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ABSTRACT 
 

Pediatric glioma recurrence can cause morbidity and mortality; however, recurrence 

pattern and severity are heterogeneous and challenging to predict with established 

clinical and genomic markers. Resultingly, almost all children undergo frequent, long-

term, magnetic resonance (MR) brain surveillance regardless of individual recurrence 

risk. Deep learning analysis of longitudinal MR may be an effective approach for 

improving individualized recurrence prediction in gliomas and other cancers but has 

thus far been infeasible with current frameworks. Here, we propose a self-supervised, 

deep learning approach to longitudinal medical imaging analysis, temporal learning, that 

models the spatiotemporal information from a patient’s current and prior brain MRs to 

predict future recurrence. We apply temporal learning to pediatric glioma surveillance 

imaging for 715 patients (3,994 scans) from four distinct clinical settings. We find that 

longitudinal imaging analysis with temporal learning improves recurrence prediction 

performance by up to 41% compared to traditional approaches, with improvements in 

performance in both low- and high-grade glioma. We find that recurrence prediction 

accuracy increases incrementally with the number of historical scans available per 

patient. Temporal deep learning may enable point-of-care decision-support for pediatric 

brain tumors and be adaptable more broadly to patients with other cancers and chronic 

diseases undergoing surveillance imaging. 

 

 

Keywords: Self-supervised learning, Deep-Learning, Pediatric Low-Grade Glioma, 

Temporal Pretraining, Artificial Intelligence, Longitudinal analysis, Post-treatment 

recurrence. 
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List of abbreviations:  

pLGG – pediatric Low-Grade Glioma 

CNN – Convolutional neural network 

AUC – Area under the curve 

DL – Deep learning 

MRI – Magnetic resonance imaging 

SSL – Self-supervised Learning 

MHSA – Multi-headed self-attention  

LSTM – Long short-term memory network 

FC – Fully connected layer  

HGG – High-grade glioma 

AI – Artificial Intelligence 

  

 
INTRODUCTION 
 
 

Pediatric gliomas, traditionally categorized into high-grade (pHGG) and low-grade 

gliomas (pLGG) via World Health Organization criteria, originate from glial cells and are 

the most common type of brain tumors and cause of cancer-related death in children1,2. 

Collectively, pLGGs represent a basket of >20 histologies3 and, more recently defined, 

heterogeneous molecular characteristics4, with nearly 50% of tumors harboring a BRAF-

associated mutation5.  

Upfront surgical resection, when feasible, is the standard treatment for pediatric 

gliomas. While pLGGs carry a relatively good prognosis following primary tumor 

resection compared to high-grade tumors, postoperative outcomes are heterogeneous. 

Patients undergoing surgical treatment with gross total resection (GTR) typically exhibit 
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favorable outcomes, demonstrating over 85% progression-free survival, yet recurrences 

still occur6,7. Conversely, the prognosis for patients undergoing subtotal resections 

without subsequent adjuvant therapy is less frequently reported. Available literature 

indicates that the progression rate ranges from 40% to 80%8,9in these cases.  The 

diverse progression patterns inherent in natural history add complexity to decisions 

regarding adjuvant therapy10, a challenge further intensified with the advent of targeted 

treatments, particularly those for BRAF-associated mutations5. In regard to high-grade 

gliomas, some variations, such as glioblastoma and diffuse midline gliomas, are nearly 

universally fatal, while others, such as supratentorial grade III tumors, may follow more 

heterogeneous courses. 

 

Along with histological and molecular subtyping, magnetic resonance imaging (MRI) 

assessment is critical in determining prognosis and therapy5. Early identification of 

recurrence following surgery optimizes the prospects for salvage interventions to 

preserve survival and quality of life10,11. Despite frequent and long-term MRI 

surveillance, recurrence can be difficult to assess by diagnosticians given the need to 

synthesize longitudinal changes over many time points, and, resultingly, recurrence can 

first present symptomatically12.  

Computational imaging techniques, particularly deep learning, have demonstrated the 

ability to synthesize vast quantities of medical imaging data and detect patterns 

unapparent to the human eye.13–15 While there have been several investigations 

demonstrating the potential for deep learning to extract informative features for pediatric 

glioma risk stratification, none have leveraged multiple scans as input – i.e. longitudinal 
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imaging, which may enable the ability to learn sequential changes in data to better 

inform risk prediction and decision-making at the point-of-care. Barriers to deep 

learning-based longitudinal medical imaging analysis include the limited availability of 

longitudinal datasets and a high dimensional parameter space, which may be unsuitable 

for supervised deep-learning approaches16 due to issues such as curse of 

dimensionality and parameter explosion. Novel strategies are needed to analyze 

complex, often long sequences of longitudinal medical imaging data captured clinically. 

