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Abstract

Purpose: Purpose: The ocular surface (OS) microbiome is influenced by various factors and impacts ocular
health. Understanding its composition and dynamics is crucial for developing targeted interventions for ocular
diseases. This study aims to identify host variables, including physiological, environmental, and lifestyle (PEL)
factors, that influence the ocular microbiome composition and establish valid associations between the ocular
microbiome and health outcomes.
Methods: The 16S rRNA gene sequencing was performed on OS samples collected using eSwab. DNA was
extracted, libraries prepared, and PCR products purified and analyzed. PEL confounding factors were iden-
tified, and a cross-validation strategy using various bioinformatics methods including Machine learning was
used to identify features that classify microbial profiles.
Results: Nationality, sport practice, and eyeglasses usage are significant PEL confounding factors influencing
the eye microbiome. Alpha-diversity analysis showed higher microbial richness in Spanish subjects compared
to Italian subjects and higher biodiversity in sports practitioners. Beta-diversity analysis indicated significant
differences in microbial community composition based on nationality, age, sport, and eyeglasses usage. Differ-
ential abundance analysis identified several microbial genera associated with these PEL factors. ML approach
confirmed the significance of nationality in classifying microbial profiles.
Conclusion: This study underscores the importance of considering PEL factors when studying the ocular
microbiome. Our findings highlight the complex interplay between environmental, lifestyle, and demographic
factors in shaping the OS microbiome. Future research should further explore these interactions to develop
personalized approaches for managing ocular health.

Key words: Microbiome, Bioinformatics, Confounding Factors, Ocular Microbial Composition, Microbial
composition, 16S rRNA gene profiling
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Key Points:

• Identify confounding factors influencing the ocular micro-

biome composition;

• Characterize the ocular surface microbiome;

• Analyse 16S rRNA gene sequencing data from ocular

surface samples;

• Perform Diversity Analysis (i.e.; Alpha-diversity and

Beta-diversity) and Difference Abundance Analysis;

Introduction

More than ten years have elapsed since the inception

of the Human Microbiome Project [1], aiming to estab-

lish a baseline genome of the normal human microbiota

across five principal regions—oral cavity, airways, skin,

gastrointestinal tract, and vagina [2]. Specific human

habitats delineate unique microbial niches. Each mi-

crobial community is shaped not only by host-related

elements like pH and oxygen levels but also by external

influences such as diet and exposure to antibiotics [3]. As

sequencing technologies advance, large scale microbiome

studies are rapidly increasing. Although “microbiota”

and “microbiome” are frequently used as synonyms, there

are differences between the two terms. The microbiota is

the wide variety of microorganisms living in a specific en-

vironment such as oral, ocular and intestinal. Microbiome

encompasses the collection of genomes of the entire habi-

tat of microorganisms in the environment.

Therefore, with respect to the microbiota, microbiome

includes a wider spectrum. Metagenomics is a research

discipline based on the development of next-generation

sequencing (NGS) technology that is able to detect the

genetic material (i.e.; microbiome) of several microorgan-

isms recovered from biological samples [4]. Microbiome

profiling is commonly conducted using the reads of spe-

cific marker genes such as the evolutionary conserved 16S

rRNA gene [5]. Microbiome profiling is revolutionizing

our understanding of biological mechanism underlying

the onset and development of several diseases. Several

evidences in the biomedical literature suggest that mi-

crobiome composition is influenced by the subject phys-

iological, environmental and lifestyle (PEL) confounding

factors such as the nationality, practice of sport, use

of eyeglasses, smoking addiction, etc. A metagenomics

study reveals that in healthy centenarians there are dif-

ferences between sexes by comparing the metagenomic

characterizations of the gut microbiome [6]. Smoking has

been shown to alter the gut microbiome composition and

contribute to the overall adverse health impact [7].

The gut microbiome has been extensively investigated

and it is actually considered one of the key elements

contributing to the human health [8]. Otherwise, the

human eye microbiome has been only partially and in-

sufficiently explored [9, 4, 10]. The human ocular surface

is colonized by a diverse community of microorganisms,

collectively known as the ocular surface microbiome. This

microbiome varies between individuals and is influenced

by host factors such as age, diet, hygiene, and geo-

graphic location [11, 12]. Recent studies have indicated

that changes in the ocular surface microbiome can be

associated with various ocular diseases, including con-

junctivitis, dry eye, keratoconus and microbial keratitis

[13, 14, 15, 16, 17, 18]. The Ocular Microbiome Project,

initiated in 2010, aimed to investigate the relationship

between the ocular microbiome and ocular diseases [19].

Metagenomic studies have revealed that the healthy oc-

ular surface (OS) typically exhibits a relatively stable

microbiota characterized by low diversity. A ”core” mi-

crobiota, consisting of a few taxa, is shared among all in-

dividuals [20], encompassing commensal, environmental,

and potentially pathogenic bacteria [21]. The predomi-

nant phyla observed on the OS include Proteobacteria,

Actinobacteria, and Firmicutes [11, 12, 22, 23, 24, 25,

26, 27, 28]. At the genus level, commonly found taxa

comprise Pseudomonas, Propionibacterium, Bradyrhizo-

bium, Corynebacterium, Acinetobacter, Brevundimonas,

Staphylococci, Aquabacterium, Sphingomonas, Strep-

tococcus, Streptophyta, and Methylobacterium. The

composition of the microbiota residing on the healthy

ocular surface changes with several factors, and there

is no consensus on whether a core microbiome exists

[29, 30, 31].

