventeen RCTs including 13,588 patients were selected for the final analysis, with 6,899 in the PCI plus OMT arm and 6,689 in the OMT alone arm. All of the 17 RCTs were published between 1992 and 2022. The baseline characteristics of the participants of included RCTs and study inclusion/exclusion as well as clinical endpoints are reported in are summarized in Table 1. The included RCTs showed minimal publication bias, as depicted by the symmetrical funnel plot shown in supplemental material Figure S3. The included studies were all of sufficient quality as evident on the risk of bias assessment shown in supplemental material Figure S2.

3.2 Outcomes

Percutaneous Coronary Intervention versus Optimal Medical Therapy: A Quality of Life and Functional Capacity Assessment

Abbreviations: CCS- chronic coronary syndrome, PCI - percutaneous coronary intervention, OMT - optimal medical therapy, QoL - quality of life, FC - functional capacity, AF - angina frequency, FFA - freedom from angina

Central Illustration Summarizing Study and the Outcomes of Interest

3.2.1 Quality of Life

Overall, 11 RCTs assessed QoL outcomes which comprised of 10,465 participants, with 5,346 in the PCI arm and 5,119 in

the OMT arm. PCI was associated with improved quality of life when compared to OMT (SMD = 0.27 [95% CI, 0.14-0.40];

P <0.001), (SMD = 0.21 [95% Cl, 0.12-0.30]; P <0.001), and (SMD = 0.18 [95% Cl, 0.06-0.30]; P = 0.004) at 6 months, 1 year, and 3 or more years respectively. The results of the meta-analysis are shown in Figure 1.1.

3.2.2 Freedom from Angina

A total of 9 RCTs reported on the effect of PCI compared to OMT on FFA including 4,787 participants with 2,408 and 2,379 in the PCI and OMT groups respectively. We study found that PCI was associated with significant increases in FFA when compared to OMT at 6 months (OR = 1.17 [95% CI, 1.11-1.24]; P < 0.001), 1 year (OR = 1.14 [95% CI, 1.09-1.19]; P <0.001), and 3 year or more (OR = 1.27 [95% CI, 1.11-1.45]; P = 0.004). The results of the meta-analysis are shown in Figure 1.2.

3.2.3 Angina Frequency

Five RCTs evaluated the effects of PCI on AF when compared to angina frequency. This included a total of 6,546 patients with 3,297 in the PCI arm and 3,249 in the OMT arm. The effect estimate demonstrated a significant reduction in AF in favor of PCI at 6 months (SMD = 0.25 [95% CI, 0.20-0.30]; P <0.001), 1 year (SMD = 0.21 [95% CI, 0.17-0.26]; P < 0.001), and 3 or more years (SMD = 0.09 [95% CI, 0.02-0.16]; P = 0.009). The results of the meta-analysis are shown in Figure 1.3.

3.2.4 Functional Capacity

Overall, 11 RCTs assessed FC including 9,796 participants with 4,959 in the PCI arm and 4,837 in the OMT arm. PCI was associated with a statistically significant improvement in FC when compared to OMT (SMD = 0.21 [95% Cl, 0.12-0.31]; P < 0.001), (SMD = 0.12 [95% Cl, 0.08-0.16]; P < 0.001), and (SMD = 0.13 [95% Cl, 0.02-0.23]; P = 0.02) at 6 months, 1 year, and 3 or more years respectively. The results of the meta-analysis are shown in Figure 1.4.

3.3 Sensitivity Analysis

A sensitivity analysis was conducted using the leave-one-out method, where one trial was systematically removed from the pool at a time. This analysis allowed for an assessment of the impact of each individual trial on the overall results, identifying any single study that may disproportionately influence the pooled effect estimate. Additionally, sensitivity

was further assessed by comparing the results obtained using both fixed-effects and random-effects models, allowing us

to evaluate the robustness of the findings under different statistical assumptions. See Supplementary material figure S4.

Figure 1 Showing the Forest Plot of Outcomes Comparing PCI plus OMT to OMT alone.

Figure 1.1 Quality of Life Assessment

A PCI vs OMT at 6 months

		PCI			ОМТ			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
COURAGE 2007	75	22	897	70	23	838	16.2%	0.22 [0.13, 0.32]	+
FAME 2 2014	0.873	0.05	422	0.847	0.03	422	14.8%	0.63 [0.49, 0.77]	
GZFFR 2020	76	26	52	65	24	48	6.7%	0.44 [0.04, 0.83]	
ISCHEMIA-QoL 2020	78.7	23.5	2189	74.5	24.4	2219	17.1%	0.18 [0.12, 0.23]	
MASS 2 2004	72	25.5	180	63.4	27.4	187	12.3%	0.32 [0.12, 0.53]	
ORBITA 2018	0.83	0.21	103	0.82	0.2	89	9.6%	0.05 [-0.24, 0.33]	
RITA 2 1997	58	15.95	314	53.7	15.3	234	13.6%	0.27 [0.10, 0.44]	
TIME 2004	55.3	20	102	54.6	22.4	100	9.8%	0.03 [-0.24, 0.31]	-
Total (95% CI)			4259			4137	100.0%	0.27 [0.14, 0.40]	•
Heterogeneity: Tau ² = (0.02; Chi	² = 40.9	4, df =	7 (P < 0	.0000	1); l² =	83%	H	2 -1 0 1
Test for overall effect: 2	Z = 4.12	(P < 0.0	001)					ē	Favours OMT Favours PO