Self-supervised learning (SSL), which utilizes intrinsic information within unlabeled 

imaging data as a cost-effective supervisory signal for pre-training models,17–20 is now 

viewed as a critical part of medical AI development in limited data scenarios21.  

Here, we developed an SSL technique, temporal learning, designed specifically for 

longitudinal medical imaging analysis, and inspired from prior work in self-driving 

automobile video analysis.22,23 We applied temporal learning for the first time to medical 

imaging to enable longitudinal analysis and risk prediction for pediatric gliomas from 

serial surveillance scans. We developed and validated the algorithm in multi-institutional 

setting of longitudinal brain MRIs totaling 3,994 scans from 715 patients with pediatric 

brain tumors. We found that temporal learning substantially improves recurrence 

prediction from the time-of-scan for patients with both low- and high-grade gliomas on 

postoperative surveillance. We expect this study to serve as a foundation for future 

investigations in longitudinal cancer imaging analyses to enable accurate risk 

stratification and improved clinical decision-making. 
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Figure 1:  Study design and method overview. A) 4 Datasets with clinical and longitudinal MRI data (T2 
FLAIR sequences) were curated from three institutions (n=345 patients, 2686 scans; n=301 patients, 
1075 scans; n=35 patients, 103 scans, respectively) for patients with pLGG undergoing postoperative 
surveillance and (n=34 patients, 130 scans) for patients with pHGG undergoing postoperative 
surveillance. Each imaging scan was annotated as “progression” or “no progression” based on the 
radiology report and clinical impression. B) We first train the deep learning pipeline with a self-supervised 
pretext task, “temporal learning,” to predict whether the input longitudinal imaging sequence is in correct 
chronological order. The deep learning pipeline consists of 3D ResNet18 encoder followed by multi-
headed self-attention block followed by LSTM module appended with a fully connected layer with 2 output 
neurons for the binary classification. C) We finetune the temporal learning pretrained model to predict the 
1-year recurrence risk from time-of-scan.  We tested the two fine-tuned models (DFCI/BCH LGG and 
CBTN) on blinded hold-out sets from each institution (n=67 patients, 511 scans and n=61 patients, 204 
scans, respectively). D) We further tested the best-performing finetuned model (DFCI/BCH LGG) on two 
separate cohorts RadART LGG (n=35 patients, 103 scans) and DFCI/BCH HGG (n=34 patients, 130 
scans). Abbreviations: FLAIR=Fluid attenuated inversion recovery, HGG=High grade glioma. 
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MAIN 
 

 
 
Figure 2. Dataset characteristics. A) Kaplan-Meier event-free survival (EFS) plots for DFCI/BCH LGG 

(n=345), CBTN (n=301), DFCI/BCH HGG (n=34), and RadART (n=35) cohorts. Patients in the CBTN 

cohort exhibit a steeper decline in EFS probability over time compared to those in the DFCI/BCH LGG 

and RadART cohort. Patients in the DFCI/BCH HGG cohort have the steepest decline in survival 

probability with the worst survival outcomes (log-rank p-value < 0.005) B) Box plot with swarm plot 

overlay of follow-up time distribution for DFCI/BCH LGG, CBTN, DFCI/BCH HGG and RadART cohorts. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.04.24308434doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308434
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

The median follow-up times are indicated in the figure: DFCI/BCH LGG with 2201 days [IQR: 714-3596], 

CBTN with 602 days [IQR: 247-1457] , DFCI/BCH HGG with 154 days [IQR: 89-216], and RadART with 

1073 days [IQR: 695-3017], as marked by the horizontal black line in each box. The scatter plot overlay 

represents individual follow-up times, and the whiskers indicate the range excluding outliers. C) Box plot 

of postsurgical follow-up scan distribution for each cohort before progression. On average, the DFCI/BCH 

dataset encompasses a greater number of scans per patient when compared to the other cohorts, with 

the median number of scans per patient being 8 [IQR: 5-12] for the DFCI/BCH, 3 [IQR: 1-5] for the CBTN, 