Yet, while the complete characterization of the ocular mi-

crobiome in healthy individuals remains incomplete, our

prior study aimed to categorize the diverse bacterial com-

munity profiles existing harmoniously within a healthy

eye [32]. We introduced the term ”eye community state

type” (ECST) to describe these varied profiles.

While the influence of the microbiome on human health

has become increasingly clear, various challenges, some

of which resemble those encountered in other high-

throughput studies, have yet to be fully addressed. A

confounder factor is a variable that influences both the

dependent variable and independent variable causing a

biased causal association [33]. Confounding factors such

as physiological (e.g.; sex, age), environmental (e.g;

nationality) and lifestyle (e.g.; smoking) could create spu-

rious correlation between microbiome composition and

diseases and thus they may bias the results by obscur-

ing the differential features in the case-control study

[34, 35, 36, 37, 38, 39].

Machine learning (ML) are becoming a standard tool for

identifying disease biomarkers. A biomarkers is a mea-

surable feature that can be objectively measured and

evaluated as an indicator of some biological state or

condition, such a disease status. Biomarkers play an

important role in precision medicine, for instance, by pre-

dicting the disease-related patient outcome [40].

In spite of these promising benefit, machine learning mod-

els could be driven by confounding factors and thus also

to capture single or multiple confounding effect corre-

lated with the outcome instead of capturing only the

features specific to the outcome (i.e.; biomarkers) [41].

Therefore, confounding factors should be taken into con-

sideration especially for ML-based approaches to perform

causal inference for establishing a valid causal associ-

ations between the ocular microbiome composition and

health outcomes as well as developing benchmark values

[42].

Accounting for confounding in the microbiome is particu-

larly difficult due to the high number of variables that can

potentially influence the microbiome composition. Dif-

ferential abundance analysis (DAA) is the most widely

used approach to identify differences in the microbiome

composition between samples groups [43]. In general, the

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
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most commonly methods to perform DAA fall into four

main categories: a) simple statistical tests; b) RNA-seq

based methods; c) metagenomic based methods and d)

Supervised machine learning methods.

RNA-seq based methods (e.g.; DESeq) are adapted from

RNA sequencing (RNA-seq) studies and they are widely

used in the microbiome context because they benefit

from well-developed software packages, wide acceptance,

and a robust theoretical basis [44, 45]. However, spe-

cific features of the microbiome data make the RNA-seq

based methods difficult to apply in complex study de-

signs. Indeed, compared to RNA-seq data, metagenomic

data are characterized by high dimensionality, uneven

sequencing depth and data sparsity [46]. Typically, micro-

biome datasets contain a very large amount of complex,

sparse and heterogeneous data (i.e.; microbial taxa) and

a small number of samples are collected. Therefore RNA-

seq based methods should be used with caution in the

microbiome context [47, 48, 49].

Metagenomic based methods (e.g.; LEfSe) have been de-

veloped specifically for dealing with microbiome data.

These methods include several sensitive tests that have

greater power to detect differential features than sim-

ple statistical tests. Supervised learning (SL) methods

can be applied effectively to microbiota for classification

tasks [50]. SL involves training a ML model on a labeled

dataset (i.e.; each data point has a corresponding label

or output value) so that the model learns to predict the

output for new input data. Random forest (RF), logistic

regression (LR) and support vector machine (SVM) are

SL algorithms that can be used to predict the belong-

ing group for each sample (i.e.; classify samples) based

on its metagenomic profile [51]. Prediction performance

evaluation metrics such as Accuracy, the Area Under Re-

ceiver Operating Characteristic curve (ROC-AUC) and

the Error Rate (i.e., the proportion of items that are in-

correctly classified by the ML model) are used to evaluate

the performance of the final classifier model. All of these

methods have their own advantages and disadvantages,

and to date there is no a gold standard [52].

This article aims to provide a substantial contribution

to understanding the causal association between PEL

confounding factors and microbiome composition to char-

acterize the healthy eye microbiome. To obtain a good

reliability level of the metagenomic data analysis re-

sults, we use a cross-validation strategy based on different

bioinformatics methods to explore how the microbial

communities partition with PEL confounding factors.

The rest of the paper is organized as follows. Section 2 de-

scribes the analysis carried out, the data collections and

the subjects recruitment, Section 3 presents our findings,

Section 4 compares the DAA results, Section 5 discusses

the findings and Section 6 concludes the article.

Materials and Methods

Bioinformatics Analysis is performed through the use of

several R packages. Phyloseq (version 1.42) is used for

representing and preprocessing microbiome data. Data

are saved as a phyloseq object consisting of 2668 taxa

and 135 samples. Diversity analysis (i.e.; Alpha and Beta

diversity statistical tests) is performed by Stats package

(version 4.2.2) that provides the kruskal.test and pair-

wise.wilcox.test functions. Furthermore, Vegan package

(version 2.6) that implements the permutational mul-

tivariate analysis of variance (PERMANOVA) by the

”adonis2” function [53] is used for diversity analysis.

Difference Abundance analysis is performed by DESeq2

(version 1.38.3) and microbiomeMarker (version 1.4)

packages [54, 55].The ocular surface microbiome composi-

tion is assessed with respect to the eleven probable PEL

confounding factors reported in the Tables 1,2,3. They

are categorical variables that can assume binary (e.g.;

Smoking) or multi-class values (e.g.; BMI).

Generation of PEL Classes
The PEL variables values were collected using self-

reported questionnaires during participant recruitment.

