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1 Supplementary Methods107

1.1 Model108

1.1.1 Longitudinal component109

Assume there are N individuals in the study, of whom n received two doses of the ChAdOx1 nCoV-19110

vaccine (the vaccine arm), and N −n received two doses of a MenACWY control vaccine (the control111

arm). Without loss of generality, let the dataset be ordered such that individuals i = 1, . . . , n are in112

the vaccine arm and individuals i = n + 1, . . . , N are in the control arm. Henceforth, unless stated113

otherwise, time refers to the time since the start of the at-risk period, i.e. the time since the given114

individual reached 21 days after receipt of the second vaccine dose.115

For individual i = 1, . . . , n in the vaccine arm, let Ai(t) be the true antibody level at time t. Let116

Yi(tij) be the observed antibody level at time tij , j = 1, . . . ,mi. Note mi, the number of antibody117

observations for individual i, may be 0. Assume observation log Yi(tij) is given by118

log Yi(tij) = logAi(tij) + ϵij (1)

where random error ϵij ∼ tν(0, σ
2) follows the Student-t distribution with ν degrees of freedom,119

location 0 and scale σ2. We used the Student-t distribution as QQ-plots showed better fit than using120

Gaussian error, and it is more robust to outliers than a Gaussian error distribution [1]. We chose121

ν = 4 by examining QQ-plots of the residuals from an earlier model using Gaussian random error.122

We considered different integer values of ν, and chose ν = 4 as the QQ-plot was closest to a straight123

line.124

Assume a linear trajectory of the true log antibodies logAi(t) over time125

logAi(t) = b0i − exp (b1i) t (2)

We let a0i = b0i and a1i = − exp (b1i) be the random intercept and slope respectively. Random effects126

b0i, b1i follow a Gaussian distribution given by127 (
b0i

b1i

)
∼ N

((
α0 + x⊤

LiβL0

α1 + x⊤
LiβL1

)
,

(
τ20 ρτ0τ1

ρτ0τ1 τ21

))
(3)

independently for each i. Here XL is a design matrix of pL covariates which affect the antibody128

trajectories with ith row x⊤
Li, and corresponding effects on the intercept and slope given by βL0, βL1129

respectively. Parameters α0 and α1 give the expected random effects for a reference individual with130

xLi = 0, τ20 and τ21 give the variances of the random effects, and ρ the correlation between the random131

effects.132

The use of the − exp transformation forces the log antibody slopes to be negative. We used this for two133

reasons: (a) a positive slope means antibody levels increase exponentially, which causes convergence134

issues in the time-to-event component of the model, (b) once antibody levels have reached their peak135

we expect them to decrease over time.136
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The formulation of equations (2) and (3) can be alternatively written as137

logAi(t) = α0 + x⊤
LiβL0 + τ0η0i − t exp

(
α1 + x⊤

LiβL1 + τ1

(
ρη0i +

√
1− ρ2η1i

))
(4)

where η0i, η1i are independent standard normal random variables, i = 1, . . . , n. This formulation is138

used in the code implementing the model.139

For individual i = n+1, . . . , N in the control arm, we assume their antibody levels are zero, Ai(t) ≡ 0.140

1.1.2 Time-to-infection component141

We model the time until SARS-CoV-2 infection by the Cox proportional hazards model [2]. We142

consider the event of interest to be either any COVID-19 infection, or primary symptomatic COVID-143

19 infection, in two separate analyses. For individual i, let Si be the calendar time when they reached144

21 days after their second dose, Ti the total time at risk, and δi =
(
δ
(any)
i , δ

(symp)
i

)⊤
the vector of event145

indicators for any COVID-19 infection and symptomatic COVID-19 infection respectively. Let Zi = 1146

if individual i is in the vaccine arm, and Zi = 0 if they are in the control arm. Let XI be a design147

matrix of covariates which affect the risk of infection, with row x⊤
Ii for the ith individual. We stratify148

the baseline hazard function by study site Gi, as the rate of COVID-19 in the population varied by149

geographical study site during the trial. We assume a 7 day incubator period from exposure to a150

COVID-19 infection being reported in the study. Hence the risk of infection at a given time depends151

on the true antibody levels 7 days prior. Then the hazard hi(t) for individual i at time t depends on152

the vaccine/control arm Zi, the true antibody level Ai(t− 7), and covariates xIi153

hi(t) = λGi(Si + t) exp
(
x⊤
IiβI + Zi (γAi(t− 7) + ζ)

)
(5)

where Gi is the study site for individual i, λGi
(s) is the unknown baseline hazard function for study154

site Gi which varies with calendar time, βI is the effect of covariates xIi on the log hazard, γ is the155

slope of the antibody level effect Ai(t− 7), and ζ is the intercept of the antibody level effect.156

Note the antibody levels Ai(t) decay to 0 as t → ∞. Hence the hazard ratio between an individual in157

the vaccine arm and control arm with the same covariate values will tend to exp(ζ) as t → ∞, so we158

can interpret exp(ζ) as the long-term effect due to vaccination.159

We implement the longitudinal component of the model using Bayesian methods. This allows us to160

easily deal with the missing antibody data by treating the antibody trajectory parameters as latent161

variables. We then multiply impute the latent true antibody trajectories, before using a Cox model162

to implement the time-to-infection component.163

1.2 Bayesian implementation of longitudinal component164

1.2.1 Covariates165

In equation (3), we include covariates in XL which may affect the initial antibody level and slope166

of antibody decay after vaccination. We include categorical variables: age group (18-55 years, 56-69167

years, 70+ years), sex (female, male), ethnicity (white, non-white), comorbidity (none, comorbidity),168

BMI (<30 kg/m2, ≥30), time interval between first and second dose (≥12 weeks, 9-11 weeks, 6-8169
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weeks, <6 weeks), healthcare worker (HCW) status (not a HCW, HCW facing <1 COVID-19 patient170

per day, HCW facing ≥1 COVID-19 patient per day), and initial dose (standard dose, low dose).171

