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ABSTRACT  

BACKGROUND 

Artificial intelligence has emerged as a tool to potentially increase efficiency and efficacy 

of cardiovascular care and improve clinical outcomes. This study aims to provide an 

overview of applications of artificial intelligence in cardiac surgery. 

  

METHODS 

A systematic literature search on artificial intelligence applications in cardiac surgery 

from inception to February 2024 was conducted. Articles were then filtered based on the 

inclusion and exclusion criteria and risk of bias was assessed. Key findings were then 

summarized 

  

RESULTS 

A total of 81 studies were found that reported on artificial intelligence applications in 

cardiac surgery. There is a rapid rise in studies since 2020. The most popular machine 

learning technique was Random Forest (n=48), followed by Support Vector Machine 

(n=33), Logistic Regression (n=32), and Extreme Gradient Boosting (n=31). Most of the 

studies were on adult patients, conducted in China, and involved procedures such as 

valvular surgery (24.7%), heart transplant (9.4%), coronary revascularization (11.8%), 

congenital heart disease surgery (3.5%), and aortic dissection repair (2.4%). Regarding 

evaluation outcomes, 35 studies examined the performance, 26 studies examined 

clinician outcomes, and 20 studies examined patient outcomes. 
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CONCLUSION 

Artificial intelligence was mainly used to predict complications following cardiac 

surgeries and improve clinicians’ decision-making by providing better preoperative risk 

assessment, stratification, and prognostication. While the application of artificial 

intelligence in cardiac surgery has greatly progressed in the last decade, further studies 

need to be done to verify accuracy and ensure safety before use in clinical practice. 

 

Keywords: artificial intelligence; machine learning; deep learning; cardiac surgery; 

technology 
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INTRODUCTION 

With the advancement of modern technology, artificial intelligence (AI) has 

emerged as a tool to potentially increase the efficiency and efficacy of healthcare and 

improve outcomes. It encompasses both machine learning (ML) and deep learning (DL). 

In ML, certain computer algorithms are used to produce predictions or conclusions by 

recognizing patterns generated through the application of a mathematical algorithm 

model from sample data. One important example of the significance of machine learning 

in surgery would be predicting the probabilities of post-operative complications 

according to patient specific risk factors and characteristics. It would use the data to 

classify patients into risk strata, depending on their morbidity severity. It is able to do so 

with great accuracy, exceeding previous methods based on clinical standards to levels 

previously thought to be unachievable with conventional statistics. On the other hand, 

DL uses a multi-layered structure of algorithms called artificial neural networks to do 

tasks that machine learning cannot, making it more useful than machine learning (ML) 

(1,2). 

 There have been a number of studies exploring real-life applications of AI in 

cardiac surgery including algorithms that function to aid in clinical decision-making, 

especially in terms of cardiac function evaluation and risk stratification prior to operation. 

Other applications focus on aiding diagnostics and prognostication of certain 

complications of  patients after cardiac surgery(3). 

 The growing body of knowledge of AI applications in cardiac surgery 

necessitates evaluation of past studies to gain insights to the future direction of artificial 
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intelligence application in cardiac surgery. This study aims to provide an overview of the 

applications of AI in cardiac surgery through a systematic review. 

 

METHODS 

Search Strategies  

 The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines were utilized in searching articles assessing and evaluating 

various applications of AI in cardiac surgery from inception to February 2024. Using 

boolean search terms “Artificial Intelligence” OR “Machine Learning” AND “Cardiac 

Surgery”, a thorough review of studies was conducted using the following databases: 

PubMed, Embase, Europe PMC, Epistemonikos, CINAHL, Cochrane Central, Google 

Scholar, Web of Science, Scopus, Cambridge Core, clinicaltrials.gov, and science.gov. 

Duplicate articles from different databases were then excluded after a preliminary 

search. Other additional studies were identified by looking through the references of the 

articles that were already included. This systematic review was registered on Prospero 

(CRD42022377530). 

 

Eligibility Criteria 

Articles were incorporated into the review if it included the following conditions: 1) 

Implementation of an AI application with patient or health care providers in a real-life 

clinical setting, and 2) Provision of decision support by the AI application through 

emulating clinical decision-making processes of health care providers (eg, medical 

image interpretation and clinical risk assessment). All cohort studies and randomized 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2024. ; https://doi.org/10.1101/2023.10.18.23297244doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297244
http://creativecommons.org/licenses/by/4.0/


control trials on adult cardiac surgery that satisfied the inclusion criteria were included. 

The studies that were included had to be in English. Studies that had only been 

published as abstracts, review papers, meta-analyses, clinical trials that were still in 

progress, and published study protocols were not included. Other exclusion criteria are 

detailed in Figure 1. 

 

Data Extraction 

 After collating all the studies, information from the articles were extracted. These 

were primarily the characteristics of the studies, the features of the AI applications, and 

the key outcomes evaluated. The data was then organized in a table and trends or 

themes were analyzed. 