The physiological, environmental, and lifestyle (PEL)

factors are defined in the Tables 1,2,3.

Data Collection and Subject Recruitment
A total of 135 subjects were recruited for this study.

Participants were enrolled from several ophthalmology

clinics, including Virgen de las Nieves University Hospital

(Granada, Spain), Emilia-Romagna Eye Bank (Bologna,

Italy), and Centro Polispecialistico Mediterraneo (Sellia

Marina, Italy)[4]. Approval for this study is granted by

the institutional review board of Riga Stradins Univer-

sity (nr.29/20092016). Participant recruitment occurred

at several ophthalmology clinics: Virgen de las Nieves

University Hospital (Granada, Spain), Emilia-Romagna

Eye Bank (Bologna, Italy), and Centro Polispecialistico

Mediterraneo (Sellia Marina, Italy). The study adhered

to the principles outlined in the Declaration of Helsinki

and received informed consent from all human subjects

involved. Healthy individuals above 18 years old were

included based on specific criteria and Ocular Surface

Disease Index (OSDI) scores.

Healthy subjects were defined as individuals without a

history of ocular surgery, allergies, ocular inflamma-

tion, contact lens use, ocular surface diseases, meibo-

mian gland dysfunction, recent antibiotic intake within

6 months, systemic medication (as it might affect ocular

microbiota), having a BMI index between 18.5 and 24.9,

and normal blood glucose levels [56]. Eligible candidates

meeting these criteria were invited to participate, and in-

formed consent was obtained from each participant at the

study’s outset.

Sampling Technique, DNA Extraction, PCR
Amplification, Library Preparation, and
Amplicon Sequencing
Samples were collected using an eSwab containing 1 mL of

Liquid Amies Medium (Copan Brescia, Italy). The eSwab

was gently applied to the inferior eye surface, moving

twice from ”limbus to fornix to limbus.” To prevent any

impact on the eye microbiota, no fluorescein or anesthet-

ics were used [57] [58]. DNA extraction was performed

using the QIAamp DNA Microbiome Kit (QIAGEN,

Hilden, Germany) following the manufacturer’s protocols.

Quantification of extracted DNA was conducted with the

Agilent TapeStation 4150 utilizing Genomic DNA Screen-

Tape (Agilent Technologies, Santa Clara, CA, USA).

Library preparation involved the Ion 16S Metagenomics
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Table 1. PEL Factors, their Categories, and Values. Y stands for ”Yes”; N stands for ”No”; ES stands for Spanish; ITA stands

for Italian.

PEL Confounding Factors Categories Values

Sex Male (M), Female (F) Male/Female

Eyeglasses Yes (Y): Wears eyeglasses Y/N

No (N): Does not wear eyeglasses

Smoking Yes (Y): Smoker Y/N

No (N): Non-smoker

Computer Usage Yes (Y): Spends more than 5 hours daily on a computer Y/N

No (N): Spends less than 5 hours daily on a computer

Allergy Yes (Y): Has allergies Y/N

No (N): Does not have allergies

Sport Yes (Y): Engages in physical activity more than 3 times a week Y/N

No (N): Engages in physical activity less than 3 times a week

Hypertension Yes (Y): Diagnosed with hypertension Y/N

No (N): Not diagnosed with hypertension

Reflux Yes (Y): Suffers from gastroesophageal reflux (self-reported) Y/N

No (N): Does not suffer from gastroesophageal reflux

Nationality ES: Spanish nationality ES/ITA

ITA: Italian nationality

Table 2. Table reports the values that BMI can assume. The

third column reports the range of BMI values.

PEL confounding

factors Values Range

Underweight 0<bmi<18

BMI Normal weight 18 ≤bmi<24

Overweight 24≤bmi<29

Obese bmi≥29

Table 3. Table reports the values that Age can assume. Note

that unlike BMI, age values coincide with the age range.

PEL confounding

factors Range

0<age<14

Age 14≤age<44

44≤age<64

age≥64

Kit (Thermo Fisher, Waltham, MA, USA). Briefly, bac-

terial genomic DNA was diluted to 2 ng/mL, with 2 mL

used for library preparation. Amplification was achieved

through two primer pools targeting the V2-4-8 and V3-

6, 7–9 regions of 16S rDNA. Post-amplification, PCR

products underwent purification, end-repair, and barcode

ligation. The final step included library amplification and

pooling to achieve a concentration of 26 pM. Template

preparation was executed with Ion Chef following the Ion

510, Ion 520, and Ion 530 Kit-Chef protocol.

Sequencing of the amplicon libraries was conducted using

the Ion Torrent S5 system (Thermo Fisher, Waltham,

MA, USA) on a 520 or 530 chip, following the sup-

plier’s guidelines. Post-sequencing, individual sequence

reads underwent filtering using Ion software to eliminate

low-quality and polyclonal sequences. Sequences match-

ing the IonXpress adaptor were automatically trimmed.

All S5 quality-approved, trimmed, and filtered data were

exported as bam files.

Data Processing
Data processing is the process of converting raw data into

a useful format for further analysis. Operational taxo-

nomic unit (OTUs) is used to represent the Microbial

count from 16S rRNA sequencing and it is considered the

basic unit used in the numerical taxonomy, i.e.; OTUs

define ”mathematically” the taxa [59, 60].

To improve the downstream statistical analysis by elimi-

nating artifactual bias in the original measurements [61],

data processing is performed to remove low quality or

uninformative OTUs which are likely due to sequencing

errors or low-level contaminations in PCR amplicon [62].