3 [IQR: 2-5] for DFCI/BCH HGG and 2 [IQR: 1-4] for RadART cohort. D) Boxplot of surveillance scan 

interval distribution per patient. The median surveillance scan interval is 190 days [IQR: 105-378] for 

DFCI/BCH LGG, 178 [IQR: 94-330] days for CBTN, 61 [IQR: 33-98] days for DFCI/BCH HGG and 317 

[IQR: 167-562] days for RadART cohort. E) The bar plot represents the proportion of patients 

experiencing a recurrence event within the cohorts. F) The bar plot depicts the distribution of surgical 

resection status among patients in the cohorts. The resection status categories are binned into “Gross or 

Near total resection”, “Partial Resection”, “Biopsy”, and “unknown”.  

 

 

Postoperative recurrence prediction for pediatric low-grade glioma 

Datasets 

Two retrospective, pediatric, longitudinal, postoperative surveillance MRI datasets with 

T2 Fluid Attenuated Inversion Recovery (FLAIR) imaging were aggregated for pLGG 

model development and internal validation: Dana-Farber/Boston Children’s Hospital 

(DFCI/BCH) pLGG (N=345 patients with low-grade glioma, 2,686 scans, median follow-

up: 2,201 days [IQR: 714-3596]) and Children’s Brain Tumor Network (CBTN) (N=301 

patients with low-grade glioma, 1,075 scans, median follow-up: 602 [IQR: 247-1457]). A 

third dataset, RadART (N=35 patients with low-grade glioma, 103 scans, median follow-

up: 1,073 days [IQR: 695-3017 ] ), and a fourth dataset, DFCI/BCH pHGG (N=34 

patients with high-grade glioma, 130 scans, median follow-up: 154 days [IQR: 89-216]) 

were curated for external validation of the model in settings of pLGG and pHGG 

respectively (Figure 2; Methods: Data, Supplementary Methods: A.1, Table S1). All 

postoperative MRI scans were included up until one year (365 days) prior to last clinical 

follow-up and/or diagnosis of recurrence, whichever came first. For model development, 

the DFCI/BCH LGG and CBTN datasets were separately, randomly split into train (80%) 
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and test (20%) sets, with the training set(DFCI/BCH: Npatients=278, Nscans=2175 ; 

CBTN: Npatients=240, Nscans=871, respectively) used for model training and validation 

of the three approaches, and the test set (DFCI/BCH: Npatients=67, Nscans=511 ; 

CBTN: Npatients=61, Nscans=204, respectively) reserved as a blinded, holdout set for 

evaluating recurrence prediction performance of the trained models along with the 

RadART and DFCI/BCH HGG external sets. We designed a longitudinal imaging deep 

learning pipeline, comprised of a 3D Resnet1824,25 convolutional neural network 

backbone, a multi-headed self-attention (MHSA), LSTM, and a fully connected layer 

(Figure 1B, Methods: Deep Learning Pipeline Architecture). 

 

The primary endpoint of the study was the prediction of one-year event-free survival 

(EFS) from the time-of-scan. An event was defined by radiology report impression of 

recurrence and/or progression, new clinical symptom attributable to tumor, change in 

patient management, and/or death per retrospective record review. Three approaches 

to model training were investigated: 1) training from scratch using a single postoperative 

MRI scan to predict EFS, 2) training from scratch on all longitudinal MRIs to predict 

EFS, and 3) use of an SSL strategy, temporal learning, for longitudinal MRI model 

pretraining and then finetuning to predict EFS. 
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Figure 3: Performance of temporal learning approach to longitudinal imaging analysis, compared with 
performance of standard longitudinal imaging training and single timepoint imaging approaches.  A) ROC 
curves and AUC comparison plots for the DFCI/BCH LGG dataset. The longitudinal imaging model with 
temporal learning outperformed the standard longitudinal imaging model and single timepoint imaging 
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model (p=0.003). B) ROC curves and AUC comparison plots for CBTN dataset. The longitudinal imaging 
model with temporal learning (on DFCI/BCH LGG) performs at par with the longitudinal imaging model 
with temporal learning on CBTN and outperforms the standard longitudinal imaging model (P=0.01) and 
single timepoint imaging model (P=0.008) (both on CBTN). C) ROC curves and AUC comparison plots for 
the RadART dataset, with longitudinal imaging model with temporal learning (on DFCI/BCH LGG) 
outperforming both standard DFCI/BCH LGG longitudinal imaging model and single timepoint DFCI/BCH 
LGG imaging model (P=0.0018) on DFCI/BCH LGG cohort. D) ROC curves and AUC comparison plots 
for the DFCI/BCH HGG dataset. The longitudinal imaging model with temporal learning (on DFCI/BCH 
LGG) outperforms the standard DFCI/BCH LGG longitudinal imaging model (P=0.03) and single timepoint 
DFCI/BCH LGG imaging model (P=4.4e-6). All p-values are calculated with respect to longitudinal imaging 
model with temporal learning (on DFCI/BCH LGG), and a two-sided p-value of <0.05 was considered 
statistically significant.   