 

RESULTS 

Overview 

 Our initial search of the databases returned a total of 1702 journal articles (617 

from PubMed, 190 from Google Scholar, 517 from Web of Science, 165 CINAHL, 130 

from EMBASE, 69 from Europe PMC, 6 from Epistemonikos, 3 from science.gov, 2 from 

clinicaltrials.gov, 2 from Cambridge Core, and 1 from Cochrane Central). Duplicates 

were then identified and 451 studies were excluded. The titles, abstracts, and 

manuscripts were screened and filtered which excluded 1179 studies. Additional 9 

relevant studies were identified via snowballing. Thus, 81 journal articles met the 

inclusion criteria and were included in this review (Figure 1). 
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Study Characteristics  

The authors, year of publication, study design, number of involved patients, and 

database registry and involved hospitals were summarized in Table 1.  

Figure 2 highlights an increasing trend in the number of published studies on the 

application of artificial intelligence in cardiac surgery in the past ten years, with an 

observed rapid rise since 2020 suggesting increased interest in the field in recent years. 

Although the systematic review included studies until February 2024, this timeline was 

not included in the graph since the year has not ended and will only add a false 

decrease in trend when instead, it is anticipated to increase even more. 

 

Majority of the studies were cohort studies.  One study made use of a cross-

sectional study design, another utilized a case-control design and one other study 

utilized a combination of a cohort and retrospective case series. Of the 81 studies, two 

(2.5%) studies have less than 50 patients analyzed. Three (3.7%) studies have a 

population of 50-100 patients, while 34 (42.0%) studies have a wider range of 1000-

5000 individuals included. Meanwhile, 19 (23.5%) studies had a larger scaled 

population of 5,000-20,000 patients, and one (1.2%) study had more than 220,000 

worth of patient data analyzed. 

Figure 3 showed the geographic distribution of the published studies based on 

where the study was conducted. About 12 (28.57%) studies mentioned the involved 

hospitals or clinics while 6 (13.29%) of these did not specify. About 17 (40.48%) studies 

utilized a database registry for their data, while 7 (16.67%) had no mention of their 

population groups.  
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Of the 81 studies, China, an upper-middle income country, had the most 

contribution with 31 studies (Figure 3) while only 2 studies were notably conducted in a 

lower-middle income countries, namely Iran and Pakistan. For other countries classified 

Upper-Middle Income Economies, Colombia and Brazil had conducted 1 and 2 studies, 

respectively. The rest were conducted in countries with high-income economies, with 23 

conducted in the United States, two in Austria and Germany, respectively, and one each 

in Saudi Arabia, Canada, Italy, and France. The country classification was based on the 

New World Bank country classifications by income level: 2022-2023, for the current 

2023 fiscal year, low-income economies are defined as those with a GNI per capita, 

calculated using the World Bank Atlas method, of $1,085 or less in 2021; lower middle-

income economies are those with a GNI per capita between $1,086 and $4,255; upper 

middle-income economies are those with a GNI per capita between $4,256 and 

$13,205; high-income economies are those with a GNI per capita of $13,205 or more.  

     

Quality Assessment 

 In order to evaluate the internal validity of the 81 included studies, the Joanna 

Briggs Institute (JBI) critical appraisal tool was utilized. Each article was evaluated using 

the appropriate checklist by two assessors. The total score for the cohorts ranged from 

7 to 10 out of 11. Specifically, four studies reported that the source of their data did not 

come from the same population (4–7). Seven studies were unable to identify the 

confounding factors (5,8–13). Only three studies did not clearly state if exposures were 

measured in a valid and reliable way (4–6). Finally, all studies used proper statistical 

analysis, and valid outcome measurement methodology.  
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AI Application Characteristics 

Majority of the studies were conducted on adult cardiac patients 68 (84%) while 

some were on pediatric cardiac patients 13 (17%) (Figure 4A). Although most of the 

studies 43 (53%) did not have a specific surgical procedure involved (Figure 4B), 12 

(14.81%) studies focused on Coronary Artery Bypass Grafting (CABG), 10 (12.35%) on 

Heart Transplantation (HT), 9 (11.11%) on Valvular Surgery, 4 (4.94%) on Congenital 

Heart Surgery, 2 (2.47%) on Ventricular Assist Device (VAD) implantation, and 1 

(1.23%) on Aortic Dissection Surgery. 

The results also show that almost all AI applications provided decision support in 

Risk Analysis (n=40) mainly predicting mortality outcomes, post-operative 

complications, or post-operative outcomes. Only two studies looked into disease 

screening and triage. 

Among the 81 studies (Figure 5, Supplemental Table 1), the most popular ML 

technique was Random Forest (RF) (n=48), followed by Support Vector Machine 

(n=33), Logistic Regression (LR) (n=32), and Extreme Gradient Boosting (XGBoost) 

(n=31). These were followed by AdaBoost, Decision Tree (DT), and K-nearest 

neighbors classifier (KNN), which were all utilized by 13 (n=13) studies each, 

respectively. The other applications featured were the following: Gradient Boosting 

Machine (GBM) (n=11), Multilayer Perceptron (MLP) (n=11), Naïve Bayes Model (NB) 

(n=10), Artificial Neural Network (ANN) (n=8), Light Gradient Boosting Machine (LGBM) 

(n=8), Gradient Boosting Decision Trees (GBDT) (n=7), Neural Networks (Nnet) (n=7), 

CatBoost (n=5), Extra Trees (ET) (n=4), Bag Decision Trees (BDT) (n=3), Bayesian 
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Networks (BN) (n=3), Gaussian Naive Bayes (GNB) (n=3), Bagged Classification and 

Regression Tree (CART) (n=2), Cox Regression Models (n=2), Stochastic Gradient 

Boosting (SGB) (n=2), Lasso Regression (n=2), Support Vector Regression (SVR) 

(n=2), (Multivariate Adaptive Regression Splines (MARS) (n=2), Deep Neural Network 

(DNN) (n=2), and Linear Regression (n=2). 