In particular, low-abundance OTUs (i.e.; OTUs that are

not present in at least 20% of the samples) and sparse

OTUs (i.e.; OTUs with > 90% of zeros) are removed

[63]. Furthermore, median sequencing depth is used to

normalize the number of reads in each sample. Micro-

bial abundance data are normalized by the Counts Per

Million (CPM) method before performing the Difference

Abundance analysis [64].

Diversity Analysis
Microbial diversity refers to within-sample and between-

sample diversity, named respectively Alpha-diversity and

Beta-diversity [65, 66].

Alpha-diversity takes into account the number of dif-

ferent taxa that are found in each sample. We estimated

Alpha-diversity using two metrics: Observed OTUs and

Shannon index. The first is the most simple alpha-

diversity metric. It just counts up the number of different

taxa observed in a sample at a given taxonomic level.

The latter (a.k.a. Shannon’s diversity index and Shan-

non entropy) is an estimator for both taxa richness and

evenness, but with weight on the richness. In addi-

tion, statistical analysis on alpha-diversity is performed

by the Kruskal–Wallis test (for multi-class comparison)

and Pairwise Wilcoxon Rank Sum Tests with Bonferroni

correction (for pairwise comparison).

Beta-diversity measures the inter-individual diversity

(i.e.; difference in microbial composition between sam-

ples) [67]. We explore Beta-diversity by the Principal
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Coordinates Analysis (PCoA) based on Bray-Curtis dis-

similarities. PCoA is a non-linear dimension reduction

technique based on euclidean distances between samples

and it is a generalized version of the Principal Component

Analysis (PCA).

Difference Abundance Analysis
To identify the microbial taxa whose abundance covaries

with the PEL confounding factors, the Difference Abun-

dance Analysis is performed through a multi-approach

based strategy. Differences in microbial abundance are

explored through the following four methods:

• Statistical (non-parametric) tests: White test for

two class comparison and Kruskal–Wallis test for

multiple class comparisons are used. For both tests

the p-value cutoff is set to 0.05;

• RNA-seq based method: DESeq function (DESeq2

package) is used by setting ”Wald test” as hypothesis

testing and the significance cutoff α to 0.05. DESeq

performs an independent filtering based on the mean

of normalized counts for each taxa, optimizing the

number of taxa which will have an adjusted p-value

(p.adj) below a given false discovery rate (FDR) cut-

off (i.e.; alpha). In DESeq, the Benjamini-Hochberg

false discovery rate (FDR) is chosen as multiple test

correction;

• Metagenomic based method: LEfSe (Linear dis-

criminant analysis Effect Size) analysis [68] is carried

out at the genus level under the following assump-

tions: Wilcoxon test p-value cutoff is set to 0.05,

Kruskal-Wallis test p-value cutoff is set to 0.01 and

the the Linear Discriminant Analysis (LDA) scores

cutoff is set to 4.0. LDA scores represent the effect

size of each abundant microbial genera.

• Supervised learning methods method: it has

been shown that among all the SL methods, the

Support Vector Machines (SVMs) can be effectively

applied to the microbial community data for classi-

fication tasks [69]. Therefore, we have chosen SVMs

to identify the features (microbial genera) that my be

used to classify samples into PEL confounding factors

groups (i.e.; discriminate between groups). The per-

formance of the SVM binary classifier is estimated

using the AUC and its graphical representation is

provided through the ROC-AUC.

In a case-control study on the microbiota, it is essen-

tial to distinguish between disease-related differences and

those caused by confounding factors like lifestyle habits

or environmental exposures, which can significantly af-

fect microbial composition. Addressing these confounders

is necessary to avoid bias in identifying disease markers

and prediction modeling [70]. We used a multi-approach

strategy to identify microbial taxa associated with poten-

tial confounding factors. To ensure the robustness of our

findings, we cross-validated results from the Differential

Abundance Analysis (DAA). Specifically, taxa associated

with Potential Environmental/Lifestyle (PEL) confound-

ing factors, termed ”confounded taxa,” were identified if

they appeared in the results of at least two DAA methods.

Results

Alpha-diversity
We found statistically significant differences in terms of

alpha-diversity of microbial community composition only

for Nationality and Sport. Pairwise Wilcoxon Rank Sum

Tests with Bonferroni correction confirm our findings

about alpha-diversity related to Sport and Nationality

factors (p-value<=0.05). Figure 1 shows that there are

significant differences in terms of richness:

• between italian nationality (ITA) subjects and of

spanish nationality (ES) subjects (p-value<=0.001 for

both Observed and Shannon indexes);

• between subjects who practice sports and those who

do not (p-value<=0.001 for observed richness index

and p-value<=0.05 for Shannon index).

For Nationality, Figure 1-a) reveals that both indexes,

Observed and Shannon assume a higher value for Spanish

(ES) then Italian (ITA).

This means that ES subjects group for Nationality is

characterized by a more complex microbial profile in term

of richness compared to the ITA subjects group. Simi-

larly, N subjects group for Sport is characterized by a

higher microbial biodiversity then Y subjects group.

(a) Alpha-diversity based on Nationality.

(b) Alpha-diversity based on Sport.

Figure 1. The box plots show the overall differences of micro-

bial community composition based on alpha-diversity. Symbols: ns

stands for p-value>0.05; * stands for p-value<=0.05; ** stands for

p-value<=0.01; *** stands for p-value<=0.001; **** stands for p-

value<=0.0001.

Median values of both Shannon and Observed indexes for

Sport and Nationality are reported in the Table 4 and in

the Table 5.