1.2.2 Accounting for informative missingness172

Missing data occurred in the antibody measurements for two reasons. Firstly, longitudinal antibody173

observations were censored, that is, excluded if they occur after the infection event or the end of the174

at-risk period. Secondly, blood samples were tested for antibody levels retrospectively by case-cohort175

sampling, meaning antibody data is missing for a large proportion of non-cases. Hence the missingness176

of antibody data depends by design on the total time at risk and the final infection status. Because177

antibody levels affect the risk of infection, these time-to-event variables are informative of the antibody178

levels. In order to account for this informatively missing-at-random antibody data, we also included179

infection data in the longitudinal covariates. Namely, we included the indicator for any COVID-19180

infection, the indicator for primary symptomatic COVID-19 infection, and the Nelson–Aalen estimate181

for cumulative hazard of any COVID-19 NAAT+ test in the vaccine group. This approach was first182

suggested for the Cox model by White and Royston (2009) [3]. Moreno-Bentacur et al. (2018) used183

a similar approach in a joint model, suggesting to also include the interaction between other covari-184

ates and the Nelson–Aalen estimator, although they note the interaction term did not improve the185

estimates [4]. The inclusion of both infection indicators accounts for the censoring at any infection186

event. This can further be seen as a multiple imputation approach to fitting a joint model with two187

competing risks of non-symptomatic COVID-19 infection and symptomatic COVID-19 infection.188

189

1.2.3 Covariate effects190

The multiplicative effect due to an increase of 1 in the jth covariate xLj on the antibody level at PB28191

and the half-life of antibody level decay is given by exp(βL0j) and exp(−βL1j) respectively. This can192

be derived from Equation (4).193

1.2.4 Standardisation194

We standardised the data before estimating the posterior, in order to improve mixing in the Hamilto-195

nian Monte Carlo algorithm. We recentered the time since second vaccination variable at 28 days post196

second dose, and divided by the standard deviation of the antibody observation times. We standard-197

ised the covariates and observed antibody levels by subtracting the mean and dividing by the standard198

deviation of each variable. We then fit the model on the standardised data, before transforming the199

parameters back to the original scale.200
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1.2.5 Priors201

We fit the following independent priors to the parameters, where θ′ indicates the parameter θ trans-202

formed to the standardised scale:203

α′
0, α

′
1 ∼ Normal(0, 22) (6)

β′
L0, β

′
L1 ∼ Normal(0, 22IpL

) (7)

τ ′0, τ
′
1, σ

′ ∼ Student-t(d.f. = 2,mean = 0, scale = 1) (8)

ρ′ ∼ Uniform(−1, 1) (9)

where IpL
denotes the identity matrix with pL rows. These priors, combined with equations (2)-(3)204

induce a prior on Ai(t).205

1.2.6 Model fitting206

We implement the model using Hamiltonian Monte Carlo [5] in Stan [6]. We ran 4 chains of 20000207

iterations each, discarding the first 5000 iterations as warm-up and combining all the remaining208

iterations from each chain. We checked for convergence by examining trace plots and checking all209

values of the potential scale reduction factor were less than 1.01.210

1.3 Approximate Bayesian inference procedure211

We estimate the joint posterior distribution by multiple imputation.212

The joint posterior distribution for the antibody trajectories A(t) = (A1(t), . . . , An(t))
⊤ and time-to-213

event parameters θI = (γ, ζ, βI)
⊤

is given by214

π (A(t), θI |Y, T, δ,XL, XI) = π (θI |A(t), Y, T, δ,XL, XI) π (A(t) |Y, T, δ,XL, XI) (10)

Hence to sample from the joint posterior distribution, we may first draw a sample of antibody215

trajectories A(t)(k) ∼ π (A(t) |Y, T, δ,XL, XI), then draw a sample of time-to-event parameters216

θ
(k)
I ∼ π (θI |A(t), Y, T, δ,XL, XI), given the sample of antibody trajectories. We approximate the dis-217

tribution of antibody trajectories given the antibody and time-to-event data π (A(t) |Y, T, δ,XL, XI)218

in Section 1.2. Note Section 1.2.2 means our samples are drawn from an approximation of the appro-219

priate posterior, which conditions on the time-to-event data T, δ.220

We first impute the latent true antibody trajectories from the Bayesian posterior defined in Section221

1.2. We then run the time-to-event model to estimate the distribution of the time-to-event parameters222

given the imputation.223

For k = 1, . . . ,K, we impute the latent values of the true antibody level using draws of the random224

intercept a
(k)
0i and random slope a

(k)
1i , i = 1, . . . , n from the posterior of the longitudinal model. A set225

of imputed intercepts and slopes a
(k)
0 , a

(k)
1 defines the true antibody trajectories A

(k)
i (t), i = 1, . . . , n226

in Eq. (5).227

We then run a Cox proportional hazards model with time-varying covariate A
(k)
i (t − 7) and hazard228

given by Eq. (5). The model gives us the maximum likelihood estimate (MLE) θ̂
(k)
I =

(
γ̂(k), ζ̂(k)

)⊤
229
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and corresponding covariance matrix V̂ar
(k)

θI for the time-to-infection parameters, given the kth impu-230

tation of antibody trajectories.231

Next we sample from the asymptotic distribution of the Cox maximum likelihood estimators θ̂
(k)
I , such232

that θ
(k)
I ∼ N

(
θ̂
(k)
I , V̂ar

(k)

θI

)
. This approximates a Bayesian posterior with diffuse improper priors [7],233

namely the distribution of π
(
θ
(k)
I |A(t)(k), Y, T, δ,XL, XI

)
in Eq. (10). Then our samples θ

(k)
I ,A(k)(t)234

are approximate draws from the joint posterior π(θI ,A(t) |Y, T, δ,XL, XI). Posterior quantities of in-235

terest can be calculated from these samples and summarised by posterior medians, means, and 95%236

credible intervals by calculating quantiles.237

1.4 Calculation of posterior quantities238

1.4.1 Vaccine efficacy at a given antibody level239

The vaccine efficacy at a given antibody level A is given by240

VE(A) = 1− exp(γA+ ζ) (11)

1.4.2 Antibody corresponding to a given vaccine efficacy241

The antibody level A required for a given vaccine efficacy VE is then given by the inverse of Eq. (11)242

A(VE) = (log(1−VE)− ζ) /γ (12)