 

 

Postoperative recurrence prediction with a single scan 

We investigated the ability of deep learning to predict one-year EFS based on a single 

scan input using each postoperative scan for each patient as a model input. The model 

trained on the DFCI/BCH LGG training set was tested on DFCI/BCH pLGG hold-out set, 

RadART and DFCI/BCH HGG test sets, while the model trained on CBTN train set was 

tested on CBTN hold-out set. On the DFCI/BCH LGG test set, the model yielded AUC of 

0.58 [95% CI – 0.44-0.73], with sensitivity 0.12, specificity 0.98, and F1 score 0.57 for 

point-of-scan, one-year EFS prediction. For the CBTN test set, the model yielded AUC 

of 0.49 [95% CI – 0.44-0.73], with sensitivity 0.21, specificity 0.74, and F1 score 0.46. 

On the RadART test set the model performed similarly with AUC of 0.43 [95% CI – 

0.25-0.67], with sensitivity 0.11, specificity 0.98, and F1 score 0.57. For the DFCI/BCH 

HGG test set the model yielded AUC of 0.62 [95% CI – 0.52-0.72], with sensitivity 0.61, 

specificity 0.62, and F1 score 0.61 (Figure 3, Methods: Training Details, Supplementary 

Methods: A.2). 
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Postoperative recurrence prediction with longitudinal deep learning from scratch 

Given the poor performance of single scan prediction, we next investigated patient-level 

performance using all available longitudinal imaging trained to predict one-year EFS. 

Sequential scans were passed into the deep learning pipeline using the same 

training/testing splits, with model trained on DFCI/BCH LGG train set being tested on 

DFCI/BCH LGG, RadART, DFCI/BCH HGG test set and model trained on CBTN train 

set tested on CBTN test set. On the DFCI/BCH LGG test set, the longitudinal pipeline 

yielded an AUC of 0.78 [95% CI – 0.62-0.91], substantially improving over the single 

timepoint approach (P=0.032), with sensitivity 0.64, specificity 0.77, and F1 score 0.67. 

On the CBTN test set, AUC was 0.53 [95% CI – 0.35-0.70] with sensitivity 0.50, 

specificity 0.65, and F1 score 0.55. On the RadART test set the model resulted in the 

AUC of 0.71 [95% CI – 0.50-0.92] with sensitivity 0.62, specificity 0.70, and F1 score 

0.63 (Figure 3A), indicating limited generalizability of learned features across 

institutions. For the DFCI/BCH HGG test set the model demonstrated improved 

performance with AUC of 0.82 [95% CI – 0.68-0.94] with sensitivity 0.88, specificity 

0.62, and F1 score 0.75 (Figure 3, Table S2). 

 

Postoperative recurrence prediction with temporal learning 
 

The temporal learning procedure was designed as follows: a patient’s surveillance 

scans were input in random chronological sequence and the model was tasked with 

determining if the sequence was correct (Figure 1B; Methods: Temporal Learning, 

Supplementary Methods: A.3). Temporal learning was trained and validated by 

institution, separately, within the DFCI/BCH LGG and CBTN training cohorts. 
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Additionally, given the significantly longer scan follow-up in the DFCI/BCH LGG dataset, 

the DFCI/BCH LGG temporal learning trained model was finetuned and tested on the 

CBTN dataset in parallel to the CBTN temporal learning trained model finetuning, to 

determine if temporal information learned from one institution with more robust data 

could generalize to another. Following training procedures, the DFCI/BCH LGG 

temporal learning model achieved 72% accuracy and area under the receiver operating 

characteristic curve (AUC) 0.78 [95% CI: 0.64-0.92] in identifying the correct 

chronological sequence of scans (Supplementary methods A.3). Temporal learning on 

the CBTN data yielded 66% accuracy and AUC: 0.67 [95% CI – 0.52-0.81].  