Beta-diversity
Figure 2 shows PCoA analysis results based on the Bray-

Curtis dissimilarity. Different shapes or colors in the
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(a) Beta-diversity for Nationality. (b) Beta-diversity for Sport.

(c) Beta-diversity for Age groups. (d) Beta-diversity for eyeglasses.

Figure 2. Bray-Curtis distance between samples groups. The ellipses represent the 95% confidence interval of each group.

Table 4. Median values of the Shannon and Observed indexes

for Nationality (results are rounded to the second decimal

place).

Nationality Observed Shannon

ES 164 1.05

ITA 98 0.59

Table 5. Median values of the Shannon and Observed indexes

for Sport (results are rounded to the second decimal place).

Sport Observed Shannon

Y 136 0.99

N 87 0.55

PCoA diagram represent sample groups. We found statis-

tically significant differences (p-value<=0.05 confirmed

by the PERMANOVA test) in terms of beta-diversity of

microbial community composition only for Nationality,

Age, Sport and Eyeglasses.

Difference Abundance Analysis

Statistical (non-parametric) tests

Non-parametric statistical test are applied to identify mi-

crobiome taxa at the genus level discriminating between

the PEL confounding factors groups. Two-classes com-

parison is performed by the White test, while multi-class

comparison is performed by the Kruskal–Wallis test. Ta-

ble 6 shows the number of significant microbial genera

(p-value< 0.05) that we found to discriminate between

classes for each PEL confounding factor.

RNA-seq based method results

Figure 3 and Figure 4 show graphically the DAA results.

The Log2-fold-change values (y-axis) indicate the dif-

ferential abundance of the particular genera (x-axis) be-

tween the PEL confounding factors classes. DAA results

reveal that:

Table 6. The number of microbial discriminant genera iden-

tified by statistical tests is reported for each PEL confounding

factor.

PEL confounding

factors

#N microbial

discriminant genera

Sex 1

Eyeglasses 7

Computer 2

Allergy 4

Sport 3

Nationality 2

Bmi 15

Age 63

• the PEL confounding factors that have the most num-

ber (#N> 10) of genera differing in abundance are

Allergy, Nationality, Sport, Computer and Eyeglasses;

• the PEL confounding factors that have a number

(#N<= 10) of genera differing in abundance are

Ipertension, Age, Reflux, Smoking and Sex;

• no difference in abundance is found for BMI.

Metagenomic-based method results

Statistically significant differences in the relative abun-

dance of taxa associated with PEL groups are explored

using LEfSe. The LEfSe results reveal that there are sev-

eral microbial genera that differ in abundances for six

PEL confounding factors. Table 7 shows the number of

discriminant genera identified for each PEL confounding

factor. For the rest of the PEL confounding factors no

discriminant genera is identified as significant. Figure 5

shows the same LEfSe results in a graphical way.
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(a) DESeq analysis results for Allergy. (b) DESeq analysis results for Nationality.

(c) DESeq analysis results for Ipertension. (d) DESeq analysis results for Sport.

(e) DESeq analysis results for Age. (f) DESeq analysis results for Reflux.

Figure 3. Differences of the OTU abundance between PEL confounding factors groups (Part 1). Results obtained from the DESeq analysis

with adjusted p-value cutoff (FDR)<alpha are shown (alpha is set to 0.01 in DESeq).

Table 7. The number of microbial discriminant genera iden-

tified by LEfSe for each PEL confounding factor is reported.

Only the results statistically significant (LDA score> 4.0) are

reported in the table.

PEL confounding

factors

#N microbial

discriminant genera

eyeglasses 7

computer 4

allergy 3

sport 4

nationality 13

ipertension 13

Supervised learning method results

We used the Table 8 as a reference for the quality rating

of the acceptable SVM models. In this study, we consider

acceptable the classifiers with AUC-ROC score≥0.8 [71]

and a confidence interval of AUC equal to 95% [72, 73,

74]. Figure 6 shows the ROC curve and the AUC value for

the Nationality. For the other PEL confounding factors

AUC-ROC score is <0.8 and therefore it is not shown.

Each point on the ROC curve represents the true positive

rate (TPR) vs the false positive rate (FPR). The TPR

(a.k.a. sensitivity) is the proportion of observations that

are correctly predicted to be positive out of all positive

observations. Similarly, the FPR (a.k.a. specificity) is the

proportion of observations that are incorrectly predicted

to be positive out of all negative observations:

Specificity =
FP

(TN + FP )
(1)

Sensitivity =
TP

(TP + FN)
(2)
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(a) DESeq analysis results for age (b) DESeq analysis results for Sex

(c) DESeq analysis results for Computer (d) DESeq analysis results for Eyeglasses

Figure 4. Differences of the OTU abundance between PEL confounding factors groups (Part 2). Results obtained from the DESeq analysis

with adjusted p-value cutoff (FDR))<alpha are shown (alpha is set to 0.01 in DESeq).

Table 8. Quality rating of the acceptable classifiers(i.e.;

AUC-ROC≥0.8).

AUC-ROC score Quality

0.9 ≥ score Excellent

0.8 ≥ score <0.9 Good

Cross-Validation of the Difference
Abundance Analysis Results

Confounded taxa can be used to discriminate the micro-

bial communities between classes of a single o multiple

communities covary with the PEL confounding factors.