The rest of the ML techniques were mentioned only in one study such as the 

Boosted Classification Trees, Conditional Inference Random Forest (CIRF), Deep 

Learning Model (CXR-CTSurgery), Dual-tree complex wavelet packet transform 

(DTCWPT), Gaussian Process (GP) regression ML algorithm, GenAlgs, Imbalanced 

Random Forest Classifier, Multivariate logistic regression (MLR), Random Forest 

Survival Model, Stochastic Gradient Boosting (SGBT), Sun Yat-sen University 

Prediction Model for Infective Endocarditis, Stochastic Gradient Descent Regression, 

Huber Regression, Ridge Regression, Multiple Linear Regression, Penalized Linear 

Regression, Deep Forest Model, Softmax Regression, Bootstrapped 

Aggregation/Bagging, Convolutional Neural Network (CNN), Recurrent Neural Network 

(RNN), Transformer, Perceptron, Support Vector Machine with Radial Basis Function 

Kernel, Complement Naive Bayes, AutoML, Linear Discriminant Analysis, Logistic 

Regression with L2 Regularization, Subspace Discriminant, Subspace KNN, Random 

Under-Sampling (RUS) Boosted Trees, Logistic Regression with Elastic Net 

Regularization, Hypertuned RF, RF Regressor, AdaBoost Regressor, Hypertuned 

AdaBoost, Hypertuned Decision Tree, Logistic Regression with Ridge Penalization, 

Axis-based Random Survival Forests, Oblique Random Survival Forests, Long Short-
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Term Memory RNN, Gate Recurrent Units (GRU) RNN, Dipole, RETAIN, and Time 

Aware Attention RNN. 

 

Evaluation Outcomes  

 The included studies were classified into their respective type of evaluation 

outcomes: performance of AI applications, clinician outcomes, and patient outcomes 

(see Table 1, summarized in Figure 4C).  

Performance of AI Applications 

Thirty-five studies evaluated the performance of AI applications in real-life clinical 

settings. Commonly used performance metrics included accuracy, area under the curve 

(AUC)/area under the receiver operating characteristic curve (AUROC), specificity, 

sensitivity, True Positive Rate (TPR), False Negative Rate (FNR), positive-predictive 

value (PPV), and negative-predictive value (NPV), F1 score and  Brier Score. 

Clinician Outcomes 

 AI applications also affect clinician outcomes, specifically, clinician decision 

making,  clinician workflow and efficiency, and clinician evaluations and acceptance of 

AI applications. In this review, twenty-six reported clinician outcomes of AI in cardiac 

surgery (4,5,7,8,10,13–38).  

 Clinicians could potentially be guided by AI applications in making better medical 

decisions. Eighteen studies reported that AI applications can support clinician decision 

making (4,7,10,13,16,17,19,21,23,24,26,28,30–33,35,38). Machine learning models 

improve clinician’s medical decisions by providing better preoperative risk assessment, 

stratification and prognostication (10,17,21,24,30–32,35,38).  AI applications could also 
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guide clinicians on how aggressive prophylactic measures are given such as increased 

patient monitoring or giving additional therapies (4,13,33). 

 Twelve studies discussed clinician efficiency (5,10,16,18,20,22–24,29,36,37).  

Machine learning was used to predict survival after heart transplantation allowing better 

patient selection and reducing organ wastage (18,37). AI applications could also prompt 

clinicians to provide timely protective strategies which will improve patient’s prognosis 

(1,29,36). AI applications save time significantly by optimizing risk stratification and 

clinical management. Alshakhs et al. (16) took advantage of machine learning to predict 

patients who are likely to have a longer postoperative length of stay (PLoS) to provide 

early psychosocial preparation to the patient and to their family. There were no studies 

that explored outcomes on clinician workflow.  

 Seven studies reported clinician evaluations and acceptance of AI applications 

(5,15,17,19,20,22–24,26). All of the studies stated overall positive perceptions on AI 

applications. Machine learning showed equal risk prediction compared to manual 

approaches (20,24). Two studies revealed superiority of AI applications than existing 

scoring tools (15,17,19,22,26). Finally, recommendations were provided on utilizing both 

machine learning and manual approach in combination to provide significant leaps in 

diagnostic and predictive capabilities of clinicians in the future (5,23).  

 

Patient Outcomes 

Only twenty studies reported patient outcomes. Fernandez et al. (21) 

incorporated intraoperative risk factors in predicting mortality following cardiac surgery 

and revealed results on patient mortality which revealed the following findings: (1) all 
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deaths, regardless of cause, occurring during the hospitalization in which the operation 

was performed, even if after 30 days (including patients transferred to other acute care 

facilities); and (2) all deaths, regardless of cause, occurring after discharge from the 

hospital, but before the end of the thirtieth postoperative day. 