B PCI vs OMT at 1 year

		PCI			ОМТ			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
BARI 2D 2009	58.2	13.99	1059	56.5	14.28	1104	15.3%	0.12 [0.04, 0.20]	-
COMET-CTO 2021	79.9	22.7	50	62.5	25.5	50	3.6%	0.72 [0.31, 1.12]	— -
COURAGE 2007	76	21	862	73	22	827	14.7%	0.14 [0.04, 0.24]	-
EUROCTO 2018	76.6	23	230	71.8	25.5	125	8.3%	0.20 [-0.02, 0.42]	
FAME 2 2014	0.86	0.02	406	0.851	0.03	403	12.3%	0.35 [0.21, 0.49]	
GZFFR 2020	70.5	24	44	66.9	24	45	3.5%	0.15 [-0.27, 0.56]	- -
ISCHEMIA-QoL 2020	80	23.1	2168	76.5	23.2	2175	16.5%	0.15 [0.09, 0.21]	
MASS 2 2004	72.6	26.8	180	63.2	27.4	187	8.9%	0.35 [0.14, 0.55]	
RITA 2 1997	59	9.33	314	55.4	11.31	234	10.5%	0.35 [0.18, 0.52]	
TIME 2004	51.6	17.5	102	56	22.7	100	6.3%	-0.22 [-0.49, 0.06]	
Total (95% CI)			5415			5250	100.0%	0.21 [0.12, 0.30]	•
Heterogeneity: Tau ² = 0).01; Chi [;]	² = 30.4	4, df =	9 (P = 0	.0004);	l² = 70	%		
Test for overall effect: Z	2 = 4.75	(P < 0.0	0001)						-2 -1 0 1 Favours OMT Favours PC

C PCI vs OMT at 3 years

		PCI			омт			Std. Mean Difference	Std.	Mean Differ	ence
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV,	Random, 95	% CI
BARI 2D 2009	58.3	14.64	798	57.1	14.95	807	25.0%	0.08 [-0.02, 0.18]		-	
COURAGE 2007	79	20	586	77	20	591	23.6%	0.10 [-0.01, 0.21]			
FAME 2 2014	0.859	0.01	378	0.852	0.02	383	21.0%	0.44 [0.30, 0.59]		· -	
ISCHEMIA-QoL 2020	88.6	14.5	1483	86.3	15.6	1271	26.7%	0.15 [0.08, 0.23]		=	
RITA 2 1997	57.3	4.79	19	56.7	6.12	26	3.7%	0.11 [-0.49, 0.70]		<u> </u>	-
Total (95% CI)			3264			3078	100.0%	0.18 [0.06, 0.30]		•	
Heterogeneity: Tau ² = 0	0.01; Chi ⁱ	² = 18.3	3, df =	4 (P = 0	.001); ľ	² = 78%					-
Test for overall effect: Z									-2 -1 Favours	o SOMT Favo	1 urs PC

Figure 1.2 Freedom from Angina

A PCI vs OMT at 6 months

	PCI		OMT	r		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
ACME 1992	61	96	47	102	8.9%	1.38 [1.06, 1.79]	a
ACME 1997	89	148	68	152	13.0%	1.34 [1.08, 1.68]	
DEFER 2001	46	90	46	91	8.9%	1.01 [0.76, 1.35]	
FAME 2 2014	407	440	354	434	69.2%	1.13 [1.08, 1.19]	
Total (95% CI)		774		779	100.0%	1.17 [1.11, 1.24]	•
Total events	603		515				
Heterogeneity: Chi ² =	5.58, df =	3 (P = 0).13); l ² =	46%			
Test for overall effect:	Z = 5.36 (P < 0.0	0001)				0.5 0.7 1 1.5 2 Favours OMT Favours PCI

B PCI vs OMT at 1 year

	PCI		OMI	Г		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
ALKK 2003	143	149	131	151	10.1%	1.11 [1.03, 1.19]	
AVERT 1999	95	177	67	164	5.4%	1.31 [1.04, 1.65]	
COURAGE 2007	680	1031	595	1010	46.7%	1.12 [1.05, 1.20]	
DEFER 2001	45	90	45	91	3.5%	1.01 [0.75, 1.36]	
FAME 2 2014	411	437	364	429	28.5%	1.11 [1.06, 1.16]	
MASS 2 2004	107	205	74	203	5.8%	1.43 [1.14, 1.79]	
Total (95% CI)		2089		2048	100.0%	1.14 [1.09, 1.19]	•
Total events	1481		1276				
Heterogeneity: Chi ² = 8	8.45, df = {	5 (P = 0).13); I ² =	41%			0.5 0.7 1 1.5
Test for overall effect:	Z = 6.26 (P < 0.0	0001)				Favours OMT Favours PCI