 

For one-year EFS prediction, loading the pipeline with weights from temporal learning 

and finetuning on the DFCI/BCH LGG dataset yielded improved performance on all test 

sets, including the DFCI/BCH LGG hold-out set (Npatient=67, Nscans=511) with AUC 

0.83 [95% CI: 0.71 - 0.91], improved over standard training by 6%, with sensitivity 0.78, 

specificity 0.86, and F1 score 0.80) (Figure 3, Table S2). The performance improvement 

on the external CBTN test set was of a larger magnitude with AUC 0.75 [95% CI –0.58-

0.90] and +41.51% increase (P=0.01) and sensitivity 0.71, specificity 0.60, and F1 score 

0.65 (Figure 3, Table S2). On the RadART test set the performance improved by 

18.32% with AUC 0.84 [95% CI –0.68-0.95], sensitivity 0.62, specificity 0.85, and F1 

score 0.73. For the DFCI/BCH HGG test set the model resulted in AUC 0.89 [95% CI –

0.75-0.98] a +8.54% increase with sensitivity 0.88, specificity 0.75, F1 score 0.80. 

Representative longitudinal cases with predictions are found in Figure 5. Temporal 
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learning on the CBTN dataset also improved EFS prediction compared to training from 

scratch (Table S2).  

 

Figure 4 A) Illustration of sequence generation strategy for Intra-patient analysis. The first panel displays 
the follow-up trajectory of a representative patient with a sequence of follow-up MR scans, and the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.04.24308434doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308434
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

corresponding binary 1-Year EFS label. The bottom sequences of panels depict the generated 
trajectories from the original trajectory with the corresponding EFS label. The sequence generation is 
done iteratively and consecutively starting from the first scan up to the last scan. This technique allows for 
the estimation of the model’s predictive performance as more longitudinal context is added. B) Intra-
patient F1 score plot on DFCI/BCH LGG test set for the model with temporal learning and EFS finetuning 
on DFCI/BCH LGG train set. The maximum predictive performance is achieved at 7 scans. C) Intra-
patient F1 score plot for the CBTN test set for the model with temporal learning on DFCI/BCH LGG train 
set and EFS finetuning on CBTN train set. The maximum predictive performance is achieved at 10 scans. 
D) Intra-patient F1 score plot on the DFCI/BCH HGG test set for the model with temporal learning and 
EFS finetuning on DFCI/BCH LGG train set. The performance increases with increasing number of scans, 
with maximum performance at 6 scans. E) Intra-patient F1 score plot on the RadART test set for the 
model with temporal learning and EFS finetuning on DFCI/BCH LGG train set. The maximum predictive 
performance is reached at 3 scans. 

 

 

Recurrence prediction performance depends on the number of longitudinal input 

scans available 

To determine how one-year EFS prediction changes with increasing number of input 

scans, we performed an intra-patient analysis of the DFCI/BCH LGG-trained temporal 

learning model. For each patient from the test sets of all datasets, we incrementally 

increased the consecutive longitudinal scans available to the model from one to all and 

generated one-year EFS predictions from the time of last scan (Figure 4A). Analysis of 

the DFCI/BCH LGG set revealed the model attained maximum predictive performance 

(F1 Score) when the number of consecutive input scans reached 7 and then plateaued 

(Figure 4B). For the CBTN set, the maximum performance reached around 10 scans 

(Figure 4C), indicating progressive improvements as more longitudinal scans were 

added. On the DFCI/BCH HGG test set the predictive performance increases with 

increasing number of scans reaching the maximum at 6 scans (Figure 4D). For the 

RadART dataset the performance peaks at 3 scans and decreases as further scans are 

added, though there were very few patients with more than three scans (Figure 4E, 

Figure S2).   
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Figure 5. Temporal learning predicts one-year event-free survival in postoperative pLGG patients: 
representative cases and axial slices from the DFCI/BCH LGG test set. Sequential brain MRI scans 
demonstrate follow-up intervals and event status in four patients (two males: top and bottom middle; two 
females: top middle and bottom). Resection status varies among subtotal resection, near total resection, 
biopsy, and gross total resection. The colored bars indicate the predicted probability output of the pipeline 
for 1-year event-free survival from time-of-scan by accumulating the postoperative consecutive prior 
scans up to that point as input, with the corresponding probability of one-year event or death (0.0-1.0) 
depicted on the right. Event represents radiographic/clinical recurrence or death, and status is marked as 
either true or false, as the observed clinical outcome for those patients.  
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DISCUSSION  

In this work, we leveraged a self-supervised deep learning strategy, temporal learning, 

for longitudinal MR analysis and postoperative risk assessment in children with gliomas. 