Zea-Vera et al. (6) developed and validated a dynamic machine learning model 

to predict CABG outcomes at clinically relevant pre-and postoperative time points. Their 

ML predicted 30-day readmission and high cost, 2 outcomes for which no standardized 

regression model exists. With reduction in mortality, resource utilization is becoming an 

increasingly important outcome. 

 

 

DISCUSSION  

Principal Findings 

In recent years, the rise of AI has grown dramatically and transformed how 

people learn and complete tasks especially in medicine and surgery. ML algorithms 

have impacted surgical care by assisting the surgeons in making better clinical 

decisions in the preoperative and intraoperative phases of  surgical procedures. These 

AI applications aim to enhance patient safety by optimizing patient outcomes and 

surgical decision-making. In this review, we discuss the significant advancements and 

promising applications of AI in cardiac surgery and its risks. The growing interest in its 

application to surgical practice produced the following findings. 

To provide accurate analysis, we only included English–written articles 

discussing the actual implementation of AI in real-life clinical settings. The majority of 
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the included papers were published between 2020 and 2022 in order to give the most 

recent information on the use of AI in cardiac surgery. Most of the reviewed studies 

utilizes a cohort study design with a database registry composed of 1000-5000 

participants per study. 

It is worth noting that half of the included studies were from the United States, 

which suggests that developed countries are in the forefront of AI application in health 

care. Recently, the AI algorithms were being used in analyzing factors contributing to 

COVID-19 mortality and detection of pathological findings (2,39). In cardiac surgery, ML 

algorithms were used to predict mortality, survival, postoperative length of stay, and 

outcomes in following cardiac surgeries such as valve replacement, coronary artery 

bypass graft surgery, and heart transplantation (10,12,16,18,38,40). More than half of 

the studies utilized RF as ML technique to predict mortality and outcomes after cardiac 

surgery. Aside from the United States, China has been making substantial use of AI in 

healthcare. In the review, ten studies were conducted in China, largely in specified 

hospitals. Due to their capacity to generate customized risk profiles, ML models have 

the potential to show better predictive power for risk stratification compared to clinical 

scores like EuroSCORE (24). 

Lack of funds 

Insufficient funding poses a significant obstacle to the integration of AI in clinical 

practice, particularly in the field of cardiac surgery. The successful development and 

deployment of AI systems necessitate substantial financial resources. These include 

investments in infrastructure, data acquisition and management, algorithm 

development, and training. Unfortunately, numerous healthcare institutions encounter 
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difficulties in allocating the required funds to support AI initiatives, given competing 

priorities and limited budgets(41). Insufficient financial support hampers the seamless 

integration of AI technologies into cardiovascular surgery practices, impeding progress 

and undermining the realization of their potential benefits(42). 

 

Data heterogeneity and its challenges 

The lack of uniformity in data collection, storage formats, and protocols across 

different healthcare systems poses a considerable challenge to the widespread 

adoption of AI in clinical practice. Data standardization is crucial for AI algorithms to 

effectively analyze and interpret medical information. However, healthcare institutions 

often employ diverse electronic health record (EHR) systems that vary in their data 

structures and terminologies. This lack of standardization impedes interoperability and 

hampers the integration of AI solutions seamlessly. Efforts are needed to establish 

standardized data formats and protocols, allowing AI systems to operate efficiently 

across different healthcare settings(43). 

 

Utilization of AI in Low- and Middle-Income Countries 

Implementation of technological advances, including artificial intelligence, in low- 

and middle-income countries is always a challenge at first because of the high initial 

investment for capacity-building. The technological and information system 

infrastructure are varied in LMICs but are often not as established as upper income 

countries. Furthermore, government support and sheer political will is often lacking 
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posing an added challenge to implementing such efforts in cardiac surgeries in these 

states. 

In spite of this, artificial intelligence advocates have anticipated great gains from 

implementing artificial intelligence in LMICs. Artificial intelligence offers a unique 

opportunity to build stronger surgical systems because of its ability to augment clinical 

judgement (42) and consequently improve diagnostics and therapeutics(44). Such 

advances may help augment the healthcare system by reducing the needed number of 

trained specialists and speed up the necessary processes. 

 

Familiarity and Trust 

Familiarity and trust in AI technologies also represent potential barriers to their 

application in clinical practice. Healthcare professionals may exhibit reluctance or 

skepticism toward AI, fearing that these technologies may replace their expertise or 

compromise patient safety. Building trust and familiarity among healthcare providers is 

crucial for the successful integration of AI in cardiovascular surgery. Transparency in AI 

algorithms, robust validation studies, and demonstrating tangible benefits can help 

alleviate concerns and foster acceptance among clinicians(45). 

 

Risks of Implementing AI 

AI algorithms heavily rely on the quality and quantity of input data. If the data 

used to train these algorithms are incomplete, biased and inaccurate, the AI system 

could produce unreliable results, potentially leading to incorrect surgical decisions. 
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Safeguards include data validation and data normalization to ensure accuracy and 

completeness of training data (46). 

