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Abstract 

The study investigates the use of volatile organic compounds (VOCs) in exhaled 

breath as a non-invasive diagnostic tool for lung cancer (LC). Employing a novel 

micro gas chromatography- micro photoionisation detector (μGC-μPID) system, we 

aimed to identify and validate VOCs that could differentiate between LC patients and 

those with benign pulmonary diseases. The cross-sectional study included 106 

participants, categorized into 85 LC patients and 21 benign controls, based on 

computed tomography and histological assessments. Participants provided breath 

samples following a standardized protocol, and the μGC-μPID system, known for its 

rapid point-of-care capabilities and low detection limits, was utilized for rapid and 

sensitive online VOC analysis. Through a meticulous process of data analysis, 

including principal component analysis, single-factor hypothesis testing, orthogonal 

partial least squares discriminant analysis and various tests of machine learning 

algorithms, including random forest, k-nearest neighbor, logistic regression, XGBoost, 

and support vector machine, we finally identified six potential VOC biomarkers, with 

diagnostic models incorporating these markers achieving high sensitivity (0.95-1.00) 

and specificity (0.84-0.88), and areas under the receiver operating characteristic curve 

ranging from 0.79 to 0.91. Moreover, these models were also extended favourably to 

the recurrence and metastasis of pulmonary cancer and oesophageal cancer. The study 

demonstrates the potential of μGC-μPID as a point-of-care tool for LC differential 

diagnosis, highlighting the need for further validation in larger, multi-centric cohorts 

to refine the VOC biomarker panel and establish a robust diagnostic framework for 

clinical application. 
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1. Introduction 

Lung cancer (LC), arising from the bronchial mucosa or glandular elements, has 

emerged as the preeminent etiology of cancer-induced mortality on a global scale. The 

year 2020 witnessed a staggering 2.22 million incidences and 1.80 million fatalities 

attributed to LC, constituting approximately 20% of the total cancer-related deaths [1]. 

Notably, the prognosis for advanced-stage LC patients, is dishearteningly poor, with 

survival rates only ranging between 10 to 20% [2]. This stark reality underscores the 

imperative for the early identification of the disease and the stratification of 

individuals at elevated risk, thereby enabling the deployment of targeted therapeutic 

interventions and management protocols. Despite advancements in diagnostic 

techniques, the prevailing methods, predominantly rooted in imaging technologies, 

present formidable challenges including suboptimal sensitivity, challenges in 

discriminating between benign and malignant nodules, an inability to detect 

diminutive lesions, and the financial burden and ionising radiation hazards [3]. 

Moreover, histopathological investigations are invasive in nature and thus ill-suited 

for broad-based early screening of populations at risk. Consequently, there exists an 

exigent demand for the innovation of diagnostic strategies that are non-invasive, 

economically viable, and characterized by a high degree of precision, with the 

ultimate aim of augmenting early detection and markedly enhancing therapeutic 

outcomes [4]. 

Over the past several decades, the examination of volatile organic compounds 

(VOCs) present in exhaled breath has attracted considerable attention as a potential 

source of biomarkers for pulmonary afflictions including LC [5]. Exhaled VOCs, 

either endogenous or exogenous, are gaseous organic molecules with a high vapour 

pressure at environmental temperature and a boiling point typically ranging from 50 

to 250 °C. The appeal of exhaled VOCs as diagnostic indicators lies in their non-

invasive acquisition, simplicity of collection, and capacity to mirror changes in 

pathogen proliferation or the host's immune response [6]. 

Recent studies have illuminated the potential of breath VOCs as biomarkers for 

the early identification and differential diagnosis of LC [7-27]. Gordon et al. [28] 

pioneered the use of gas chromatography-mass spectrometry (GC-MS) to identify 

alkenes in the breath of LC patients. Subsequently, Phillips et al. [29] demonstrated 

that a panel of 22 exhaled VOCs could effectively distinguish between individuals 
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with and without LC before their further investigation [30, 31]. A Polish research 

group conducted a series of studies, meticulously analyzing GC-MS profiles to 

identify 19 to 32 VOCs at parts per billion (ppb) levels, specific to various LC 

subtypes, including small cell LC (SCLC) and non-SCLC [32, 33]. Peled et al.’s 

comparative analysis using GC-MS revealed significant differences in 1-octene 

concentrations between malignant and benign tumor patients. Employing an 

electronic nose, they achieved a sensitivity of 86% and specificity of 96% in group 

differentiation [27]. Broza et al. [18] developed a diagnostic model with a sensitivity 

of 100% and specificity of 80% based on a sample of 10 patients with benign tumors 

and 24 with LC. Fu et al. [26] observed increased levels of specific VOCs in the 

breath of LC patients compared to healthy controls (HCs) and those with benign 

tumors. Corradi et al. [34] developed a classification model with a sensitivity of 60.6% 

and specificity of 67.2% for distinguishing between patients with LC and those with 

benign tumors. These findings significantly advance the field of breathomics and 

underscore the potential of breath VOC biomarkers for non-invasive LC diagnostics 

and highlight the imperative for further optimization and validation of these VOCs to 

refine the sensitivity and specificity of breath analysis in the context of LC detection 

and management. 