Up until this point, there have been few attempts to quantitatively analyze longitudinal 

imaging data for brain tumors26, and none for pediatrics, given several barriers, namely 

limited data and a lack of a framework to synthesize complex, serial imaging data. This 

study establishes such a framework for longitudinal imaging analysis at the point-of-

scan that requires no manual input. We demonstrate that this approach improves the 

ability to predict postoperative glioma recurrence risk across patients from three 

institutions and two clinical settings (low- and high-grade glioma), representing over 715 

patients and 3994 scans. Deep learning-based short-term risk-stratification may provide 

an actionable window for early intervention with systemic therapy, radiation, or clinical 

trial enrollment in patients with high-risk of recurrence. With the advent of novel targeted 

therapeutics for BRAF-altered gliomas 27–30, such a risk-prediction model could inform if, 

and when, to initiate therapy (Supplementary Methods A.4, Figure S3). Conversely, in 

those with low projected risk, model outputs may provide reassurance and the ability to 

de-intensify surveillance regimens.  

 

The cancer care continuum produces a vast amount of longitudinal imaging data 

containing rich spatiotemporal information and tumor growth patterns. This information 

may aid in analyzing the response to treatment and predicting recurrence but requires a 

framework for robustly analyzing potentially billions of parameters of 3D serial medical 

imaging data without overfitting. We show that training a single timepoint imaging model 
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for the challenging task of postoperative recurrence for pLGG is essentially futile, with 

model predictions not much better than chance (AUC 0.58 on DFCI/BCH LGG and 0.49 

on the CBTN test sets). Adding more longitudinal context in itself was beneficial, but 

gains in performance disappeared when testing the model on outside data (i.e. CBTN, 

RadART), demonstrating persistent overfitting and a lack of generalizable features 

learned. On the other hand, using SSL, as has been widely shown at this point 31–33, in 

helping the model establish a baseline of informative, generalizable features that could 

be transferred to the setting of recurrence prediction.  

 

Furthermore, our study demonstrates that within an SSL approach, pretext task matters. 

We hypothesized that the task of learning sequential imaging order (i.e. temporal 

learning) for postoperative scans with their evolving changes would promote learning of 

features that inherently capture scan-to-scan differences. Since these differences nearly 

always occur around residual tumor and surgical cavities, the model inherently learns to 

focus attention on the clinically relevant areas and assess change from scan-to-scan 

(Figure 6). This process, in essence, mimics the behavior of an expert neuroradiologist, 

with the added benefit of the model’s exposure on thousands of sequential scans. The 

features learned from this process of sequence identification were able to inform 

accurate recurrence risk prediction with minimal fine-tuning achieving AUCs >=0.75 

(Figure 3, Figure S4 ) across four validation cohorts. Similar strategies have been 

employed with success in predicting video frame sequences, such as for self-driving 

cars22,23, but had never been investigated for medical imaging. We expect that this 

strategy will improve medical imaging classification performance across a multitude of 
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scenarios with limited data. While testing of other SSL frameworks is warranted in this 

setting in the future, pre-existing frameworks are challenging to adapt to multi-timepoint 

3D imaging data. 

 

Figure 6 GradCAM maps from the ResNet18 module of the longitudinal imaging pipeline for longitudinal 
imaging data. The GradCAM map is cutoff at the top 30% intensity with contour lines overlaid. GradCAM 
visualization for the DFCI/BCH LGG finetuned model (temporal learning on DFCI/BCH LGG) on (A) 
DFCI/BCH LGG, (C) DFCI/BCH HGG , (D) RadART test subjects. B) GradCAM visualization for the 
CBTN finetuned model (temporal learning on DFCI/BCH LGG) on CBTN test subject. 
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To perform highly accurate event predictions, modeling tumor/cavity growth patterns 

from longitudinal imaging is essential. Previous deep-learning approaches34–37 38 have 

been limited by small datasets and limited longitudinal scans. We address this by 

leveraging larger datasets with increased longitudinal span. In addition to limited data, 

prior works lack deeper model designs to capture subtle tumor growth patterns. Our 

pipeline is designed to pick up inherent spatiotemporal information by encoding spatial 

cues into latent features using a ResNet encoder, refining features to focus on 

tumors/cavities with MHSA and modeling temporal dynamics with LSTM. This formed a 

suitable architecture for temporal learning and, ultimately, recurrence prediction. 