C PCI vs OMT at 3 years

	PCI		OM	Г		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
ACME 1992	53	85	42	90	10.2%	1.34 [1.01, 1.76]	
ACME 1997	26	39	13	37	5.2%	1.90 [1.16, 3.10]	
ALKK 2003	115	149	92	151	14.6%	1.27 [1.09, 1.48]	
AVERT 1999	25	152	11	153	3.2%	2.29 [1.17, 4.48]	
COURAGE 2007	602	820	558	824	17.6%	1.08 [1.02, 1.15]	-
DEFER 2001	46	90	64	91	11.4%	0.73 [0.57, 0.93]	
FAME 2 2014	411	437	364	429	17.9%	1.11 [1.06, 1.16]	-
MASS 1 1995	58	72	23	72	7.9%	2.52 [1.77, 3.60]	
MASS 2 2004	107	205	74	203	12.0%	1.43 [1.14, 1.79]	
Total (95% CI)		2049		2050	100.0%	1.27 [1.11, 1.45]	•
Total events	1443		1241				
Heterogeneity: Tau ² =	0.03; Chi ²	= 54.5	1, df = 8 (P < 0.0	0001); l² =	85%	
Test for overall effect:					,.		0.2 0.3 1 2
	,		,				Favours OMT Favours PCI

Figure 1.3 Angina Frequency

A PCI vs OMT at 6 months

		PCI		(омт		;	Std. Mean Difference		Std. Me	an Differ	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Ra	ndom, 95%	∕₀CI	
COURAGE 2007	87	20	898	83	22	840	27.0%	0.19 [0.10, 0.28]			-		
GZFFR 2020	89	28	52	80	24	48	1.5%	0.34 [-0.05, 0.74]			- -	-	
ISCHEMIA-QoL 2020	93.4	12.6	2195	89.6	16	2221	68.5%	0.26 [0.20, 0.32]					
ORBITA 2018	74.4	21.4	102	67.7	22.1	90	3.0%	0.31 [0.02, 0.59]					
Total (95% CI)			3247			3199	100.0%	0.25 [0.20, 0.30]			•		
Heterogeneity: Tau ² = 0					.56); l ^a	² = 0%			-2	-1	0	1	2
Test for overall effect: Z	= 9.85	(P < 0.	00001)						-	Favours O	MT Favo	urs PCI	-

B PCI vs OMT at 1 year

		PCI			омт			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
COMET-CTO 2021	89.8	17.6	50	76.8	27.1	50	1.5%	0.56 [0.16, 0.96]	
COURAGE 2007	87	19	863	84	21	829	25.9%	0.15 [0.05, 0.25]	-
EUROCTO 2018	91.8	16.3	232	87.6	18.7	128	5.0%	0.24 [0.03, 0.46]	
GZFFR 2020	83.2	29	44	83.5	25	45	1.4%	-0.01 [-0.43, 0.40]	
ISCHEMIA-QoL 2020	93.7	12.9	2169	90.3	16	2177	66.2%	0.23 [0.17, 0.29]	-
Total (95% CI)			3358			3229	100.0%	0.21 [0.17, 0.26]	•
Heterogeneity: Chi ² = 6	.31, df =	4 (P =	0.18);	l ² = 37%	6				
Test for overall effect: 2			2350						-2 -1 0 1 2 Favours OMT Favours PCI

C PCI vs OMT at 3 years

		PCI		(омт			Std. Mean Difference	Std. Mean	Difference	е
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixe	d, 95% CI	
COURAGE 2007	89	18	583	88	18	589	34.7%	0.06 [-0.06, 0.17]	-	┼═──	
ISCHEMIA-QoL 2020	88.8	19.3	1077	86.6	21.1	1131	65.3%	0.11 [0.03, 0.19]		-∎-	
Total (95% CI)			1660			1720	100.0%	0.09 [0.02, 0.16]		•	
Heterogeneity: Chi ² = 0 Test for overall effect: 2			, .	I ² = 0%					-0.5 -0.25 Favours OMT	0 0.25 Favours F	

Figure 1.4 Functional Capacity

A PCI vs OMT at 6 months

		PCI			ОМТ			Std. Mean Difference	Std. Mean	Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% Cl	
ACME 1992	11.2	2.7	66	9.5	2.9	65	6.2%	0.60 [0.25, 0.95]			
COURAGE 2007	77	23	878	72	24	820	23.9%	0.21 [0.12, 0.31]		•	
GZFFR 2020	79	26	52	78	23	48	5.1%	0.04 [-0.35, 0.43]	-		
ISCHEMIA-QoL 2020	87.2	20.3	1933	85.1	21.5	2013	27.5%	0.10 [0.04, 0.16]		•	
MASS 2 2004	71	28.1	180	63.4	28.8	187	13.0%	0.27 [0.06, 0.47]			
ORBITA 2018	78.6	24	100	74.1	24.7	88	8.4%	0.18 [-0.10, 0.47]	+		
RITA 2 1997	74	17.72	314	69.2	15.3	234	15.9%	0.29 [0.12, 0.46]			
Total (95% CI)			3523			3455	100.0%	0.21 [0.12, 0.31]		♦	
Heterogeneity: Tau ² = 0	0.01; Chi [;]	² = 14.3	7, df = (6 (P = 0).03); l ⁱ	² = 58%	,		-2 -1 0		7
Test for overall effect: 2	Z = 4.30 ((P < 0.0	001)						Favours OMT	Favours PCI	2