Notably, most research to date has employed GC-MS and electronic nose (eNose) 

for VOC biomarker identification or breath-print pattern recognition [35]. However, 

GC-MS requires complex and time-consuming preconcentration procedures rendering 

it unsuitable for clinical practice while eNose is typically designed for targeted VOC 

detection with lower sensitivity and no capacity for identifying potential biomarkers 

[36]. In this study, we used a novel portable online micro gas chromatography- micro 

photoionisation detector (μGC-μPID) system to detect breath VOCs for LC 

distinguishing from benign diseases. μGC-μPID is a rapid point-of-care (POC) breath 

VOC analyser [37] previously applied successfully in breath analysis of COVID-19 

[38], asthma [39], acute respiratory distress syndrome [40, 41] and colorectal cancer 

(CRC) [42], previously. We demonstrate here for the first time the potential 

application of μGC-μPID in practical LC differentiating diagnosis in computed 

tomography (CT) abnormal patients. 

 

2. Methods 
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2.1 Study design and participants 

This cross-sectional study, conducted from November 2021 to January 2022 at 

the East Division of the First Affiliated Hospital of Sun Yat-sen University in 

Guangzhou, China, received approval from the Ethics Committee of the First 

Affiliated Hospital of Sun Yat-sen University (No. 2022-016). Prior to the initiation of 

clinical trials, all subjects provided signed informed consent. Subjects, categorised 

into LC patients and benign controls (BCs), were breath-sampled. This categorisation 

was based on CT and histological examinations. All enrolled patients had not 

previously received any malignancy-related treatment and presented histological 

lesion results. The age range of all participants was 18-80 years. Exclusion criteria 

included unwilling or unable to sign informed consent in person, unqualified breath 

sample, relapsed diseases with incomplete treatment history, suffering from other 

malignant tumors, with severe bronchial asthma and confirmed tuberculosis or with 

severe liver damage and kidney diseases. Recording of demographic and clinical 

information were collected. 

2.2 Breath collection 

Breath sampling operators underwent professional training to ensure 

standardization of procedures. All subjects were asked to fast for at least 2 hours, rinse 

their mouths with purified water, and abstain from vigorous exercise, alcohol 

consumption, and smoking before breath collection. Exhaled air in 3 min was directly 

pumped into the gas inlet of μGC-μPID for VOC analysis (about 600 mL were 

collected) while all the rest breath air was collected into a pre-processed sorbent tube 

simultaneously. All breath samples were collected in the same room during this study. 

Each sorbent tube was sealed at both ends with brass caps containing 

polytetrafluoroethylene ferrules. Prior to use, the sorbent tubes were aged at 320°C 

for four hours while purged with nitrogen of 99.99% purity. 

2.3 μGC-μPID analysis 

The μGC-μPID system (ChromX Health Ltd., China) comprises three distinct, 

silicon-based microfabricated chips: a multi-adsorbent packed micropreconcentrator-

injector (μPCI) for VOC capture, preconcentration, and injection; a 10 m long 

microcolumn integrated with thin-metal heaters and temperature sensors for 

temperature-programmed separations; and a microfabricated photoionization detector. 
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In a full analysis cycle, the breath sample was directly drawn through a Nafion tube to 

remove moisture, then through the μPCI at a fixed flow rate using a mini pump. The 

captured VOCs were then injected into a μcolumn by a rapid thermal desorption 

(~300 ms). In the column, the VOC mixture was separated under conditions of a 1 

mL/min carrier gas flow rate and a temperature programme with a ramp rate of 

10 °C/min from 25 °C to 180 °C. 

Additionally, the sorbent tube is connected to a μGC-mass spectrometry device 

(MSD) for further VOC identification. This complete platform includes a high-

throughput automatic injector, a homemade thermal desorber, a μGC-μPID, and an 

MSD (Agilent 5977B). The tube undergoes thermal desorption under standard settings: 

a flow path at 180�, and a pre-purge at 100 mL/min for 2 min to remove water 

moisture. The sample tube is desorbed at 300� for 10 min, with the flow rates set at 

60mL/min. Mass spectra were obtained using Qualitative Analysis 10.0 (MassHunter) 

software and cross-referenced with the NIST 2017, Version 2.3 mass spectrum library. 