When this is negative, we report antibody of 0, as negative antibodies are not possible.243

1.4.3 Mean vaccine efficacy over time244

The mean vaccine efficacy at time t is then given by245

VE(t) =
1

n

n∑
i=1

VE(Ai(t− 7)) = 1− 1

n

n∑
i=1

exp(γAi(t− 7) + ζ) (13)

Note this is describing a counterfactual scenario where individuals are exposed to COVID-19 at time246

t and not exposed prior. In real-life populations, individuals who test positive are protected from247

future infection (for a period) and drop out from the sum. This will be more likely for individuals248

who are higher risk for COVID-19, including namely unvaccinated individuals. Hence the observed249

vaccine efficacy in a population will be shrunk towards a null effect compared to the counterfactual250

vaccine efficacy we report here. This is sometimes known as the differential depletion of susceptibles251

bias [8].252
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1.4.4 Quantiles of vaccine efficacy253

Let A(t) be the vector with ith entry Ai(t). Let Q(x, q) be the qth quantile of the vector x. Then254

the qth quantile of vaccine efficacy at time t, VEq is then given by255

VEq(t) = Q (VE(A(t− 7)), q) = 1− exp(γQ(A(t− 7), q) + ζ) = VE(Q(A(t− 7), q)) (14)

That is, the qth quantile of vaccine efficacy at time t is equal to the vaccine efficacy given at the qth256

quantile of antibody levels at time t − 7. As in Section 1.4.3 above, this calculates a counterfactual257

vaccine efficacy, in which individuals are not exposed to the virus until time t. In an observed258

population individuals who have the lowest antibody response will be infected earlier on average, and259

drop out of the at-risk group.260

1.4.5 Calculating covariate effects on vaccine efficacy261

To calculate covariate effects on vaccine efficacy, we predicted efficacy in new individuals with given262

covariate values. As mentioned in the main text, the event indicators and Nelson–Aalen (N–A)263

estimate of cumulative hazard for a new individual are unknown, as they depend on the infection264

outcome. We first built an imputation model to sequentially impute the missing event indicators265

(infection, symptomatic) and N–A estimate, which appear in the longitudinal antibody model, given266

the known covariates.267

Imputing the missing time-to-event data We imputed the missing time-to-event data sequen-268

tially. We ran regression models on the observed dataset, then drew predictions from them for the269

new individuals to impute the missing values.270

We first ran a logistic model to predict the probability of any COVID-19 infection using all longi-271

tudinal covariates xL except the event indicators and Nelson–Aalen estimate (logmI). We then ran272

a logistic model to predict the probability of primary symptoms given infection occurred, using all273

longitudinal covariates xL except N–A estimate (logmS). We then ran a linear model to predict the274

N–A estimate using all longitudinal covariates xL including infection and primary symptomatic status275

(linmNA).276

For a new individual, we imputed the infection indicator to be 1 with probability equal to their pre-277

dicted probability of infection from the logmI model above, and 0 otherwise. If the imputed infection278

indicator is 1, we next imputed the symptomatic infection indicator to be 1 with probability equal279

to their predicted probability of symptomatic infection given they were infected, predicted from the280

logmS model above, and 0 otherwise. Given the imputed event indicators, we imputed the N–A es-281

timate to be the predicted value from the linear model linmNA, plus a randomly sampled residual282

from linmNA. If the resulting imputated value is less than 0, we replace it with 0, as the N–A esti-283

mate is non-negative by definition. Together, these imputations are an approximate draw from the284

distribution of the event indicators and N–A estimate given the longitudinal covariates.285

Predicted vaccine efficacy for a new individual We imputed these missing covariates n times.286

For each set of imputed covariates, we drew from the predictive distribution of antibody trajectories287
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for a new individual with the given covariate values, Apred
j (t), j = 1, . . . , n. We then averaged these288

to calculate the mean risk of infection given the known covariate values289

VE(t) =
1

n

n∑
j=1

VE(Apred
j (t)) = 1− 1

n

n∑
j=1

exp(γApred
j (t) + ζ) (15)

1.4.6 Predicted relative vaccine efficacy against Omicron BA.4/5 infection290

To estimate the relative efficacy against Omicron BA.4/5 infection over time compared with vaccine291

non-responders, we considered three scenarios. We assumed the estimated mean, 95% upper and lower292

CI bounds for the relationship between anti-spike IgG antibody levels and relative efficacy against293

Omicron BA.4/5 infection from Wei et al. (2023) [9] to be the true relationship in each scenario294

respectively. We extracted the estimate and 95% CI from Wei et al. (Supplementary Fig. 1 from Wei295

et al.), at every 500 BAU/mL (0, 500, 1000, 1500, . . . , 8000), and at every 10% relative efficacy (0%,296

10%, 20%, . . . , 80%). We then fitted a LOESS curve to each of the three curves (95% lower confidence297

bound, estimate, 95% upper confidence bound), with a span of 0.3. The span was chosen such that298

the curve visually fit the data well, with no signs of overfitting. We then predicted the relative efficacy299

against Omicron infection RE(A) at a given antibody level A from the fitted LOESS curve. The mean300

relative efficacy against Omicron in the trial is then given by301

RE(t) =
1

n

n∑
i=1

RE(Ai(t− 7)) (16)

2 Supplementary Results302

2.1 Predicted efficacy over time against the Omicron BA.4/5 variant303

We extrapolated our results to predict what the observed relative efficacy over time in our study304

might have been, were the trial conducted during the Omicron period. We predicted efficacy rela-305

tive to vaccine non-responders, defined below. Wei et al. (2023) estimated the relationship between306

anti-spike IgG antibody levels and relative efficacy against Omicron BA.4/5 variant infection after307

booster vaccination following two initial doses of COVID-19 vaccine [9]. They calculated efficacy rela-308

tive to vaccinated individuals who produced antibody levels of 16 BAU/mL, deemed a non-response.309