B PCI vs OMT at 1 year

		PCI			омт			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
BARI 2D 2009	22.1	8.79	1059	20.7	8.97	1104	23.9%	0.16 [0.07, 0.24]	-
COMET-CTO 2021	72.7	21.3	50	60.5	27	50	1.1%	0.50 [0.10, 0.90]	
COURAGE 2007	75	24	844	73	24	812	18.4%	0.08 [-0.01, 0.18]	-
EUROCTO 2018	80.2	22.4	215	76.6	22.9	121	3.4%	0.16 [-0.06, 0.38]	
GZFFR 2020	74.6	24	44	69.9	20	45	1.0%	0.21 [-0.21, 0.63]	+
ISCHEMIA-QoL 2020	87.7	20	1953	86.1	20.2	1965	43.5%	0.08 [0.02, 0.14]	
MASS 2 2004	73.1	24.1	180	66.9	28.5	187	4.0%	0.23 [0.03, 0.44]	
RITA 2 1997	75	9.33	87	69.7	11.31	128	2.2%	0.50 [0.22, 0.78]	
TIME 2004	18.4	14.2	112	17.4	18.5	107	2.4%	0.06 [-0.20, 0.33]	+-
Total (95% CI)			4544			4519	100.0%	0.12 [0.08, 0.16]	*
Heterogeneity: Chi ² = 1	5.31, df =	= 8 (P	= 0.05)	; I² = 48	%				-2 -1 0 1 2
Test for overall effect: Z	2 = 5.82 (P < 0.	00001)						Favours OMT Favours PCI

C PCI vs OMT at 3 years

		PCI			омт			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
ACME 1992	10	2.7	67	8.5	3.1	65	7.4%	0.51 [0.17, 0.86]	
BARI 2D 2009	21.2	9.44	798	19.8	9.63	807	30.1%	0.15 [0.05, 0.24]	
COURAGE 2007	74	24	573	74	24	583	27.3%	0.00 [-0.12, 0.12]	-
ISCHEMIA-QoL 2020	88.8	19.3	1077	86.6	21.1	1131	32.4%	0.11 [0.03, 0.19]	
RITA 2 1997	73	5.23	19	70.8	6.63	26	2.8%	0.36 [-0.24, 0.95]	
Total (95% CI)			2534			2612	100.0%	0.13 [0.02, 0.23]	•
Heterogeneity: Tau ² = 0									
Test for overall effect: 2				,	,.				-1 -0.5 0 0.5 1 Favours OMT Favours PCI

3.4 Meta-regression Analysis

Meta-regression analyses were performed to investigate the relationship between the year of trial publication and the QoL outcomes over time. The results indicated no statistically significant association between the year of publication and QoL improvements, with a P value of 0.81. See Supplementary material figure S5.

In this present meta-analysis of RCTs comparing PCI to OMT, we report several significant findings:

- 1. PCI was associated with improved QoL in patients with chronic coronary syndrome and persisted over 3 years.
- 2. FC, FFA, and AF were significantly improved by PCI when compared to OMT.
- 3. The effect of PCI on QoL, FC, FFA, and AF appears attenuated over time.

Numerous previous studies have indicated that in patients with CCS, PCI is not associated with a reduction in major adverse clinical events including death, recurrent myocardial infarction, and need for new revascularization procedures when compared to OMT^{4,30,41,42}. Assessing soft outcomes including quality of life, functional capacity, angina-related health status has, therefore, gained significance in managing patients with CCS, a chronic condition known to impact quality of life and functional capacity^{43,44}. Patient-reported outcome measures (PROMs) have been shown to play a crucial role in assessing the impact of healthcare services on the life of patients with CCS⁴⁵. PROMs provide insights into health or well-being from the patient's perspective, without clinician interpretation. According to the World Health Organization (WHO), health encompasses complete physical, mental, and social well-being, extending beyond the absence of disease or infirmity. Therefore, beyond extending life expectancy, patients prioritize the quality of additional life-years gained⁴⁶. Consequently, understanding consistent symptomatic improvement following PCI is vital for physicians when discussing potential treatment benefits with patients.

The results of this current meta-analysis align with prior trials by showing improved quality of life of patients with CCS after PCI ^{9,39,47,48}. The TIME Trial was one of the pioneering studies in stable CAD patients that demonstrated the benefit of invasive strategies over OMT in terms of quality of life³⁹. Similarly, in the ISCHEMIA trial, patients with chronic coronary syndrome and moderate or severe ischemia on functional testing experienced clinically significant improvements in quality of life with an initial invasive strategy⁹. However, these benefits were observed primarily in patients with more frequent anginal episodes at the time of treatment evaluation⁴⁹. The COURAGE trial also assessed quality of life changes between PCI plus OMT and OMT alone. Interestingly, while patients treated with PCI initially experienced improved quality of life, this effect diminished by the 12-month period⁴. Similarly, this current review also found that PCI was associated with better quality of life when compared to OMT and the effect size appeared to attenuate with time as well. Some studies have reported that the diminishing quality of life benefits observed over

longer follow-up periods suggested that perhaps the initial short-term improvements from invasive approaches may be influenced, at least in part, by a placebo effect^{4,5}. Indeed, in the first double-blinded, placebo-controlled trial using a sham procedure, ORBITA, AI-Lamee and her colleagues found no improvement in exercise time and quality of life scores beyond the sham procedure, even in patients with significant coronary stenosis¹¹. Contrastingly, the findings from a more recent double-blinded, placebo-controlled trial, ORBITA-2, revealed that in patients with CCS who were receiving minimal or no antianginal medication and had an objective evidence of ischemia, PCI led to a reduced angina symptom score compared to a sham procedure⁵⁰. This suggests an improvement in angina-related quality of life with PCI. However, it is important to note that even though the daily data showed that the effect of PCI was immediate and sustained, the patients in this study were followed for only 12 weeks, thus limiting the assessment of long-term effects beyond this timeframe.