Deep learning models are often considered black boxes, meaning they provide 

results without clear explanations of how those results were derived. The lack of 

interpretability can be problematic especially in critical medical settings like cardiac 

surgery where clinicians need to understand the rationale behind AI recommendations 

(46). Some possible measures to overcome this include AI models with built-in 

explainability features, transparent documentation, healthcare professional training, and 

regulatory standards.(47) 

Physicians may become overly reliant to AI systems, which could lead to medical 

errors and complacency. Healthcare professionals’ clinical judgment and decision-

making skills might diminish in the long run. AI should only be used as a tool to support, 

rather than replace clinical judgment and expertise. It is vital to maintain a balance 

between leveraging AI technologies and retaining human expertise in cardiac surgery 

(48). 

 

Recent Advances and Future of AI in Cardiac Surgery 

The potential use of AI Large Language Models (LLM) such as ChatGPT, is 

postulated to aid in various aspects of cardiovascular surgery, which may include 

preoperative planning, intraoperative decision support, and even postoperative 

care.(49) As a Generative Pre-Trained Transformer (GPT) AI language model, its 

primary strength lies in its capacity to process large amounts of information and draw 

out the necessary and most relevant aspects. It is then able to summarize this data and 
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provide concise and contextually appropriate almost human-like responses depending 

on the specific situation. Intraoperatively, it may potentially be used to provide present-

time information about the patient regarding his history and records, or about monitoring 

his vital signs in the operating room. It may effectively act as a “virtual surgical 

assistant” that could assist the surgical team. Additionally, it could also help summarize 

key information relevant specifically to the patient regarding treatment, symptoms, 

follow-up protocols, and other updates postoperatively. Thus, ChatGPT may aid in 

delivering more personalized and patient-specific care.(49,50)  

 A recent study done by Ouyang et al. focused on the development of a deep 

learning algorithm called “PreOpNet”, which primarily utilized 12-lead Electrocardiogram 

(ECG) waveform signals, along with other relevant clinical data to help predict 

postoperative mortality. It was trained using a single preoperative 12-lead ECG result 

taken within 30 days preoperatively, and appears to be comparable, and in some 

contexts may perform better than other risk calculators such as the Revised Cardiac 

Risk Index (RCRI).(51)  

Apart from patient care, AI may help in training educating the next generation of 

cardiac surgeons. Using real and simulated surgical videos and other relevant data as 

inputs, certain algorithms can be trained on the movements of surgeons to determine 

which aspects of surgical skills would possibly lead to better surgical performance. 

These AI algorithms leverage movement tracking and perform kinematic and pose 

analyses to find which specific details of a surgeon’s movements would be optimal. As a 

result, the algorithms would theoretically be able to learn which factors are considered 

surgical expertise, and ideally should be kept in mind to have a better overall surgical 
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performance. With this information, both expert and trainee surgeons would benefit by 

studying the analyses produced by the novel AI algorithms in order to ideally improve 

their own respective skillsets. (52)  

Recently, augmented reality (AR) or virtual reality (VR) in combination with AI 

has also garnered attention over the years. Both AR and VR are able to create a real 

world simulation that allows direct interaction of users with the specified environment. 

AR creates digital simulations that are directly integrated and projected to the user’s 

physical environment, while VR creates a digital simulation that is absolutely separate 

from the user’s environment.(53) Through a dynamic 3-D view of the anatomy, the team 

would have better insight of the individual’s complex and unique anatomical structures, 

providing valuable information for better navigation during the surgery. With the use of 

AI, the technology would be able to process and leverage patient records and imaging 

files (e.g. preoperative CT scans) in order to improve the rendered AR or VR 3D 

simulation. The potential clinical feasibility of a combined VR/AR and AI approach has 

also been demonstrated in fairly recent studies done by Sadeghi et al. and Bakhuis et 

al. which showcased the use of a combined VR and AI strategy in providing better 

visualization of their patient's’ pulmonary anatomy. (54,55)  

Limitations 

The quality of research in AI implementation in cardiac surgery needs to be 

improved. Our review lacks randomized clinical trials (RCTs) and only included cohort 

studies. In addition, most of the studies acquired clinical data through database registry. 

Consequently, additional prospective RCTs are necessary to improve the 

generalizability of results. 
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The application of AI is dependent on robust data, availability of computational 

ML techniques appropriate for the complex data, and validation of its clinical application. 

Because the availability of resources is crucial in its implementation to real-life settings, 

the vast majority of the included studies were done in developed countries. 

 

CONCLUSION 

While the application of artificial intelligence in cardiac surgery has greatly 

progressed in recent years, more highly powered studies need to be done to assess 

challenges and to ensure accuracy and safety for use in clinical practice. AI may be 

better leveraged for screening and diagnosis to facilitate timely treatment of 

cardiovascular diseases both in high and low resource settings. 

In general, although AI implementations in cardiac surgery are in a continuous 

process of ongoing development, they have shown considerable potential in improving 

surgical outcomes, enhancing patient care, and optimizing various clinical processes. 