We applied their estimated relationship between anti-spike IgG antibody levels and relative efficacy310

against the Omicron BA.4/5 variant to the predicted antibody levels over time from this study. We311

considered three scenarios: assuming their reported mean, upper- and lower 95% confidence limit for312

the relationship between anti-spike IgG and relative efficacy against Omicron BA.4/5 to be the true313

relationship. We refer to these as the mean efficacy, high efficacy and low efficacy scenarios respec-314

tively. This analysis assumes the relationship between antibody levels and efficacy after two doses315

of ChAdOx1 nCoV-19 is the same as the relationship after three vaccine doses (of possibly differ-316

ent vaccines). This assumption is unlikely to hold, which may bias our analysis (see Supplementary317

Discussion). In the mean efficacy scenario, we estimated relative efficacy at day 35, 97 and 189 to318

be 18.5% (95% CrI: 17.8, 19.2), 11.0% (10.5, 11.6) and 4.9% (4.4, 5.5) respectively (Supplementary319
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Fig. 11). In the high and low efficacy scenarios respectively, we estimate relative efficacy of 23.4%320

(22.6, 24.2) and 13.6% (12.9, 14.2) at day 35, 14.8% (14.1, 15.4) and 7.4% (7.0, 7.9) at day 97 and321

7.1% (6.5, 7.8) and 3.1% (2.7, 3.5) at day 189. The credible intervals do not reflect the uncertainty in322

the relationship between antibody levels and relative efficacy. This indicates the antibodies induced323

by two doses of ChAdOx1 nCoV-19 might only induce minimal protection against Omicron BA.4/5324

of at most 24.2% at day 35, waning to at most 7.8% at day 189, relative to a vaccinated individual325

with no antibodies (see Discussion).326

2.2 Model fit327

To demonstrate how the model works, Supplementary Fig. 12 shows the estimated anti-spike IgG328

antibody trajectories over time for 12 different randomly chosen individuals We randomly chose 12329

individuals, 3 each with 0, 1, 2 and 3 antibody observations available respectively, and plotted their es-330

timated true anti-spike IgG levels over time. The plot demonstrates that individuals with no antibody331

observations are predicted to have a typical antibody trajectory, with a large uncertainty. Individuals332

with more observations have less uncertainty around their estimated antibody levels over time.333

2.3 Computation time334

The longitudinal model was run in Stan with 4 chains, in parallel on a SLURM compute cluster. This335

took 2h 23m (9h 33m total walltime), and required 52GB of RAM to generate 15000 iterations per336

chain, after 5000 iterations of warmup. The Cox model was run in parallel using the snowfall package337

in R, on the imputed datasets from each iteration from the longitudinal model. This was run on a338

SLURM compute cluster separately for each outcome (symptomatic, all infections). Each outcome339

was run using 24 parallel nodes, taking 2h 37m (2 days 12h, 6m total walltime) and 2h 43m (2 days340

12h, 35m total walltime) for the symptomatic and all infection analyses respectively. The Cox analysis341

required 41GB and 38GB of RAM respectively. The results from the Cox and longitudinal models342

were combined to obtain the vaccine efficacy results reported in the paper in a third step using R and343

the snowfall package. This was run on 24 parallel nodes on a SLURM compute cluster, taking 1h 28m344

(1 day 11h 10m total walltime), and 1h 22m (1 day 8h 50m total walltime) for the symptomatic and345

all infection outcomes respectively. The final analysis required 49GB and 50GB of RAM respectively.346

2.4 Calculated parameters347

Posterior summaries of the estimated parameters are reported as follows. The intercept, slope and348

related variance and correlation parameters are reported in Supplementary Table 4. The multiplicative349

covariate effects on 28 days post second dose and half-life are reported in Fig. 4 and Supplementary350

Table 5. These are given by exp(β0) and exp(−β1) respectively, and the natural logarithm can be351

applied to calculate β0 and β1. For the time-to-event model, the covariate effects on hazard (including352

antibody and vaccination) are reported in Supplementary Fig. 7, and Supplementary Table 6.353
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3 Supplementary Discussion354

Our data was collected in a period when the Alpha variant was dominant, and considered individuals355

without prior infection who received two doses of vaccine. In contrast, the Omicron variant is currently356

dominant, and many individuals have received three or more doses of vaccine and been previously357

infected. While some findings such as effects of dose interval on vaccine efficacy will likely still apply,358

our results are therefore not directly applicable to current and future populations. To aid with this,359

we extrapolated our results to examine what the efficacy over time since second dose might have been360

in the Omicron BA.4/5 period. We used the estimated relationship between efficacy and antibody361

levels reported by Wei et al. (2023) [9] to estimate the level of Omicron BA.4/5 protection induced362

by antibody trajectories observed in this trial. This analysis should be interpreted with caution for363

three reasons: firstly, Wei et al., and thus also our analysis, use vaccine non-responders (vaccinated364

individuals whose antibody level was 16 BAU/mL) as the comparison in their calculation of relative365

efficacy instead of unvaccinated controls. It is not clear therefore how our analysis, or that of Wei366

et al., might relate to protection against Omicron BA.4/5 compared with unvaccinated individuals.367

Secondly, the relationship reported by Wei et al. was calculated from observational data, which may368

introduce bias into our analysis. Thirdly, our analysis assumed that the relationship between antibody369

levels and efficacy was the same after two doses in our study, as in the Wei et al. study. Their370

study combined individuals vaccinated with two, three or four vaccine doses (83.9% had three doses),371

including individuals who received the ChAdOx1 nCoV-19 and BNT162b2 as their first two doses,372

and different booster dose vaccines. The relationship between antibody levels and efficacy may differ373

across these groups, which may introduce some bias into our analysis. We suggest that protection from374

two doses of vaccine is likely to be no greater than after three doses, at the same level of antibodies.375

Therefore any such bias is likely to result in our reported estimates being an over-estimate of the376

effectiveness of two doses against Omicron BA.4/5, compared with vaccine non-responders. These377

estimates are all calculated for individuals with no prior infection, which is rare today. Levels of378

vaccine-induced protection may be different for individuals with a prior infection.379

We estimated low efficacy after two doses of ChAdOx1 nCoV-19 vaccine against the Omicron BA.4/5380

variant, of 18.5% at 35 days, 7.6% at 140 days and 4.1% at 209 days, relative to vaccine non-responders381