Our current meta-analysis revealed that PCI was associated with improvements in angina-related health status, including freedom from angina and angina frequency, compared to OMT. Although this benefit persisted over a three-year follow-up period, we observed a decrease in the effect size over time. Consistent with our findings, a prior meta-analysis also demonstrated a significant improvement in angina-related health status with PCI plus OMT versus OMT alone. Notably, the inclusion of recent myocardial infarction (MI) survivors in some trials may have influenced these results⁵¹. Additionally, Boden et al also reported that the need for revascularization during follow-up was more common in patients receiving OMT, particularly in those with severe angina⁴. This trend aligns with previous studies indicating a decline in the proportion of angina-free patients with revascularization compared to initial medical therapy over time⁵². Although our analysis suggested a higher rate of revascularization in the OMT group, this difference did not reach statistical significance (See supplemental figure S7). The attenuation in the magnitude of improvement in quality of life and angina-related health status over time may be partly attributed to high crossover rates from the OMT to PCI group. However, further research is needed to explore these findings and their implications for clinical practice.

Additionally, this meta-analysis demonstrated that PCI plus OMT led to improvements in functional capacity compared to OMT, as measured by various parameters including the DASI score, exercise tolerance testing, and the physical limitation component of the SAQ. Although this effect persisted over the three-year period, it appeared to diminish with time. Previous studies have also reported similar benefits of PCI plus OMT over OMT alone in functional capacity, with some

indicating a more pronounced benefit in patients with lesions having lower baseline fractional flow reserve (FFR) values^{11,22,24,30,50}. However, a subgroup analysis in this review found no significant impact of FFR on functional capacity. Another study focusing on physical activity after PCI reported sustained improvements in functional capacity up to 12 months, particularly in patients with chronic total occlusion (CTO)⁵⁵. Nevertheless, a subgroup analysis in this current study found that the presence of CTO as the target vessel in the trial population did not influence the impact of PCI.

Indeed, while this current meta-analysis demonstrated that PCI in addition to OMT is superior to OMT alone in improving soft outcomes such as quality of life, functional capacity, angina relief, and reducing need for subsequent procedures, several important considerations remain unanswered. Firstly, it is uncertain whether the extent of angina reduction and the decrease in subsequent procedures achieved with PCI justify the increased costs associated with stenting and the procedural risks. Additionally, the potential periprocedural and long-term safety risks of PCI compared to OMT warrant careful consideration. The results of the cost-effectiveness analysis of PCI plus OMT versus OMT alone have varied across different trials. The TIME and FAME 2 trials indicated that PCI plus OMT was more cost-effective than OMT, suggesting favorable economic outcomes associated with the intervention^{53,54}. However, analyses from trials such as COURAGE and BARI 2D reported contrasting findings, indicating that PCI plus OMT may not always be the more cost-effective option compared to OMT alone^{55,56}. A comprehensive cost-effectiveness analysis revealed that the disparities observed in the cost-effectiveness of PCI plus OMT versus OMT alone may stem from the duration of follow-up⁵⁷. Short-term studies may overestimate cost due to the initial high expenses associated with PCI, without adequately considering the long-term reduction in repeat procedures⁵⁷. Moreover, the effectiveness of PCI in mitigating subsequent angina is notably contingent upon the initial symptom severity of the patient population, with PCI demonstrating greater benefits for individuals presenting with more severe symptoms⁵⁷. These insights are crucial for informed decision-making and optimal management of patients with CCS.

STUDY LIMITATIONS

We recognize several limitations to our analysis. Although the evaluation of quality of life, angina frequency, freedom from angina outcomes, and functional capacity were performed with validated questionnaires, the responses were all subjective and may be influenced by reporting bias from the participants. Similar to other trial-level analyses, we were

unable to consider factors such as adherence to assigned treatment, duration of medical therapy, type of stent, or the proportion of patients with stent usage in our analysis. These factors would be best evaluated through an individual patient level meta-analysis. In addition to our sensitivity analysis on the impact of individual studies on the results we would have liked to explore the impact of optimal medical therapy (OMT) based on current guidelines. However, due to the significant heterogeneity from evolving nature of medical therapies and variations in blood pressure and cholesterol targets during the time of the individual trials, conducting such an analysis was not feasible. Furthermore, we may have underestimated the benefits of PCI plus OMT compared to OMT because several trials had a high crossover rate. Additionally, there was significant heterogeneity in the validated tool used to assess the clinical outcomes of interest. Lastly, our meta-regression analysis, which considered covariates such as year of publication in relation to quality of life, may be prone to ecological fallacy since we did not have access to individual patient data.