Notably, temporal learning improved performance regardless of the dataset used for 

temporal pretraining, though the technique does appear to benefit from pretraining on 

datasets with longer imaging follow-up (i.e. DFCI/BCH LGG versus CBTN in this study). 

 

This study has several limitations. Firstly, the study is retrospective in nature and 

subject to selection biases regarding patients included, institutional treatment patterns, 

surveillance schedules, and variability in MRI scanner acquisition parameters. 

Prospective validation will be needed to determine the potential effects of data 

distribution shifts39 on performance. There were notably substantial differences in 

follow-up imaging time and number of scans available across institutions, which may 

have affected model performance metrics. While incrementally increasing MRI 

availability was found to be beneficial across institutions, the actual optimal number and 
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point of plateau is likely affected by surveillance intervals, which are not standardized in 

real-world clinical practice. The scope of this study was limited to one-year EFS 

prediction, and analysis of longer-term risk prediction would be of clinical utility and a 

direction for future work. While subgroup analyses by adjuvant therapy were reassuring 

and showed relative stability (Table S3), further work should investigate the effects of 

adjuvant therapy on imaging-based recurrence prediction. 

In conclusion, we developed and validated the first longitudinal deep-learning imaging 

model for pediatric brain tumors and found that a self-supervised learning approach 

inspired by clinical workflows, temporal learning, significantly improved the ability to 

predict recurrence risk for pediatric gliomas in the postoperative setting and has 

potential as a point-of-care diagnostic and decision-making tool for cancer surveillance. 

The temporal learning framework is adaptable to any longitudinal medical imaging task, 

positioning it for broad impact for disease surveillance and personalized management. 

Future work is warranted to prospectively validate this framework in a variety of 

longitudinal imaging scenarios and to study its effects on decision-making and patient 

outcomes. 

 
 

METHODS  

Data  

This study was conducted in accordance with the Declaration of Helsinki guidelines and 

following the approval of local Review Board (IRB). Waiver of consent was obtained 

from the IRB prior to research initiation due to use of public datasets and retrospective 

nature of the study. This study involved four patient datasets from three institutions with 

available T2- weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) brain MRI:  
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Dana Farber Cancer Institute/Boston Children’s Hospital (DFCI/BCH) LGG (N=345, 

median follow-up interval = 190 days) with patients (aged 3 – 20 years) diagnosed 

between 1990-2022; the Children’s Brain Tumor Network (CBTN; N=301 median follow-

up interval = 178 days) with children aged 1 - 23 and pathologically confirmed diagnosis 

of LGG; RadART (N=35 median follow-up interval = 317 days) with patients aged 5 – 24 

years, and diagnosed with LGG; DFCI/BCH HGG (N=34 median follow-up time interval 

= 61 days) with patients (aged 3-19) diagnosed with HGG. All datasets include T2-

FLAIR MRI of patients who underwent primary surgery and had at least one year of 

clinical and radiographic follow-up. T2-FLAIR MRI images pose superior sensitivity in 

detecting white matter abnormalities and lesions, along with suppressing CSF and 

enhancing the contrast between normal and pathological tissues, hence play a crucial 

role in monitoring tumors and assessing treatment efficacy. These properties also allow 

deep-learning models to learn better representations of tumor regions for tasks like 

classification and segmentation. We develop our pipeline around the T2-FLAIR MR 

sequences for these advantages. MR acquisition details for both datasets are provided 

in supplemental material (Table S1, Figure S1; Supplementary methods A.1).  

 
 

 

Deep Learning Pipeline Architecture  

The single scan imaging model consists of a 3D ResNet18 CNN backbone up to the 

global average pool layer, followed by a fully connected layer of 512 neurons with 2 

output neurons. The longitudinal deep-learning pipeline consists of a 3D ResNet18 CNN 

backbone up to the global average pool layer. The backbone is followed by a Multi-

Headed Self Attention MHSA block with 8 attention heads that accept the latent features 

of dimension 512. The MHSA block is followed by an LSTM module with the same 

feature and hidden state dimension of 512. The LSTM module is followed by a Fully 

Connected layer with 512 neurons and the output layer with 2 neurons (Figure 1B).    