(Supplementary Fig. 11). Supplementary Table 8 compares our methods and results to previous382

studies of vaccine efficacy against the Omicron variant. Andrews et al. (2022b) used a test-negative383

design to estimate VE against Omicron [10] and is vulnerable to the aforementioned biases from384

observational studies. Andrews et al. reported a much higher vaccine efficacy against Omicron at 2-4385

weeks since second dose, but report a small negative vaccine efficacy at 25 weeks since second dose,386

which may be due to bias. While the results from our study are not directly comparable with theirs,387

it is however interesting that they reported higher initial VE against Omicron than our estimated388

relative efficacy, with both studies waning to negligible protection after 25 weeks. This might indicate389

that vaccine non-responders are initially protected against infection relative to vaccine non-responders,390

but this protection wanes by 25 weeks.391
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4 Supplementary Tables392
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Supplementary Table 1: Baseline characteristics of vaccinated (ChAdOx1) and control
arms

ChAdOx1 (n=4605) Control (n=4423)

Age (years)
Median (IQR) 45 (34, 56) 45 (34, 55)

18-55 years 3435 (74.6%) 3423 (77.4%)
55-69 years 568 (12.3%) 503 (11.4%)
70+ years 602 (13.1%) 497 (11.2%)

Sex

Male 1934 (42.0%) 1765 (39.9%)
Female 2671 (58.0%) 2658 (60.1%)

Ethnicity

White 4235 (92.0%) 4092 (92.5%)
Other 370 (8.0%) 331 (7.5%)

Comorbidities

None 3475 (75.5%) 3348 (75.7%)
Comorbidity 1130 (24.5%) 1075 (24.3%)

BMI (kg/m2)
Median (IQR) 25.5 (23, 28.8) 25.4 (22.9, 28.9)

BMI <30 kg/m2 3704 (80.4%) 3531 (79.8%)
BMI ≥30 kg/m2 901 (19.6%) 892 (20.2%)

Healthcare worker status

Non-healthcare worker 1759 (38.2%) 1550 (35.0%)
Healthcare worker (<1 patient with COVID-19 per day) 1973 (42.8%) 2008 (45.4%)
Healthcare worker (≥1 patient with COVID-19 per day) 873 (19.0%) 865 (19.6%)

Interval between first and second dose
Median (IQR) days 74 (42, 89) 76 (49, 89)

<6 weeks 1722 (37.4%) 1673 (37.8%)
6-8 weeks 1215 (26.4%) 1294 (29.3%)
9-11 weeks 555 (12.1%) 497 (11.2%)
≥12 weeks 1113 (24.2%) 959 (21.7%)

First dose strength

Standard Dose 2979 (64.7%) 2913 (65.9%)
Low Dose 1626 (35.3%) 1510 (34.1%)

NAAT+ case∗

Negative 4398 (95.5%) 4046 (91.5%)
NAAT+ case 207 (4.5%) 377 (8.5%)

Primary symptomatic NAAT+ case†

Non-case 4534 (98.5%) 4206 (95.1%)
NAAT+ primary symptomatic case 71 (1.5%) 217 (4.9%)

Time from day 28 post second dose until infection
Median (IQR) days 64 (38.5, 98) 59 (35, 91)

Total follow up time at risk
Median (IQR) days 102 (77, 128) 97 (73, 122)

Values are counts (percentages) unless stated otherwise. ∗NAAT+ case denotes nucleic acid
amplification test positive participants. †Primary symptomatic NAAT+ denotes nucleic acid
amplification test positive participants with at least one qualifying symptom.
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Supplementary Table 2: Observed anti-spike IgG antibody measurements by visit, arm (ChAdOx1/Control) and case

ChAdOx1 Control

Non-case Case Symptomatic case Total Total
n=4398 (95.5%) n=207 (4.5%) n=71 (1.5%) n=4605 n=4423

PB28 Number of antibody measurements available 1155 (26.3%) 173 (83.6%) 59 (83.1%) 1328 (28.8%) 852 (19.3%)
Median (IQR) anti-spike IgG value BAU/mL 219 (119, 383) 197 (103, 322) 165 (100, 276) 214 (115, 370) 0.3 (<LLOQ, 0.5)
Number of antibody measurements <LLOQ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 357 (41.9%)

PB90 Number of antibody measurements available 519 (11.8%) 64 (30.9%) 23 (32.4%) 583 (12.7%) 62 (1.4%)
Median (IQR) anti-spike IgG value BAU/mL 115 (66, 206) 93 (47, 168) 78 (62, 178) 112 (64, 199) 0.3 (<LLOQ, 0.6)
Number of antibody measurements <LLOQ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 21 (33.9%)

PB182 Number of antibody measurements available 58 (1.3%) 1 (0.5%) 1 (1.4%) 59 (1.3%) 9 (0.2%)
Median (IQR) anti-spike IgG value BAU/mL 65 (45, 117) 30 (NA) 30 (NA) 64 (44, 117) 0.2 (<LLOQ, 0.3)
Number of antibody measurements <LLOQ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (44.4%)

Total Number of antibody measurements available 1732 (39.4%) 238 (115%) 83 (116.9%) 1970 (42.8%) 923 (20.9%)
Median (IQR) anti-spike IgG value BAU/mL 175 (92, 320) 164 (82, 280) 137 (69, 243) 172 (91, 312) 0.3 (<LLOQ, 0.5)
Number of antibody measurements <LLOQ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 382 (41.4%)

Only ChAdOx1 vaccinated participants are split by case (Non-case, Case, Symptomatic case). The number of antibody measurements
available, median and interquartile range, and number of measurements below the lower limit of quantification (LLOQ) 0.21 BAU/mL is
shown. Antibody measurements are given in BAU/mL to the nearest whole number for the ChAdOx1 arm, and to 1 decimal place for the
Control arm. Outliers are not included in this table (see Supplementary Table 3).