2.4 Data analysis 

Demographic characteristics and VOC peaks across different groups were 

compared using the independent t-test for data with normal distribution and the rank 

sum test for non-parametric data in univariate analyses. Statistical significance was set 

at p < 0.05, and the Benjamini-Hochberg procedure was applied to all p-values to 

calculate the false discovery rate (FDR) value. 

Raw data from μGC-μPID were initially processed to eliminate noise and offset 

errors generated during data collection procedures, including baseline correction, 

noise cancellation, and time alignment. Subsequently, a peak detection algorithm was 

applied to the aligned data to identify each peak and its corresponding metabolite, 

facilitating the grouping of metabolites into a processed data matrix across samples. 

Principal component analysis (PCA) was employed to identify potential batch effects, 

which were eliminated through linear mixed modelling. 

VOCs were screened quantitatively by single-factor hypothesis test (SHT) and 

variable importance in the projection (VIP) via orthogonal partial least squares (OPLS) 

discriminant analysis (p < 0.05 & VIP >1). Differential VOCs were visualised using 

differential cluster plots. Random forest (RF), k-nearest neighbor (KNN), logistic 

regression (LR), XGBoost, and support vector machine (SVM), were employed to 

establish models. The sensitivity, specificity, and area under the curve (AUC) was 
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calculated to evaluate model performance and receiver operating characteristic (ROC) 

curve were given for performance evaluation. 

3. Results 

3.1 Study population 

Initially, 119 participants were recruited for LC and BC groups. Exclusion criteria 

were applied to participants aged outside the 18 to 80 years range, those who declined 

to participate, or those who provided invalid breath samples, resulting in a final cohort 

of 106 eligible participants for analysis. Of these, 85 were diagnosed with LC, and 21 

were identified as BCs, as confirmed by histological assessments. Demographic and 

clinical data for these participants are presented in Table 1. Statistical comparisons 

between the case and control groups were performed on basic demographic 

characteristics, including age, gender, body mass index (BMI), smoking and alcohol 

consumption status, and the presence of underlying diseases. As detailed in Table 1, 

no significant differences were observed in these factors. 

3.2 VOC biomarkers 

Following OPLS screening with criteria of p < 0.05 and VIP > 1, ten VOCs, 

including two unidentified entities, were consistently detected in the exhaled breath 

samples of both LC patients and BC groups. These compounds, alongside their 

discriminant values, are enumerated in Table 2. The majority of the identified VOCs 

were hydrocarbons, with the exception of hexamethylcyclotrisiloxane and 

acetophenone. Figure 1 presents a comparative analysis of the peak intensities of 

these VOCs between the two groups, highlighting a marked increase in LC patients, 

particularly for dodecane, methylcyclopentane, and the compound with a retention 

time of 3.692, which exhibited fold changes exceeding 10.  

3.3 Model performance 

The individual diagnostic efficacy of the aforementioned differential VOCs for 

LC is delineated in Table 2. Diagnostic models (Model Group 1) incorporating these 

ten VOCs from the OPLS screening were evaluated using five distinct machine 

learning (ML) algorithms. These models achieved AUCs ranging from 0.79 to 0.90, 

sensitivities from 0.95 to 1.00, specificities from 0.84 to 0.88, and accuracies from 

0.84 to 0.86, as detailed in Table 3, along with F1 scores and accuracy indices. 
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Furthermore, to enhance or maintain the predictive performance and robustness of the 

model, a smaller subset of seven VOCs was incrementally refined through recursive 

feature elimination with cross-validation (RFECV) and RF feature-selection 

techniques, excluding methylcyclopentane, acetophenone, and the aforementioned 

unknown compound VOC@10.579. Diagnostic models (Model Group 2) 

incorporating the final seven VOCs are showcased in Table 4. Notably, the KNN 

algorithm demonstrated the most proficient performance (AUC > 0.9) among the ML 

models in both groups, with its ROC curve depicted in Figure 2 in Model Group 2. 

3.4 Influence of recurrence, metastasis and cancer sites 

Three additional patient groups were also evaluated with the aforementioned 7-

VOC model: (1) patients with recurrent LC post-surgery, (2) patients with non-

pulmonary tumours metastasised to the lung, and (3) patients with oesophageal cancer. 

The results, as presented in Table 5, indicated that the KNN model achieved 100% 

accuracy in classifying all groups into the LC category. 

4. Discussion 

This proof-of-concept study represents the inaugural investigation into the utility 

of μGC-μPID for differentiating LC patients from BCs among CT abnormal subjects. 