Our analysis revealed noteworthy findings regarding the

identification of confounded taxa associated with Po-

tential Environmental/Lifestyle (PEL) factors. Specifi-

cally, the Venn diagrams presented in Figure 7 show the

commonalities and differences between the results sets

achieved as output from the different four methods that

we applied.

Remarkably, our SVM-based classifier achieved accept-

able performance (AUC-ROC score ≥ 0.8) solely for the

Nationality factor. Consequently, the Venn diagram in

Figure 7-h) shows four circles for Nationality, unlike the

others which show only three.

In particular, our analysis indicates that Nationality ex-

hibited the highest number of confounded taxa as shown

in the table 9. In particular, for Nationality 15 genera

are found by SVM and DESeq methods, 2 genera are

found by SVM, DESeq and LEfSeq methods, 2 genera are

found by DESeq and statistic methods and 11 genera are

found by DESeq and LEfSeq methods. These confounded

taxa hold significance as they can potentially partition

the population based on geographic origins.

Discussion

As highlighted in the introduction, there has been a

noticeable surge in interest in microbiome analysis in

recent years. This interest spans various medical fields,

encompassing studies on both healthy and unhealthy

individuals. Initially, the focus was primarily on under-

standing how microbiome diversity affects the progression

to diseases, particularly exploring outcomes and influenc-

ing factors that were previously challenging to discern

using available analytical methods [75].

Traditionally, the analysis mainly targeted the micro-

biome diversity in human feces due to its practicality and

direct relationship with microbial populations. Numerous

studies have evaluated its significance in estimating dis-

ease severity, progression, and the intricate interactions

between humans and various biological agents.

However, more recent advancements have revealed the

presence of microbiomes in previously considered ster-

ile areas of the body, like the pulmonary microbiome,

opening new avenues for research and potential therapeu-

tic interventions [76]. Moreover, emerging evidence has

shed light on the microbiome’s specific role in influencing

widespread diseases such as endometriosis, particularly

in its interaction with other pathogenic bacteria, and fur-

ther data may clarify this relationship.

Furthermore, it’s crucial to acknowledge that differ-

ent microbiome populations communicate across bodily

systems, despite their spatial separation, potentially ex-

erting cross-system influences. Notably, there’s growing
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(a) LefSe analysis results for Allergy. (b) LefSe analysis results for Computer.

(c) LefSe analysis results for eyeglasses. (d) LefSe analysis results for ipertension.

(e) LefSe analysis results for Nationality. (f) LefSe analysis results for Sport.

Figure 5. These figures show the genera that differ in abundance between PEL confounding classes. The LDA score is shown at logarithmic

scale underneath the bars (LDA score> 4.0).

Figure 6. ROC curve and AUC value for Nationality.

interest in how the gut microbiome might impact ocular

surface homeostasis and associated disorders [77, 78, 79].

Our study represents one of the initial efforts to delve

deeper into microbial diversity within the eyes of healthy

individuals, utilizing innovative techniques [80]. This

research carries significant implications as its findings

can inform future investigations in both healthy and

unhealthy populations. Importantly, our methodology in-

corporates measures to mitigate factors that could distort

results, such as meticulous sampling techniques and pa-

tient selection, thereby enhancing its external validity,

and applied methodology, with a multi-level approach.

On top of this, data processing has been reviewed thor-

oughly in order to limit the uninformative OTUs, as

described in the previous sections.

First step methodologies were applied in order to calcu-

late Alpha and Beta-diversity. Advanced methods were

applied in order to describe the confounding factors.

Our research highlights how environmental and lifestyle

factors, such as Nationality and Sport, significantly influ-

ence the ocular surface microbiome’s composition. These

findings could have important implications for under-

standing microbial diversity and its relationship with

environmental and behavioral variables.

Alpha-diversity
Analyzing alpha diversity, we found statistically signifi-

cant differences for Nationality and Sport. Specifically, we

observed: A higher microbial richness in Spanish subjects

compared to Italian subjects, as described by Observed

and Shannon indexes. A higher microbial biodiversity in

subjects who practice sports compared to those who do
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(a) Venn diagram for allergy: three confounded

taxa are found.

(b) Venn diagram for computer: two

confounded taxa are found.

(c) Venn diagram for eyeglasses: five

confounded taxa are found.

(d) Venn diagram for ipertension: two

confounded taxa are found.

(e) Venn diagram for sex: no confounded taxon

is found.

(f) Venn diagram for sport: three confounded

taxa are found.

(g) Venn diagram for smoking: no confounded

taxon is found.

(h) Venn diagram for nationality: several

confounded taxa are found (see table 9).

Figure 7. Venn diagrams show the confounded taxa discovered for each PEL confounding factor. Each circle represent the results set of

a DAA method (i.e.; ”Statistic”,”LEfSe”, ”DESeq”, ”SVM”).

not for the observed richness index and for the Shannon

index. These results suggest that the group of Spanish

subjects has a more complex microbial profile in terms

of richness compared to Italian subjects and that sports

practitioners exhibit greater microbial biodiversity than

non-practitioners (Figure 1). Previous studies have shown

that geographic location can significantly impact the

composition of the ocular surface microbiome [81]. For

example, the ocular surface metagenome of young Han

Chinese from Beijing, Wenzhou, and Guangzhou, was
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Table 9. Table shows the confounded taxa discovered for the

Nationality. The first column indicates the methods that are

applied, the second column lists the confounded taxa found

by the corresponding methods in the first column.