12



Supplementary Table 3: The 8 outlying antibody values from ChAdOx1 vaccinated participants which were removed from
the analysis

Case Days since second dose Visit Anti-spike IgG value (BAU/mL)

Non-case 40 PB28 <LLOQ

Non-case 34 PB28 0.6

Non-case 27 PB28 0.3

Non-case 89 PB90 <LLOQ

Non-case 103 PB90 4363.8

Symptomatic case 95 PB90 3.3

Non-case 91 PB90 0.7

Non-case 91 PB90 <LLOQ

Values less than the lower limit of quantification 0.21 BAU/mL are written as < LLOQ. All except the 5th value were removed due to being
extremely low, which may lead to issues in the model fit, encouraging the variance of random intercepts and slopes to be too large (See
Supplementary Fig. 2)

Supplementary Table 4: Posterior summary of parameters in the longitudinal antibody model, for antibody measurements
converted to BAU/mL

Parameter Mean Median 0.025 quantile 0.975 quantile

α0 5.761 5.762 5.513 6.006

α1 −4.770 −4.770 −5.032 −4.506

σe 0.206 0.206 0.184 0.226

τ0 0.756 0.756 0.722 0.791

τ1 0.162 0.170 0.014 0.287

ρ −0.134 −0.103 −0.767 0.269

Time t = 0 is set to be 28 days after the second dose in the model implementation. A reference individual in the model is one with age 18-55,
male, white, no comorbidity, ≥ 12 weeks interval between first and second dose, BMI < 30kg/m2, not a healthcare worker, standard first dose,
negative COVID-19 and 0 Nelson–Aalen estimate.
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Supplementary Table 5: The multiplicative covariate effects on anti-spike IgG level 28 days post second dose, and half-life
of the subsequent decay in anti-spike IgG levels

Covariate multiplicative effect Posterior estimates

Multiplicative effect on anti-spike IgG level 28 days post second dose Median Mean 2.5% quantile 97.5% quantile

Age (56-69 vs 18-55 years) 0.86 0.86 0.71 1.03
Age (≥70 vs 18-55 years) 0.78 0.78 0.63 0.96

Sex (Female vs Male) 1.08 1.08 0.99 1.19

Ethnicity (Non-white vs White) 1.18 1.18 1.00 1.39

Comorbidity (Comorbidity vs None) 1.00 1.00 0.90 1.11

BMI (≥30 vs <30 kg/m2) 1.00 1.00 0.90 1.12

Healthcare worker (HCW) status (HCW facing <1 COVID-19 patient per day vs Not a HCW) 0.84 0.84 0.73 0.95
Healthcare worker (HCW) status (HCW worker facing ≥1 COVID-19 patient per day vs Not a HCW) 0.90 0.90 0.77 1.06

Interval between first and second dose (9-11 weeks vs ≥12 weeks) 0.83 0.83 0.74 0.93
Interval between first and second dose (6-8 weeks vs ≥12 weeks) 0.70 0.70 0.61 0.81
Interval between first and second dose (<6 weeks vs ≥12 weeks) 0.51 0.52 0.43 0.61

First dose (Low dose vs Standard dose) 1.11 1.11 0.99 1.24

COVID-19 outcome (Positive vs Negative) 0.85 0.86 0.71 1.01
COVID-19 outcome (Primary symptomatic vs Negative) 0.76 0.76 0.61 0.95

Cumulative hazard (Nelson–Aalen estimator for cumulative hazard) 0.97 0.97 0.92 1.03

Multiplicative effect on anti-spike IgG level half-life Median Mean 2.5% quantile 97.5% quantile

Age (56-69 vs 18-55 years) 1.22 1.25 0.89 1.74
Age (≥70 vs 18-55 years) 0.86 0.86 0.62 1.15

Sex (Female vs Male) 0.90 0.90 0.81 0.99

Ethnicity (Non-white vs White) 1.09 1.09 0.90 1.34

Comorbidity (Comorbidity vs None) 0.92 0.92 0.82 1.04

BMI (≥30 vs <30 kg/m2) 0.84 0.84 0.74 0.94

Healthcare worker (HCW) status (HCW facing <1 COVID-19 patient per day vs Not a HCW) 0.96 0.96 0.83 1.11
Healthcare worker (HCW) status (HCW worker facing ≥1 COVID-19 patient per day vs Not a HCW) 0.88 0.88 0.76 1.03

Interval between first and second dose (9-11 weeks vs ≥12 weeks) 0.99 0.99 0.88 1.11
Interval between first and second dose (6-8 weeks vs ≥12 weeks) 0.97 0.97 0.84 1.12
Interval between first and second dose (<6 weeks vs ≥12 weeks) 0.96 0.98 0.75 1.27
First dose (Low dose vs Standard dose) 1.09 1.09 0.97 1.23

COVID-19 outcome (Positive vs Negative) 0.86 0.86 0.72 1.04
COVID-19 outcome (Primary symptomatic vs Negative) 0.78 0.78 0.64 0.97

Cumulative hazard (Nelson–Aalen estimator for cumulative hazard) 1.01 1.01 0.96 1.07

A forest plot is given in Fig. 4
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Supplementary Table 6: The multiplicative covariate effects on hazard against symptomatic COVID-19 infection and any
COVID-19 infection

Covariate multiplicative effect Posterior estimates

Multiplicative effect on hazard for symptomatic COVID-19 infection Median Mean 2.5% quantile 97.5% quantile

Antibody level (Effect due to increase of 100 BAU/mL) 0.34 0.32 0.08 0.76

Vaccination direct effect (ChAdOx1 nCoV-19 vs control) 0.71 0.73 0.38 1.53

Age (56-69 vs 18-55 years) 0.50 0.50 0.29 0.89
Age (≥70 vs 18-55 years) 0.16 0.16 0.06 0.42

Sex (Female vs Male) 0.88 0.88 0.68 1.13

Ethnicity (Non-white vs White) 1.02 1.02 0.67 1.56

Comorbidity (Comorbidity vs None) 0.98 0.98 0.73 1.32

BMI (≥30 vs <30) 1.39 1.39 1.06 1.82

Healthcare worker (HCW) status (HCW facing <1 COVID-19 patient per day vs Not a HCW) 1.42 1.42 1.00 2.02
Healthcare worker (HCW) status (HCW worker facing ≥1 COVID-19 patient per day vs Not a HCW) 2.20 2.20 1.49 3.24

Multiplicative effect on hazard for any COVID-19 infection Median Mean 2.5% quantile 97.5% quantile