The models, trained and evaluated in a blinded fashion, achieved sensitivities of 0.95 

to 1.00, specificities of 0.84 to 0.88, and AUCs of 0.77 to 0.91, utilising seven 

potential VOC biomarkers, six of which were identified. Furthermore, analysis of the 

influence of recurrence, metastasis, and cancer sites suggested that these VOCs are 

not LC-specific but rather indicative of malignant tumours with a high degree of 

probability. These findings underscore the potential diagnostic value of breath VOCs 

in LC and lay the groundwork for the clinical application of μGC-μPID breath 

analysis technology. 

Among the six identified VOC biomarkers, all have been previously linked to 

various cancers. For instance, hexamethylcyclotrisiloxane, a common environment 

pollutant, which was supposed to originate from background emissions of the thermal 

desorption process or emollients [43], affects expressions of BRCA1, BRCA2, 

CHEK1 and CHEK1 mRNA [44]. It was found to exist in SW620 CRC cells with a 

different average level compared to those in normal cells [45]. Dodecane is a 

carcinogen mainly absorbed by inhalation and metabolized by the liver microsomal 
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mixed-function oxidase system. It has been consistently reported as a breath VOC 

marker for LC [46-49], CRC [50] and gastric cancer [51]. Wang et al. also identified it 

as a characteristic VOC in LC tissue compared to adenocarcinoma, squamous 

carcinoma, and SCLC cell lines [19]. Propylbenzene has been found to increase in the 

exhaled air of LC patients relative to healthy controls [49, 52] , whereas our study 

observed a decreased concentration. It is located in human cell membranes and 

involved in oxidation and hydroxylation pathways. 1,2,4-trimethylbenzene has been 

reported as a breath biomarker for LC by Phillips et al. [29] and Chen et al. [52], and 

is also implicated in the urinary discrimination of oncological groups, including 

leukaemia, colorectal, and lymphoma, from healthy individuals [53]. Mesitylene, a 

natural product found in Carica papaya, has been noted as a characteristic skin VOC 

in a case report of malignant melanoma [54] and was reported to excreted unchanged 

by the lungs. P-menth-3-ene is associated with oxidative stress, a common feature in 

neoplastic diseases [55]. It is also found in Angelica gigas, a medicinal herb showing 

potential anti-cancer effects [56]. 

Our study diverges from existing work employing GC-MS, online MS, or eNose 

instruments, not only due to the distinct combination of VOC biomarkers identified 

but also the methodology. The μGC-μPID utilised in this study is a rapid, point-of-

care (POC), non-target breath VOC analyser capable of direct breath sampling with 

exceptionally low detection limits, typically 10 parts per trillion (ppt). This 

technology bypasses the time-consuming and complex procedures of traditional GC-

MS, the limited receptive range and lack of qualitative or quantitative capabilities of 

eNose, thereby facilitating a more practical and adaptable clinical translation. 

Nevertheless, several limitations are acknowledged. Most notably, the study's 

sample size is modest, reflecting a single-centre pilot study. Further research and 

validation are essential to refine a more consistent and precise panel of VOCs with a 

larger and multi-centric cohort. Secondly, an evaluation of LC stages was not 

conducted due to the limited number of participants, a shortcoming that is currently 

being addressed. Thirdly, the metabolic pathways of the potential biomarkers remain 

poorly understood, which diminishes the clinical persuasiveness of breath VOC 

diagnosis without clear etiologies and metabolic mechanisms. Further foundational 

biological and medical research is imperative for the field of breathomics. Lastly, the 

μGC-μPID breath analyser's capacity to detect a limited range of VOCs, in 

comparison to traditional GC-MS, is constrained by the selected internal materials, 
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length, and operating temperatures of the columns, as well as the 10.6 eV ionisation 

potential. Ongoing development of the hardware aims to enhance separation and 

detection capabilities. 

In conclusion, this study presents the development and evaluation of a rapid POC 

breath test for the differential diagnosis of LC from benign lung diseases in CT 

abnormal groups, employing our self-developed μGC-μPID breath analyser. The 

results indicate that the proposed breath VOC biomarkers and methods can accurately 

discriminate LC from control groups, with the model extending favourably to the 

recurrence and metastasis of pulmonary cancer and oesophageal cancer. Six potential 

VOC biomarkers were identified for LC differential diagnosis. Further analysis on 

subdivided group differentiation and extensive cohort studies are warranted prior to 

clinical application. 
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Tables 

Table 1. Baseline data and statistical analysis of all enrolled participants. 