Future endeavors in research and development should primarily focus on refining AI 

algorithms, validating their clinical utility through rigorous studies, and eventually 

integrating them into routine clinical practice. Apart from clinical applications, surgical 

education for trainees and patient education may also be explored for further 

applications of this disruptive technology. 
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Table 1. Characteristics of the studies included.   

Author & Year Study Design 
Sample 

Characteristics 
Hospital, Country 

Primary 
Evaluation 
Outcomes 

Abdurrab et al., 
2024 

Cross-
Sectional 
Design 

5363 patients Tabba Heart 
Institute, Pakistan 

Patient 
Outcomes 

Agasthi et al, 
2020 

Cohort Design 15,236 patients ISHLT Registry, 
USA 

Patient 
Outcomes 

Allyn et al, 2017 Cohort Design 6,520 patients 1200-bed university 
hospital, France 

Performance of 
AI Applications 

Alshakhs et al, 
2020 

Cohort Design 721 patients Saud Al-Babtain 
Cardiac Center, 
Dammam, Saudi 
Arabia, 

Patient 
Outcomes 

Aranda-Michel 
et al, 2021 

Cohort Design 3,872 
individuals. 

USA Patient 
Outcomes 

Ayers et al, 
2021 

Cohort Design 3872 patients. University of 
Pittsburgh 
institutional 
database, USA 

Clinician 
Outcomes 

Behnoush et 
al., 2023 

Cohort 
Design 

8,493 patients Tehran Heart 
Center, Iran 

Clinician 
Outcomes 

Betts et al, 2023 

Cohort 
Design  

14,343 
Surgical 
encounters 

Australian and 
New Zealand 
Society of Cardiac 
and Thoracic 
Surgeons 
(ANZSCTS) 
Database 
Registry,  
Australia and New 
Zealand 
 

Performance 
of AI 
applications 

Bodenhofer et 
al, 2021 

Cohort Design 2229 patients Kepler University 
Clinic, Linz, Austria 

Clinician 
Outcomes 
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Boucek et al, 
2023 

Cohort 
Design 

744 patients 55 hospitals in 
Advanced Cardiac 
Therapies 
Improving 
Outcomes 
Network 
(ACTION) 
Registry, USA 

Performance 
of AI 
applications 

Chang et al, 
2020 

Cohort Design 2240 patients ASSIST Registry, 
Brazil 

Patient 
Outcomes 

Dai et al., 2023 Cohort 
Design 

265 patients Nanjing First 
Hospital, China 

Clinician 
Outcomes 

Dimri et al., 
2023 

Cohort 
Design 

144,536 
patients 

42 centers  
registered in the 
Australian and 
New Zealand 
Society of Cardiac 
and Thoracic 
Surgeons 
(ANZSCTS) 
Database 
Registry,  
Australia and New 
Zealand 
 

Performance 
of AI 
applications 

Dryden et al., 
2023 

Cohort 
Design, 
Retrospective  
Case Series 

1,031 patients St. Michael’s 
Hospital, Canada 

Clinician 
Outcomes 

Fan et al, 2022 Cohort Design 5443 patients First Medical 
Centre of Chinese 
PLA General 
Hospital, China 

Performance of 
AI applications 

Fan et al., 
2023 

Cohort 
Design 

452 patients 
and 326 
patients 

Nanjing First 
Hospital, China 

Patient 
Outcomes 

Fernandes et al, 
2020 

Cohort Design 5015 patients USA Clinician 
Outcomes 

Gao et al, 2022 Cohort Design 1045 patients Fuwai Hospital, 
Beijing, China 

Clinician 
Outcomes 
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Gao et al., 
2023 

Cohort 
Design 

15,880 
patients 

Fuwai Hospital, 
China 

Clinician 
Outcomes 

Hasimbegovic et 
al, 2021 

Cohort Design 88 patients Hietzing Heart 
Centre (Vienna, 
Austria). 

Clinician 
Outcomes 

Hata et al., 
2023 

Cohort 
Design 

128 patients Osaka University 
Hospital, Japan 

Performance 
of AI 
applications 

Hayward et al, 
2023 

Cohort 
Design 

396 patients Great Ormond 
Street 
Hospital, London, 
UK 
 

Patient 
Outcomes 

He et al, 2022 Cohort Design 100 patients Cardiovascular, 
West China 
Hospital of Sichuan 
University, China 

Patient 
Outcomes 

Hong et al., 
2023 

Cohort 
Design 

2218 patients Nanjing First 
Hospital, China 

Clinician 
Outcomes 

Hosseininezhad 
et al, 2021 

Cohort Design 1200 patients Rajaie 
Cardiovascular 
Medical and 
Research Center, 
Iran 

Clinician 
Outcomes 

Jia et al., 
2023 

Cohort 
Design 

2,780 patients 
and 2,051 
patients 

Two medical 
centers in East 
China and two 
other medical 
centers from North 
China and North 
West China 

Performance 
of AI 
applications 

Jiang et al, 2021 
Cohort Design 1488 patients eight large tertiary 

hospitals, China 
Clinician 
Outcomes 

Jiang, J. et al., 
2023 

Cohort 
Design 

2,310 patients Tertiary teaching 
hospital, China 

Performance 
of AI 
applications 

Jiang, Z. et al., Cohort 1,026 patients Second Xiangya Performance 
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2023 Design Hospital and 
Xinqiao Hospital, 
China 

of AI 
applications 

Junior et al, 
2020 

Cohort 
Design 

2,240 patients Heart Institute of 
University of São 
Paulo Medical 
School-InCor, via 
the ASSIST 
Registry, Brazil 
 