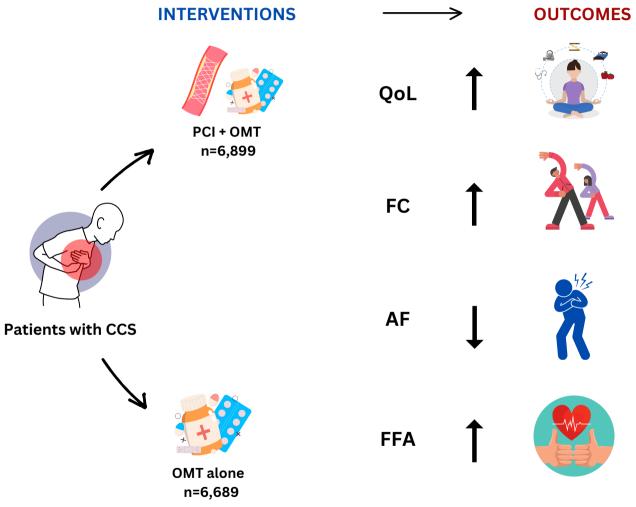
CONCLUSION

The findings from our current meta-analysis demonstrate that PCI yields several benefits for patients with CCS over a period of 3 years compared to an initial approach of OMT. Specifically, PCI was associated with improvements in quality of life, functional capacity, freedom from angina, and reduction in angina frequency. Although there was a trend towards a reduced need for revascularization with PCI, this difference did not reach statistical significance. These compelling results highlight the potential long-term advantages of PCI in managing CCS, offering valuable insights for clinical practice and patient care.

Reference

- 1. Cardiovascular diseases (CVDs). Accessed April 10, 2024. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
- 2. CDC. Heart Disease Facts | cdc.gov. Centers for Disease Control and Prevention. Published May 15, 2023. Accessed April 10, 2024. https://www.cdc.gov/heartdisease/facts.htm
- 3. Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. *Circulation*. 2020;141(9). doi:10.1161/CIR.000000000000757

- 4. Boden WE, O'Rourke RA, Teo KK, et al. Optimal Medical Therapy with or without PCI for Stable Coronary Disease. *N Engl J Med*. 2007;356(15):1503-1516. doi:10.1056/NEJMoa070829
- 5. Maron DJ, Hochman JS, Reynolds HR, et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease. *N Engl J Med*. 2020;382(15):1395-1407. doi:10.1056/NEJMoa1915922
- Smith SC, Benjamin EJ, Bonow RO, et al. AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients with Coronary and other Atherosclerotic Vascular Disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. *Circulation*. 2011;124(22):2458-2473. doi:10.1161/CIR.0b013e318235eb4d
- Smith SC, Allen J, Blair SN, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. *Circulation*. 2006;113(19):2363-2372. doi:10.1161/CIRCULATIONAHA.106.174516
- 8. Rumsfeld JS, Alexander KP, Goff DC, et al. Cardiovascular Health: The Importance of Measuring Patient-Reported Health Status: A Scientific Statement From the American Heart Association. *Circulation*. 2013;127(22):2233-2249. doi:10.1161/CIR.0b013e3182949a2e
- 9. Spertus JA, Jones PG, Maron DJ, et al. Health Status after Invasive or Conservative Care in Coronary and Advanced Kidney Disease. *N Engl J Med*. 2020;382(17):1619-1628. doi:10.1056/NEJMoa1916374
- 10. Nishi T, Piroth Z, De Bruyne B, et al. Fractional Flow Reserve and Quality-of-Life Improvement After Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease. *Circulation*. 2018;138(17):1797-1804. doi:10.1161/CIRCULATIONAHA.118.035263
- 11. Al-Lamee R, Thompson D, Dehbi HM, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. *The Lancet*. 2018;391(10115):31-40. doi:10.1016/S0140-6736(17)32714-9
- 12. Patel MR, Calhoon JH, Dehmer GJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary Revascularization in Patients With Stable Ischemic Heart Disease. *J Am Coll Cardiol*. 2017;69(17):2212-2241. doi:10.1016/j.jacc.2017.02.001
- 13. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. *Circulation*. 2012;126(25):e354-471. doi:10.1161/CIR.0b013e318277d6a0
- 14. Virani SS, Newby LK, Arnold SV, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. *Circulation*. 2023;148(9). doi:10.1161/CIR.000000000001168
- 15. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. doi:10.1136/bmj.n71
- 16. Clarke M, Clarke T. A study of the references used in Cochrane protocols and reviews. Three bibles, three dictionaries, and nearly 25,000 other things. *Int J Technol Assess Health Care*. 2000;16(3):907-909. doi:10.1017/s0266462300102181
- 17. Page MJ, Shamseer L, Tricco AC. Registration of systematic reviews in PROSPERO: 30,000 records and counting. *Syst Rev.* 2018;7(1):32. doi:10.1186/s13643-018-0699-4