Antibody level (Effect due to increase of 100 BAU/mL) 0.49 0.48 0.27 0.75

Vaccination direct effect (ChAdOx1 nCoV-19 vs control) 0.92 0.93 0.64 1.39

Age (56-69 vs 18-55 years) 0.66 0.66 0.46 0.93
Age (≥70 vs 18-55 years) 0.53 0.53 0.36 0.80

Sex (Female vs Male) 0.93 0.93 0.78 1.11
Ethnicity (Non-white vs White) 0.86 0.86 0.62 1.19

Comorbidity (Comorbidity vs None) 0.95 0.95 0.77 1.16

BMI (≥30 vs <30) 1.13 1.13 0.92 1.38

Healthcare worker (HCW) status (HCW facing <1 COVID-19 patient per day vs Not a HCW) 1.18 1.18 0.93 1.50
Healthcare worker (HCW) status (HCW worker facing ≥1 COVID-19 patient per day vs Not a HCW) 1.65 1.65 1.26 2.17

A forest plot is given in Supplementary Fig. 7
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Supplementary Table 7: Anti-spike IgG antibody levels required to give different levels of vaccine efficacy against any
COVID-19 infection or symptomatic COVID-19

Required anti-spike IgG antibody level (BAU/mL)

Vaccine efficacy (%) Symptomatic COVID-19 Any COVID-19 infection

0 0 (0, 18) 0 (0, 27)
5 0 (0, 20) 0 (0, 31)
10 0 (0, 23) 3 (0, 36)
15 0 (0, 26) 11 (0, 41)
20 0 (0, 28) 20 (0, 47)
25 0 (0, 32) 29 (0, 54)
30 2 (0, 35) 38 (0, 62)
35 8 (0, 39) 48 (0, 72)
40 16 (0, 44) 59 (19, 85)
45 24 (0, 50) 71 (41, 102)
50 32 (0, 57) 84 (59, 125)
55 42 (0, 67) 99 (73, 154)
60 52 (0, 82) 116 (85, 191)
65 63 (24, 104) 135 (97, 233)
67 69 (37, 116) 143 (102, 253)
70 78 (51, 139) 156 (109, 285)
75 96 (65, 192) 182 (124, 346)
80 117 (76, 266) 214 (141, 423)
85 144 (88, 365) 254 (163, 522)
90 182 (105, 507) 311 (194, 662)
95 247 (133, 757) 408 (247, 900)
98 311 (161, 1002) 506 (300, 1140)
99 397 (197, 1331) 635 (369, 1458)

Posterior medians (and 95% credible intervals) are reported. When the required antibody level is predicted to be negative, 0 BAU/mL is
reported, as negative antibody levels are not possible.
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Supplementary Table 8: Comparison of methods and results with previous studies considering waning vaccine efficacy against
the Delta, Gamma and Omicron variants

Paper
Primary
course
vaccine

Booster
vaccine

Dominant
variant

Two-dose
/booster
/prior infection

Study design

Randomised
vaccine
/control
assignment

Baseline
comparator

Outcome
Location
of result
in paper

Group
Weeks
since
dose

Vaccine
efficacy (%)

Katikireddi et al.
(2022) [11]

ChAdOx1†
Delta
Gamma

Two dose
Cohort*
Test-negative

x Unvaccinated
Severe disease*
Symptomatic

Table 3

Scotland
(Delta)

Brazil
(Gamma)

4-5
10-11
18-19
4-5
10-11
18-19

67.3 (65.3, 69.1)
59.3 (57.2, 61.4)
44.6 (41.5, 47.6)
68.4 (67.8, 68.9)
63.2 (62.2, 64.2)
57.7 (55.4, 60.0)

Menni et al.
(2022) [12]

ChAdOx1†

BNT162b2*
mRNA-1273*

BNT162b2*
mRNA-1273*

Delta
Two dose
Booster dose*

Cohort x Unvaccinated
Any infection
(mostly
symptomatic)

(Figure
1A)
Supp.
Table 1

All ages

4
9
13
17
22
26

83.1 (82.2, 84)
79.3 (78.6, 80.0)
76.7 (76.0, 77.5)
75.8 (75.0, 76.4)
75.7 (74.9, 76.4)
75.2 (74.3, 76.1)

Horne et al.
(2022) [13]

ChAdOx1†

BNT162b2*
Delta Two dose Cohort x Unvaccinated Any infection

Supp.
Table 7

Age 40-64

Age 65+

3-6
11-14
23-26
3-6
11-14
23-26

22 (19, 25)
−25 (−30, −20)
−86 (−79, −93)
57 (42, 68)
30 (20, 38)
−23 (−36, −11)

Andrews et al.
(2022b) [10]

ChAdOx1†

BNT162b2*

BNT162b2
mRNA-1273
ChAdOx1†*

Omicron
Delta*

Two dose
Booster dose

Test-negative x Unvaccinated Symptomatic Table 3

Two dose

2-4
5-9
15-19
25+

48.9 (39.2, 57.1)
33.7 (25.0, 41.5)
17.8 (13.4, 21.9)
−2.7 (−4.2, −1.2)

BNT162b2
booster

mRNA-1273
booster

2-4
5-9
≥10
2-4
5-9

62.4 (61.8, 63.0)
52.9 (52.1, 53.7)
39.6 (38.0, 41.1)
70.1 (69.5, 70.7)
60.9 (59.7, 62.1)

Hogan et al.
(2023) [14]‡

ChAdOx1†

BNT162b2*
mRNA-1273*

BNT162b2*
mRNA-1273*
ChAdOx1†*

Omicron
Delta*

Two dose
Booster dose*

Modelling x Unvaccinated Mild disease Table 2 All recipients
13
26

12 (11.5, 12.4)
6.1 (5.8, 6.4)§

Our Omicron
analysis¶

ChAdOx1†
Omicron
BA.4/5

Two dose Modelling x
Vaccine
non-responders

Any infection
Supp.
Fig. 11

All recipients
(Scenario:
Mean efficacy)

5
10
20
26
29.9

18.5 (17.8, 19.2)
13.8 (13.3, 14.5)
7.6 (7.1, 8.2)
5.3 (4.8, 5.8)
4.1 (3.7, 4.7)