Groups LC  BC P values 

n 85 21  

Age 61.0 ± 9.9 54.4 ± 15.8 0.07 

BMI 22.6 ± 4.1 23.6 ± 5.8 0.93 

Gender Male 31 (36.5%) 10 (47.6%) 0.35 

Female 54 (63.5%) 11 (52.4%) 

Smoking Never 67 (78.8%) 16 (76.2%) 0.78 

Ever 9 (10.6%) 2 (9.5%) 

Current 9 (10.6%) 3 (14.3%) 

Alcohol Never 74 (87.1%) 19 (90.5%) 0.57 

Ever 7 (8.2%) 2 (9.5%) 

Current 4 (4.7%) 0 (0.0%) 

Underlying diseases Yes 13 (15.3%) 5 (23.8%) 0.35 

No 72 (84.7%) 16 (76.2%) 

Abbreviation: BC, benign controls; BMI, body mass index; LC, lung cancer. 
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Table 2. VOCs screened from μGC-μPID data. 

VOC Name Retention time CAS No. Molecular Formula P value VIP AUC 

Unknown 3.692 / / 0.01 1.83 0.73 

Methylcyclopentane 4.144 96-37-7 C6H12 0.01 1.81 0.74 

Hexamethylcyclotrisiloxane 5.879 541-05-9 C6H18O3Si3 0.00 1.23 0.78 

Propylbenzene 8.028 103-65-1 C9H12 0.03 1.03 0.71 

p-menth-3-ene 8.573 500-00-5 C10H18 0.04 1.15 0.70 

Mesitylene 9.138 108-67-8 C9H12 0.01 1.16 0.74 

1,2,4-Trimethylbenzene 9.167 95-63-6 C9H12 0.00 1.61 0.82 

Acetophenone 10.025  98-86-2 C8H8O 0.03 1.38 0.71 

Unknown 10.579 / / 0.04 1.12 0.70 

Dodecane 12.486 112-40-3 C12H26 0.00 2.60 0.83 

Abbreviation: AUC: area under curve, CAS: chemical abstracts service, VIP: variable importance in the projection, VOC: volatile organic 

compound. 
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Table 3. Model performances from μGC-μPID data with 10 statistically different VOCs (Model group 1) and 7 model-selected VOCs (Model 

group 2). 

Algorithms 

Model group 1  Model group 2 

AUC F1 Accuracy Sensitivity Specificity AUC F1 Accuracy Sensitivity Specificity 

LR 0.86±0.02 0.92±0.01 0.86±0.02 0.97±0.01 0.88±0.02  0.87±0.02 0.92±0.01 0.87±0.02 0.97±0.01 0.88±0.02 

SVM 0.77±0.06 0.91±0.01 0.84±0.02 1.00±0.00 0.84±0.02  0.77±0.07 0.91±0.01 0.84±0.02 0.96±0.02 0.87±0.02 

RF 0.85±0.04 0.92±0.01 0.85±0.02 0.98±0.01 0.86±0.02  0.84±0.04 0.91±0.02 0.85±0.03 0.97±0.02 0.86±0.02 

KNN 0.90±0.02 0.91±0.01 0.84±0.02 1.00±0.00 0.84±0.02  0.91±0.02 0.91±0.01 0.84±0.02 1.00±0.00 0.84±0.02 

XGBoost 0.79±0.05 0.90±0.02 0.83±0.03 0.95±0.02 0.87±0.03  0.80±0.04 0.90±0.02 0.83±0.03 0.95±0.02 0.87±0.02 

Abbreviation: AUC, area under curve; KNN, k-nearest neighbor; LR, logistic regression; RF, random forest; SVM, support vector machine. 
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Table 4. Accuracy of 7-VOC models on the classification of patients with recurrence, 

metastasis and cancer sites 

Patients LR SVM RF XGBoost KNN 
NPTML #1 1 1 1 1 1 
NPTML #2 1 1 1 1 1 
LCPS 1 0 0 0 1 
OC #1 0 0 0 0 1 
OC #2 0 0 0 1 1 
OC #3 1 0 0 1 1 

Abbreviation: KNN, k-nearest neighbor; LCPS, lung cancer post-surgery; LR, logistic 

regression; NPTML, non-pulmonary tumours metastasised to the lung; OC, 

oesophageal cancer; RF, random forest; SVM, support vector machine. 
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Figure legends 

 

Figure 1. Box plots the differential VOC metabolites from μGC-μPID data. 
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Figure 2. ROC curve of the KNN model in Model group 2. AUC: area under curve, 

KNN: k-nearest neighbor, LR: logistic regression, RF: random forest, SVM: support 

vector machine, XGB: XGBoost. 
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