- 18. Hays RD, Sherbourne CD, Mazel RM. The rand 36-item health survey 1.0. *Health Econ*. 1993;2(3):217-227. doi:10.1002/hec.4730020305
- 19. Spertus JA, Winder JA, Dewhurst TA, et al. Development and evaluation of the Seattle Angina questionnaire: A new functional status measure for coronary artery disease. *J Am Coll Cardiol*. 1995;25(2):333-341. doi:10.1016/0735-1097(94)00397-9
- 20. Hlatky MA, Boineau RE, Higginbotham MB, et al. A brief self-administered questionnaire to determine functional capacity (The Duke Activity Status Index). *Am J Cardiol*. 1989;64(10):651-654. doi:10.1016/0002-9149(89)90496-7
- 21. Kroenke K, Strine TW, Spitzer RL, Williams JBW, Berry JT, Mokdad AH. The PHQ-8 as a measure of current depression in the general population. *J Affect Disord*. 2009;114(1-3):163-173. doi:10.1016/j.jad.2008.06.026
- 22. Parisi AF, Folland ED, Hartigan P. A Comparison of Angioplasty with Medical Therapy in the Treatment of Single-Vessel Coronary Artery Disease. *N Engl J Med*. 1992;326(1):10-16. doi:10.1056/NEJM199201023260102
- 23. Hartigan PM, Giacomini JC, Folland ED, Parisi AF. Two- to three-year follow-up of patients with single-vessel coronary artery disease randomized to PTCA or medical therapy (results of a VA cooperative study). *Am J Cardiol*. 1998;82(12):1445-1450. doi:10.1016/S0002-9149(98)00685-7
- 24. Folland ED, Hartigan PM, Parisi AF. Percutaneous Transluminal Coronary Angioplasty Versus Medical Therapy for Stable Angina Pectoris. *J Am Coll Cardiol*. 1997;29(7):1505-1511. doi:10.1016/S0735-1097(97)00097-1
- 25. Zeymer U, Uebis R, Vogt A, et al. Randomized Comparison of Percutaneous Transluminal Coronary Angioplasty and Medical Therapy in Stable Survivors of Acute Myocardial Infarction With Single Vessel Disease: A Study of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausärzte. *Circulation*. 2003;108(11):1324-1328. doi:10.1161/01.CIR.0000087605.09362.0E
- 26. Pitt B, Waters D, Brown WV, et al. Aggressive Lipid-Lowering Therapy Compared with Angioplasty in Stable Coronary Artery Disease. *N Engl J Med*. 1999;341(2):70-76. doi:10.1056/NEJM199907083410202
- 27. Mancini GBJ, Farkouh ME, Brooks MM, et al. Medical Treatment and Revascularization Options in Patients With Type 2 Diabetes and Coronary Disease. *J Am Coll Cardiol*. 2016;68(10):985-995. doi:10.1016/j.jacc.2016.06.021
- 28. Bech GJW, De Bruyne B, Pijls NHJ, et al. Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis: A Randomized Trial. *Circulation*. 2001;103(24):2928-2934. doi:10.1161/01.CIR.103.24.2928
- 29. Werner GS, Martin-Yuste V, Hildick-Smith D, et al. A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions. *Eur Heart J.* 2018;39(26):2484-2493. doi:10.1093/eurheartj/ehy220
- 30. Xaplanteris P, Fournier S, Pijls NHJ, et al. Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. *N Engl J Med.* 2018;379(3):250-259. doi:10.1056/NEJMoa1803538
- 31. Hennigan B, Berry C, Collison D, et al. Percutaneous coronary intervention versus medical therapy in patients with angina and grey-zone fractional flow reserve values: a randomised clinical trial. *Heart*. 2020;106(10):758-764. doi:10.1136/heartjnl-2019-316075
- 32. Hueb WA, Bellotti G, De Oliveira SA, et al. The Medicine, Angioplasty or Surgery Study (MASS): A prospective, randomized trial of medical therapy, balloon angioplasty or bypass surgery for single proximal left anterior descending artery stenoses. *J Am Coll Cardiol*. 1995;26(7):1600-1605. doi:10.1016/0735-1097(95)00384-3
- 33. Hueb WA, Soares PR, Almeida De Oliveira S, et al. Five-Year Follow-Up of the Medicine, Angioplasty, or Surgery Study (MASS)^[2]: A Prospective, Randomized Trial of Medical Therapy, Balloon Angioplasty, or Bypass Surgery for Single

Proximal Left Anterior Descending Coronary Artery Stenosis. *Circulation*. 1999;100(Supplement 2):II-107-II-113. doi:10.1161/01.CIR.100.suppl_2.II-107