We include studies of two doses of the ChAdOx1 nCoV-19 vaccine, and a study of efficacy after a booster dose, against the Delta, Gamma,
and Omicron COVID-19 variants. Results are given with 95% confidence intervals or 95% credible intervals, depending on the paper. Results
are presented for different age groups, where appropriate. *We do not report these results here, see the original paper. †ChAdOx1 refers to
the ChAdOx1 nCoV-19 vaccine in this table. ‡Hogan et al. (2023) [14] fit a decay model to the results from Andrews et al. (2022b) [10]. The
model does not appear to fit the data well - see Fig. 2 (top panel, mild disease) from their paper. §These results at 26 weeks were
extrapolated from the model for timepoints beyond the data. ¶Our analysis predicts efficacy against Omicron by applying the relationship
between anti-spike IgG levels and relative efficacy reported by Wei et al. [9] to the antibody trajectories predicted by our model.
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5 Supplementary Figures

Supplementary Figure 1: Flow chart showing inclusion of COV002 participants in analysis cohort.
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Supplementary Figure 2: Observed anti-spike IgG antibody levels over time since vaccination, including outliers and mea-
surements from control participants. Each point represents an observation, and consecutive observations from the same individual are
connected by a line. Black points denote included observations from vaccine arm participants. Red points denote observations excluded as
outliers from vaccine arm participants. Blue points denote observations from control arm participants, which were not included in our model.
When one of the points which a line connects is an outlier, a red line is used. Blue lines connect observations from control participants. A
dotted horizontal line is drawn at the lower limit of quantification (LLOQ) 33 AU/mL (0.21 BAU/mL). Observations below the LLOQ are
plotted at the LLOQ.
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Supplementary Figure 3: The estimated baseline hazard of infection in the trial by calendar days. The (lower) red line and
shaded region give the estimate and 95% confidence interval for baseline hazard of primary symptomatic COVID-19 infection. The (upper)
blue line and shaded region give the estimate and 95% confidence interval for baseline hazard of any COVID-19 infection. The shaded regions
overlap. Both were estimated from the control group only, using penalised restricted cubic splines in the R package survPen [15]. The baseline
hazard is the hazard rate for an unvaccinated individual with . Few individuals had yet entered the study prior to 50 days since the start, and
few remained in the study beyond 250 days since the start, hence the wide confidence intervals in those regions.
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Supplementary Figure 4: The number of individuals at risk over time since second dose in the vaccine and control arms. The
upper green area denotes the number of ChAdOx1 nCoV-19 (AZD1222) vaccinated participants at risk over time since second dose. The lower
blue area denotes the number of control participants at risk over time since second dose. As such, the upper black line denotes the total number
of participants at risk over time since second dose, and the lower black line the number of control participants at risk over time. Participants
are censored from the analysis upon leaving the study, returning a positive COVID-19 test, and receiving a subsequent vaccination, among
other reasons.
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Supplementary Figure 5: Histogram of the timings of anti-spike IgG samples since second dose vaccination. Only anti-spike
IgG samples from ChAdOx1 nCoV-19 (AZD1222) vaccinated participants are included. Samples from individuals more than 7 days prior to
entering the at-risk period or less than 7 days before leaving the at-risk period are excluded. Hence, samples less than 7 days before returning
a positive COVID-19 test, or after returning a positive test, are excluded.
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Supplementary Figure 6: Histogram of the onset time since second dose of (a) any COVID-19 infection, (b) primary
symptomatic COVID-19 infection. (a) The blue histogram denotes the timings of the onset of any COVID-19 infection. (b) The red
histogram denotes the timings of the onset of primary symptomatic COVID-19 infection.
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Supplementary Figure 7: Covariate effects on hazard of COVID-19 infection. The multiplicative effects due to different covariates
on hazard of symptomatic COVID-19 infection and any COVID-19 infection. Points denote posterior medians and lines denote 95% credible
intervals. Red denotes hazard against symptomatic infection and blue denotes hazard against any COVID-19 infection. These results are also
given in Supplementary Table 6
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Supplementary Figure 8: Quantiles of vaccine efficacy as a function of time since vaccination. The curves show posterior medians
and shaded regions 95% credible intervals. The 95%, 75%, 50%, 25% and 5% quantiles are plotted. (a) shows VE against symptomatic
COVID-19 and (b) against all COVID-19 infection.
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Supplementary Figure 9: Quantiles of anti-spike IgG antibody levels as a function of time since vaccination. The curves show
posterior medians and shaded regions 95% credible intervals. The 95%, 75%, 50%, 25% and 5% quantiles are plotted.
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Supplementary Figure 10: Vaccine efficacy against any COVID-19 infection plotted against time since vaccination for dif-
ferent covariate combinations. The black lines represent an individual with ”baseline” covariates: age 18-55, female, white ethnicity, no
comorbidities, BMI<30 kg/m2, >12 week interval between first and second dose, non-HCW, and receiving a standard dose as their first dose.
All other lines represent an individual with one of the above covariates changed from these baseline values. The solid lines show posterior
medians and dashed lines 95% credible intervals. ”HCW < 1 COVID” refers to a healthcare worker facing <1 COVID-19 patient per day,
”HCW ≥ 1 COVID” refers to a healthcare worker facing ≥1 COVID-19 patient per day.
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Supplementary Figure 11: Predicted relative efficacy against SARS-CoV-2 Omicron BA.4/5 variant infection as a function
of time since vaccination. The black, blue and red lines represent estimates calculated using the reported posterior mean, and upper and
lower 95% credible bounds for the relationship between relative efficacy and anti-spike IgG antibody levels from Wei et al. (2023). The solid
lines show posterior medians and dashed lines 95% credible intervals, for the mean relative efficacy in the study.
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Supplementary Figure 12: Estimated true anti-spike IgG levels for 12 randomly chosen individuals. We randomly chose 3
individuals with 0, 1, 2 and 3 antibody observations available respectively, and plotted their estimated true anti-spike IgG levels over time. The
solid line represents the posterior median, and the dashed lines represent a 95% credible interval. The blue points show the observed antibody
levels. To be clear, the 3 plots on each row are 3 separate individuals (not the same individual with data consecutively being added).
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