Performance 
of AI 
applications 

Just et al., 
2024 

Cohort 
Design 

137 patients German Heart 
Center Berlin, 
Germany 

Patient 
Outcomes 

Kampaktsis et 
al, 2021 

Cohort Design 18,625 patients United Network for 
Organ Sharing 
(UNOS) database, 
NY, USA 

Performance of 
AI applications 

Kampaktsis et 
al, 2022 

Cohort Design 1033 patients United Network for 
Organ Sharing 
 
(UNOS) database, 
NY, USA 

Clinician 
Outcomes 

Karri et al, 2021 Cohort Design 6349 patients MIMIC-III database, 
New Zealand 

Clinician 
Outcomes 

Kilic et al, 2020 Cohort Design 11,190 patients single academic 
institution, USA 

Performance of 
AI applications 

Kim et al, 2022 Cohort Design 12,997 patients Michigan Medicine 
data systems, USA 

Performance of 
AI applications 

Kobayashi et 
al., 2023 

Cohort 
Design 

2,187 patients Johns Hopkins 
Hospital, USA and 
the Society of 
Thoracic 
Surgeons 
Registry 
 

Performance 
of AI 
applications 

Kong et al, 2023 

Cohort 
Design 

134 patients Children’s Hospital 
of Chongqing 
Medical 
University, China 

Patient 
Outcomes 
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Lee et al, 2013 Cohort Design 1426 patients. Society of Thoracic 
Surgeons (STS) 
database, USA 

Performance of 
AI applications 

Li et al, 2020 
Cohort Design 5533 patients Tertiary hospital in 

Shanghai, China 
Patient 
Outcomes 

Li et al, 2022 

Cohort Design 107 patients Guangdong 
Provincial People’s 
Hospital, China 

Patient 
Outcomes 

Li, Qian et al., 
2023 

Cohort 
Design 

6495 patients Fuwai Hospital 
and three other 
cardiac centers, 
China; Medical 
Information Mart 
for Intensive Care-
IV (MIMIC-IV) 
Dataset 

Performance 
of AI 
applications 

Li, Qiuying et 
al., 2023 

Cohort 
Design 

507 patients Cardiac Surgical 
Intensive Care 
Unit (CSICU), 
Guangdong 
Provincial 
People’s Hospital, 
China 

Performance 
of AI 
applications 

Linse et al., 
2023 

Cohort 
Design  

64,964 
patients 

 International 
Society for Heart 
and Lung 
Transplantation 
(ISHLT) Heart 
Transplant 
Registry, USA 
 

Performance 
of AI 
applications 

Lo et al, 2021 Cohort Design 12 patients Italy Performance of 
AI applications 

Lu et al., 2023 Cohort 
Design 

1,400 patients Second Affiliated 
Hospital of 
Zhejiang 
University School 
of Medicine, 
Hangzhou, China 
 

Performance 
of AI 
applications 
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Luo et al, 2021 

Cohort Design 476 patients First Affiliated 
Hospital of Sun 
Yat-sen University 
(FAH-SYSU) and 
Nanfang Hospital 
(NFH) of Southern 
Medical University, 
China 

Clinician 
Outcomes 

Mathis et al, 
2022 

Cohort Design 1555 patients Anesthesiology 
Informatics and 
Systems 
Improvement 
Exchange, Ann 
Arbor, Michigan, 
USA 

Patient 
Outcomes 

Mazhar et al., 
2023 

Cohort 
Design 

4,776 patients University Hospital 
of North Midlands 
NHS Trust, 
UK/England 
 

Clinician 
Outcomes  

Miller et al, 2019 Cohort Design 3180 patients UNOS Registry 
database, USA 

Patient 
Outcomes 

Molina et al, 
2022 

Cohort Design 2786 patients Clinica Universitaria 
Colombia in 
Bogota, Colombia 

Performance of 
AI applications 

Nowakowska 
et al., 2023 

Cohort 
Design 

224 patients Central Clinical 
Hospital of the 
Medical University 
of Lodz, Poland 

Patient 
Outcomes 

Nowicka-Sauer 
et al., 2023 

Cohort 
Design 

217 patients Medical University 
of Gdańsk, Poland 

Clinician 
Outcomes 

Park et al, 2022 

Cohort Design 8,947 patients Yale 
University affiliated 
hospital, USA 

Patient 
Outcomes 

Parise et al., 
2024 

Cohort 
Design 

394 patients Cardiothoracic 
Department (CTC) 
of Maastricht 
University Medical 

Performance 
of AI 
applications 
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Center+ 
(MUMC+), 
Netherlands 
 

Raghu et al, 
2022 

Cohort Design 18,344 patients Massachusetts 
General 
Hospital 
(MGH),USA 

Clinician 
Outcomes 

Santos R. et 
al., 2023 

Cohort 
Design 

5,045 patients Cardiothoracic 
Surgery 
Department of 
Hospital de Santa 
Marta Lisbon, 
Portugal 
 