- 34. Hueb W, Soares PR, Gersh BJ, et al. The medicine, angioplasty, or surgery study (MASS-II): a randomized, controlled clinical trial of three therapeutic strategies for multivessel coronary artery disease. *J Am Coll Cardiol*. 2004;43(10):1743-1751. doi:10.1016/j.jacc.2003.08.065
- 35. Hueb W, Lopes NH, Gersh BJ, et al. Five-Year Follow-Up of the Medicine, Angioplasty, or Surgery Study (MASS II): A Randomized Controlled Clinical Trial of 3 Therapeutic Strategies for Multivessel Coronary Artery Disease. *Circulation*. 2007;115(9):1082-1089. doi:10.1161/CIRCULATIONAHA.106.625475
- 36. Henderson RA, Pocock SJ, Clayton TC, et al. Seven-year outcome in the RITA-2 trial: coronary angioplasty versus medical therapy. *J Am Coll Cardiol*. 2003;42(7):1161-1170. doi:10.1016/S0735-1097(03)00951-3
- 37. Rita Trial Participants. Coronary angioplasty versus coronary artery bypass surgery: the Randomised Intervention Treatment of Angina (RITA) trial. *The Lancet*. 1993;341(8845):573-580. doi:10.1016/0140-6736(93)90348-K
- 38. Pfisterer M. Trial of Invasive versus Medical Therapy in the Elderly (TIME). *Heart Drug*. 2001;1(3):144-147. doi:10.1159/000048951
- 39. Pfisterer M. Long-Term Outcome in Elderly Patients With Chronic Angina Managed Invasively Versus by Optimized Medical Therapy: Four-Year Follow-Up of the Randomized Trial of Invasive Versus Medical Therapy in Elderly Patients (TIME). *Circulation*. 2004;110(10):1213-1218. doi:10.1161/01.CIR.0000140983.69571.BA
- 40. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. Published online August 28, 2019:I4898. doi:10.1136/bmj.I4898
- 41. Maron DJ, Hochman JS, Reynolds HR, et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease. *N Engl J Med*. 2020;382(15):1395-1407. doi:10.1056/NEJMoa1915922
- 42. De Bruyne B, Pijls NHJ, Kalesan B, et al. Fractional Flow Reserve–Guided PCI versus Medical Therapy in Stable Coronary Disease. *N Engl J Med*. 2012;367(11):991-1001. doi:10.1056/NEJMoa1205361
- 43. Lukkarinen H, Hentinen M. Treatments of Coronary Artery Disease Improve Quality of Life in the Long Term: *Nurs Res.* 2006;55(1):26-33. doi:10.1097/0006199-200601000-00004
- 44. Goyal TM, Idler EL, Krause TJ, Contrada RJ. Quality of Life Following Cardiac Surgery: Impact of the Severity and Course of Depressive Symptoms. *Psychosom Med*. 2005;67(5):759-765. doi:10.1097/01.psy.0000174046.40566.80
- 45. Weldring T, Smith SMS. Article Commentary: Patient-Reported Outcomes (PROs) and Patient-Reported Outcome Measures (PROMs). *Health Serv Insights*. 2013;6:HSI.S11093. doi:10.4137/HSI.S11093
- 46. Thompson DR, Yu CM. [No title found]. *Health Qual Life Outcomes*. 2003;1(1):42. doi:10.1186/1477-7525-1-42
- 47. Cohen DJ, Van Hout B, Serruys PW, et al. Quality of Life after PCI with Drug-Eluting Stents or Coronary-Artery Bypass Surgery. *N Engl J Med*. 2011;364(11):1016-1026. doi:10.1056/NEJMoa1001508
- Seto TB, Taira DA, Berezin R, et al. Percutaneous Coronary Revascularization in Elderly Patients: Impact on Functional Status and Quality of Life. Ann Intern Med. 2000;132(12):955. doi:10.7326/0003-4819-132-12-200006200-00005
- 49. Spertus JA, Jones PG, Maron DJ, et al. Health-Status Outcomes with Invasive or Conservative Care in Coronary Disease. *N Engl J Med*. 2020;382(15):1408-1419. doi:10.1056/NEJMoa1916370

- 50. Rajkumar CA, Foley MJ, Ahmed-Jushuf F, et al. A Placebo-Controlled Trial of Percutaneous Coronary Intervention for Stable Angina. *N Engl J Med*. 2023;389(25):2319-2330. doi:10.1056/NEJMoa2310610
- 51. Wijeysundera HC. Meta-analysis: Effects of Percutaneous Coronary Intervention Versus Medical Therapy on Angina Relief. *Ann Intern Med*. 2010;152(6):370. doi:10.7326/0003-4819-152-6-201003160-00007
- 52. Bytyçi I, Morina D, Bytyqi S, Bajraktari G, Henein MY. Percutaneous Coronary Intervention Is Not Superior to Optimal Medical Therapy in Chronic Coronary Syndrome: A Meta-Analysis. *J Clin Med*. 2023;12(4):1395. doi:10.3390/jcm12041395
- 53. Claude J, Schindler C, Kuster GM, et al. Cost-effectiveness of invasive versus medical management of elderly patients with chronic symptomatic coronary artery disease. Findings of the randomized trial of invasive versus medical therapy in elderly patients with chronic angina (TIME). *Eur Heart J*. 2004;25(24):2195-2203. doi:10.1016/j.ehj.2004.09.013
- 54. Fearon WF, Nishi T, De Bruyne B, et al. Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve– Guided Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation). *Circulation*. 2018;137(5):480-487. doi:10.1161/CIRCULATIONAHA.117.031907
- 55. Weintraub WS, Boden WE, Zhang Z, et al. Cost-effectiveness of percutaneous coronary intervention in optimally treated stable coronary patients. *Circ Cardiovasc Qual Outcomes*. 2008;1(1):12-20. doi:10.1161/CIRCOUTCOMES.108.798462
- 56. Hlatky MA, Boothroyd DB, Melsop KA, et al. Economic outcomes of treatment strategies for type 2 diabetes mellitus and coronary artery disease in the Bypass Angioplasty Revascularization Investigation 2 Diabetes trial. *Circulation*. 2009;120(25):2550-2558. doi:10.1161/CIRCULATIONAHA.109.912709
- 57. Wijeysundera HC, Tomlinson G, Ko DT, Dzavik V, Krahn MD. Medical Therapy v. PCl in Stable Coronary Artery Disease: A Cost-Effectiveness Analysis. *Med Decis Making*. 2013;33(7):891-905. doi:10.1177/0272989X13497262

Percutaneous Coronary Intervention versus Optimal Medical Therapy: A Quality of Life and Functional Capacity Assessment

Abbreviations: CCS- chronic coronary syndrome, PCI - percutaneous coronary intervention, OMT - optimal medical therapy, QoL - quality of life, FC - functional capacity, AF - angina frequency, FFA - freedom from angina