Methods Confounded taxa

unkn. Actinobacteria(p)

Lysinibacillus

Marinococcus

Thalassobacillus

unkn. Paenibacillaceae(f)

Planococcus

Jeotgalicoccus

SVM+DESeq unkn. Lactobacillaceae(f)

unkn. Bacilli(c)

Desulfotomaculum

unkn. Negativicutes(c)

unkn. Firmicutes(p)

Pelomonas

Helicobacter

unkn. Vibrionaceae(f)

SVM+DESeq+LEfSe Pelomonas

unkn. Spirochaetaceae(f)

DESeq+Statistic Hespellia

unkn. Spirochaetaceae(f)

Corynebacterium

Kocuria

unkn. Actinobacteria(c)

Bacillus

unkn. Bacillales(o)

DESeq+lLEfSe Enterococcus

unkn. Bacilli(c)

Mesorhizobium

Ralstonia

Pelomonas

unkn. Bacteria(d)

examined demonstrating distinct microbial communities

shaped by geographic differences [29]. This highlights

the importance of considering geographic variation when

studying the ocular microbiome.

Additionally, other studies provided a molecular charac-

terization of the ocular microbiome, noting that it is a

unique and low microbial environment influenced by var-

ious external factors, including geographic location [80].

This molecular insight supports our findings that na-

tionality, as a proxy for geographic and environmental

differences, significantly impacts the microbial diversity

and composition of the ocular surface.These data should

be confirmed in future studies assessing the same vari-

ables with respect to other nationalities. Additionally,

it should be noted that in this analysis the Alpha di-

versity from the OS was generally higher than previous

reports [4]. Conversely, contradictory findings exist re-

garding the relationship between microbial diversity and

physical activity. While some studies suggest a positive

correlation, others propose that increased microbial di-

versity may not always signify a healthier state due to

potential proliferation of harmful bacteria.

Beta-Diversity
On the other hand, when it comes to beta diversity,

we found statistically significant differences in micro-

bial community composition concerning Nationality, Age,

Sport, and Eyeglasses use. Moreover, when analyzing

differential abundance, Non-parametric statistical tests

were applied to identify microbiome taxa at the genus

level discriminating between PEL confounding factors

groups. The results show: The highest number of dif-

ferential microbial genera for Allergy, Nationality, Sport,

Computer use, and Eyeglasses use. A lower number of dif-

ferential genera for Hypertension, Age, Reflux, Smoking,

and Sex. No significant difference for BMI. This is par-

ticularly relevant in view of the fact that beta-diversity

describes the inter-individual variability, and may de-

scribe trajectories over time and space (Figure 2). This

result also gives value to the taxonomic profiles from the

samples, and confirms data from previous studies in dif-

ferent group populations [36].

For future research, these variables should be considered

attentively when evaluating biomarkers or microbiome

composition, as they showed to “cluster” around PEL

that may describe patterns in study populations, e.g.

lower number of differential genera for variables that

are more commonly encountered in older persons - age,

hypertension- and higher number of differential general

in possibly younger persons - sport, computer, although

that is not widely ascertained.

Curiously, the finding that no significant differences were

found with respect to BMI do not align with observa-

tions from other studies [82]. No comparison is possible

with other data from eyeglass use, as no data have

been retrieved from our literature search. For what per-

tains to gender, previous studies have suggested that this

may also play a significant role in the composition of

the ocular surface microbiome. For instance, some au-

thors discussed the broader impact of the microbiome on

ocular surface pathophysiology and disorders, emphasiz-

ing potential gender differences in microbial composition

[83, 84, 81]. These findings underscore the influence of

demographic and lifestyle factors on the ocular micro-

biome. Notably, the PERMANOVA test confirmed the

statistical significance of these differences, highlighting

the robustness of our result.

Difference Abundance Analysis
When it comes to the DAAs, microbial discriminant gen-

era were identified for each PEL factor, showing high

variability (from 1 discriminant for Sex to 63 for Age

see Table 6). PEL factors with above or below 10 genera

differing in abundance show relevant differences. Further-

more, this analysis is confirmed by metagenomic based

method results (Figure 5). In particular, Using LEfSe,

we explored statistically significant differences in the rel-

ative abundance of taxa associated with PEL groups. The

results revealed significant differences for six PEL con-

founding factors, with varying numbers of discriminant

genera identified for each factor. Machine learning-based

approaches provided valuable insights into feature se-

lection and classification tasks. However, the relatively

small sample size in our cohort (135 samples) compared

to the high dimensionality of the dataset (2668 OTUs)

necessitates cautious interpretation of the results. As

already outlined, our SVM-based classifier achieved ac-

ceptable performance solely for the Nationality factor.

While supervised learning methods offer promising av-

enues for predictive modeling, their outcomes should be

corroborated by other analytical techniques to ensure ro-

bustness and generalizability. More importantly, Venn
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diagram and other methods were concordant in identi-

fying the considered variables. This highlights how our

methodology is for concordance between methods (7, 9),

supporting the validity of our approach across methods.

In this sense, it would be interesting to verify these data

including more nationality in a multicenter study. Ulti-

mately, in this study we could not directly assess the eye

community state type (ECST) that was previously de-

scribed [4], as the aim of the analysis was different and

a different descriptive level would have been required,

including additional analysis.

Cross-Validation of the Difference Abundance
Analysis Results
Our cross-validation approach aimed to mitigate the

impact of confounding factors on microbial composi-

tion analysis. By identifying taxa consistently associated

with potential environmental/lifestyle (PEL) confound-

ing factors, we elucidated their role in shaping microbial

communities. Notably, taxa correlated with national-

ity, sport, and eyeglasses usage provide valuable insights

into the geographical and lifestyle determinants of ocu-

lar microbiome diversity. Geographical factors represent

a complex interplay of genetic, environmental, and cul-

tural influences on microbial composition.