Clinician 
Outcomes 

Shao et al., 
2023 

Cohort 
Design 

1686 patients 
and 422 
patients 
 

First Medical 
Centre and the 
Sixth Medical 
Centre of Chinese 
PLA General 
Hospital in Beijing, 
China 
 

Clinician 
Outcomes 

Shou et al, 2022 Cohort Design 1584 patients United Network for 
Organ Sharing 
(UNOS) database, 
NY, USA 

Clinician 
Outcomes 

Simons et al., 
2023 

Cohort 
Design  
 

2098 patients Catharina 
Hospital, 
Netherlands 

Clinician 
Outcomes 

Sinha et al., 
2023 

Cohort 
Design  
 

227 087 
patients 
 

National Institute 
of Cardiovascular 
Outcomes 
Research central 
cardiac database 
of all adults 
undergoing 
cardiac surgery in 
England and 
Wales, UK 

Performance 
of AI 
applications 
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Sughimoto et al, 
2020 

Cohort 
Design 

48 patients Chiba Kaihin 
Municipal 
Hospital, 
Japan 

Patient 
Outcomes 

Tong et al., 
2023 

Case-control 
study 

2187 patients Third hospital of 
Hebei Medical 
Uni- 
Versity, 
Shijiazhuang, 
Hebei, China and 
the First medical 
centre of Chinese 
PLA General 
Hospital, Beijing, 
China 

Clinician 
Outcomes 

Tong et al, 2024 

Cohort 
Design 

23,000 
patients 

Shanghai 
Children’s Medical 
Center, China 

Clinician 
Outcomes 

Wang et al, 
2022 

Cohort Design 2410 
Cardiothoracic 
(CT) surgery 
patients 

University of Utah 
Health’s Enterprise 
Data Warehouse 
(EDW).Utah, USA 

Clinician 
Outcomes 

Weiss et al., 
2023 

Cohort 
Design  

6392 patients Mount Sinai 
Hospital, NY, USA 

Patient 
Outcomes 

Williamson et al, 
2023 

Cohort 
Design 

2,080 
surgeries 

Monroe 
Carell Jr. 
Children’s 
Hospital, via 
Vanderbilt 
Research 
Derivative, USA 

Performance 
of AI 
applications 

Wisotzkey et al, 
2023 

Cohort 
Design 

3787 patients 62 participating 
heart transplant 
centers from 
across the United 
States, Canada, 
Brazil, and the 
United Kingdom 
via the Pediatric 
Heart Transplant 
Society (PHTS) 

Clinician 
Outcomes 
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database, USA 
 

Wu et al.,  
2023 

Cohort 
Design  

380 patients Shanghai Ninth 
People’s Hospital 
Affiliated to 
Shanghai Jiao 
Tong University 
School of 
Medicine and the 
First Affiliated 
Hospital of Anhui 
Medical 
University, China 

Patient 
Outcomes 

Xue et al, 2022 

Cohort Design 320 patients First Affiliated 
Hospital of Nanjing 
Medi- 
cal University, 
China 

Performance of 
AI applications 

Yan et al., 
2023 

Cohort 
Design  
 

3,494 patients Xijing Hospital, 
China 

Patient 
Outcomes 

Zea-Vera et al, 
2021 

Cohort Design 2086 patients Baylor College of 
Medicine STS Adult 
Cardiac Surgery 
Database, USA 

Performance of 
AI applications 

Zeng et al, 2021 

Cohort 
Design 

1964 patients Children’s Hospital 
of Zhejiang 
University School 
of Medicine, China 
 

Clinician 
Outcomes 

Zeng et al, 2023 

Cohort 
Design 

3386 patients Children’s 
Hospital, Zhejiang 
University School 
of Medicine via 
Pediatric Intensive 
Care (PIC) 
database, China 
 

Patient 
Outcomes 

Zeng et al., 
2023 

Cohort 
Design  

1110 patients Department of 
Cardiac 

Performance 
of AI 
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Surgery of 
General Hospital 
of Northern 
Theater 
Command, 
Shenyang, China 

applications 

Zhang et al., 
2023 

Cohort 
Design  

1223 patients Eight large centers 
in China 

Performance 
of AI 
applications 

Zheng et al., 
2023 

Cohort 
Design 

51 patients 
and 49 
patients 

Single Center in 
Alabama, USA 

Performance 
of AI 
applications 

Zhong et al, 
2020 

Cohort Design 6844 patients the Society of 
Thoracic Surgeons 
National Database., 
China 

Performance of 
AI Applications 

Zhou et al, 2021 Cohort Design 381 patients China Performance of 
AI applications 

Zhu et al., 
2023 

Cohort 
Design  

847 patients First Medical 
Center of Chinese 
PLA General 
Hospital, Beijing, 
China 
 

Performance 
of AI 
applications 

Zurn et al, 2023 

Cohort 
Design 

495 patients 
and 961 
patients 

Departments of 
Pediatric 
Cardiology and 
Cardiac Surgery in 
Freiburg and 
Heidelberg, 
Germany 

Clinician 
Outcomes 
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