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.04.24308434doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308434
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Temporal Learning   

we leverage the data from the training split of the DFCI/BCH LGG cohort to prevent 

information leakage. To implement temporal pretraining, we sample each patient 

trajectory to create new data points with different scan lengths ranging from 1 to the 

complete length of the trajectory. We then shuffle all the trajectories and assign labels 

based on the correct chronological order of the scans for each shuffled trajectory help(0 

for incorrect order, and 1 for correct order) (Figure 7). Through this oversampling 

process, we create 3531 new trajectories from 278 patient trajectories (DFCI/BCH 

LGG), with number of scans ranging up to 12 per trajectory. We then train and validate 

the model on this new oversampled dataset and use the best checkpoint for the 

finetuning process for the EFS task on both the DFCI/BCH LGG and CBTN datasets 

(Supplementary methods A.3). We perform similar oversampling strategy and temporal 

learning experiments on the CBTN train split (2054 trajectories from 240 patient 

trajectories), and then choose the best performing temporal learning model and fine-

tune it for EFS prediction task on the CBTN dataset. We compare the EFS predictive 

performance of the finetuned model with temporal learning on DFCI/BCH LGG and 

CBTN cohorts (Figure 3, Table S2). 
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Figure 7 Illustration of oversampling strategy for Temporal Training. The left panel depicts a subject with 3 
follow-up scans in chronological order. The middle panel depicts the generated trajectories for temporal 
learning. Oversampling is done such that the generated trajectories have a variable number of scans 
starting from 1 up to the maximum scans for that subject. The trajectories are shuffled to generate both 
positive samples (correct chronological order) and negative samples (incorrect chronological order). 
Finally, each trajectory is assigned a label (0,1) based on the chronological order of the scans.  

 

Training details 

 

Dataset 

T2-FLAIR MRI images from the 4 datasets (Figure 2) were converted from DICOM 

format to NIFTI format via rasterization packages utilizing dcm2nii package in Python 

v3.8. N4 bias filed correction was adopted to correct the low-frequency intensity non-

uniformity present in MRI images using SimpleITK in Python v3.8. All scans were 

resampled to 1´1´1 mm3 voxel size using linear interpolation via SimpleITK. After 

interpolation, the MRI scans were co-registered using a rigid registration step with 

SimpleITK. Lastly, a brain extraction step was performed for all the scans using HD-

BET package with final image dimensions of (170,206,162). 
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For each follow-up scan of a patient, we create a binary 1-year EFS label, based on the 

difference between the date of the scan and the date of the event. The label is 1 if the 

difference is less than 365 days and 0 otherwise. In this way, each follow-up scan in the 

patient trajectory is assigned a binary label with the last scan of the trajectory indicating 

either the occurrence of the event (label 1) or no event (label 0) for that patient. A split 

of 80:20 was used for training and validation for training from scratch, temporal 

pretraining, and finetuning for both DFCI/BCH LGG and CBTN datasets.  

 

Dataloader  

As the first preprocessing step, we perform intensity standardization across the scans 

for each patient. This is followed by data augmentations of Random Affine 

transformation, 3D Elastic transformation, Random Adjust Contrast transformation, 

Random Rotate transformation, and Intensity scaling using MONAI API. The images 

were finally resized to a dimension of (96,128,96) before being fed into the model.  

 

Training 

For the model training, validation, and testing (Supplementary methods A.2), the 

maximum number of scans per patient was limited to 12. For each patient, all the scans 

post augmentations are collated into a single list of length 12. For patients with scans 

less than 12, the scans are appended with empty arrays of the same dimensions to fill 

the list, whereas for the patients with scans more than 12, the scans are subsampled 

from the trajectory, keeping the first and the last scans constant.  
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Evaluation 

For Training, testing, and reporting of results, we calculate the AUC with 95% 

confidence intervals, F1 score, specificity, and sensitivity. The 95% confidence intervals 

are calculated by the bootstrapping method with 1000 bootstrap samples.  Statistical 

metrics and curves were calculated using Scikit-learn packages40 in Python v3.8. 
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