Consistent with findings in gut microbiome research, our

study revealed geographical variations in the ocular mi-

crobiome, emphasizing the need for further investigation

into the underlying mechanisms driving these differences

[85, 60, 59, 86]. Moreover, our analysis identified sport

and eyeglasses usage as potential determinants of ocular

microbiome composition. Emerging evidence suggests a

correlation between physical activity and gut microbiota

composition, raising intriguing possibilities regarding its

impact on the ocular microbiome [70, 41, 40].

Similarly, while contact lenses have been implicated

in ocular infections, the association between eyeglasses

and ocular microbiome remains relatively unexplored

[87, 88, 89]. In summary, our findings shed light on the

complex interplay between environmental, lifestyle, and

demographic factors in shaping the ocular microbiome

of healthy individuals. Further research is warranted to

unravel the underlying mechanisms and implications for

ocular health management and personalized medicine

Conclusion

Our study underscores the significant impact of various

environmental and lifestyle factors on the ocular sur-

face microbiome. Factors such as nationality, sport, age,

smoking, and computer use play critical roles in shap-

ing microbial diversity and composition. Future research

should further explore these interactions to develop per-

sonalized approaches for managing ocular health. It is

essential to consider these factors to achieve unbiased

conclusions about the microbiome’s association with hu-

man diseases. By understanding these influences, we can

better identify differences related to diseases and improve

strategies for ocular health management and disease pre-

vention. The findings of this study have to be seen in

light of a potential limitation due to the size of the par-

ticipant cohort. Small sample size can indeed introduce a

limited generalizability of the study findings. This limita-

tion could be overcome in a future work by a multi-center

research study that involves several independent medical

institutions in enrolling more participants to increase the

sample size.
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severino, Carmen Gómez-Huertas, Paola Bonci, Vito

Romano, Giuseppe Giannaccare, Miguel Rechichi,

Alessandro Meduri, Giovanni Oliverio, and Carlos

Rocha de Lossada. Exploring the healthy eye mi-

crobiota niche in a multicenter study. International

Journal of Molecular Sciences, 23:10229, 09 2022.

5. O. Paliy and B. D. Foy. Mathematical modeling

of 16S ribosomal DNA amplification reveals opti-

mal conditions for the interrogation of complex mi-

crobial communities with phylogenetic microarrays.

Bioinformatics, 27(15):2134–2140, Aug 2011.

6. Zhe Luan, Shihui Fu, Shirui Qi, Congyong Li, Jun

Chen, Yiming Zhao, Hanwen Zhang, Junling Wu,

Zhizhuang Zhao, Jiaqi Zhang, Yi Chen, Wei Zhang,

Yujia Jing, Shufang Wang, and Gang Sun. A

metagenomics study reveals the gut microbiome as a

sex-specific modulator of healthy aging in hainan cen-

tenarians. Experimental Gerontology, 186:112356,

2024.

7. A. K. Whitehead, M. C. Meyers, C. M. Taylor,

M. Luo, S. E. Dowd, X. Yue, and L. O. Byerley.

Sex-Dependent Effects of Inhaled Nicotine on the Gut

Microbiome. Nicotine Tob Res, 24(9):1363–1370,

Aug 2022.

8. W. M. de Vos, H. Tilg, M. Van Hul, and P. D. Cani.

Gut microbiome and health: mechanistic insights.

Gut, 71(5):1020–1032, May 2022.

9. A. Matysiak, M. Kabza, J. A. Karolak, M. M. Ja-

worska, M. Rydzanicz, R. Ploski, J. P. Szaflik, and

M. Gajecka. Characterization of Ocular Surface

Microbial Profiles Revealed Discrepancies between

Conjunctival and Corneal Microbiota. Pathogens,

10(4), Mar 2021.

10. Davide Borroni, Vito Romano, Stephen Kaye, Tobi

Somerville, Luca Napoli, Adriano Fasolo, Paola Gal-

lon, Diego Ponzin, Alfonso Esposito, and Stefano

Ferrari. Metagenomics in ophthalmology: Current

findings and future prospectives. BMJ open ophthal-

mology, 4, 06 2019.

11. Heleen Delbeke, Saif Younas, Ingele Casteels, and

Marie Joossens. Current knowledge on the human

eye microbiome: A systematic review of available

amplicon and metagenomic sequencing data. Acta

Ophthalmologica, 2020.

12. Yutong Kang, Shudan Lin, Xueli Ma, Yanlin Che,

Yi–Ju Chen, Tian Wan, Die Zhang, Jiao Shao, Jie

Xu, Yi Xu, Yongliang Lou, and Meiqin Zheng. Strain

heterogeneity, cooccurrence network, taxonomic com-

position and functional profile of the healthy ocular

surface microbiome. Eye and Vision, 2021.

13. Sisinthy Shivaji, Rajagopalaboopathi Jaya-

sudha, Gumpili Sai Prashanthi, Sama Kalyana

Chakravarthy, and Savitri Sharma. The human

ocular surface fungal microbiome, 2019.

14. Thanachaporn Kittipibul and Vilavun Puangsrichar-

ern. The ocular microbiome in stevens-johnson

syndrome, 2021.

15. Davide Borroni, Carlos Rocha de Lossada, Cosimo
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Maŕıa Sánchez-González, et al. Ocular surface micro-
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