Table 1: Summary of the included studies.

author	Year	Data Type + Sample Size	Model	Model Task	Main Result
				Gastroenterology	
Kong et al.	2024	15 questions related to H. pylori	ChatGPT 4.0, ChatGPT 3.5, ERNIE Bot 4.0	Counseling on H. pylori infection	Satisfactory accuracy and comprehensibility; low completeness
Lahat et al.	2023	110 real-life patient questions	GPT	Answering patient questions	Varied performance in accuracy and clarity
Truhn et al.	2024	100 colorectal cancer reports	GPT-4	Extracting structured information	High accuracy in extraction of cancer stages
Zhou et al.	2023	NR	GPT-3.5 and GPT-4	Medical consultation and report analysis	High effectiveness in consultation accuracy
Choo et al.	2024	30 patients with advanced colorectal cancer	GPT	Formulating management plans	High concordance with multidisciplinary team plans
Huo et al.	2024	Responses for nine patient cases	ChatGPT, Bing Chat, Google Bard, Claude 2	Providing screening recommendations	Variable advice quality, some aligned with clinical guidelines
Imler et al.	2013	500 colonoscopy and pathology reports	cTAKES NLP engine	Categorizing pathology findings	High accuracy in identifying pathology levels

Lim et al.	2024	62 example case scenarios, tested three times	GPT-4	Providing advice on colonoscopy intervals	Consistent high adherence to guidelines
Imler et al.	2014	10,798 colonoscopy reports, 6,379 linked to pathology	Clinical text analysis and knowledge extraction system (cTAKES)	Determining colonoscopy surveillance intervals	High agreement with standards, improved guideline adherence
Bae et al.	2022	2,425 colonoscopy and pathology reports	Regular expressions and smartTA	Assessing quality indicators	High accuracy and matching expert review
Denny et al.	2012	200 patients	KnowledgeMap Concept Identifier	Identifying colorectal cancer tests in EMRs	Superior recall compared to manual and billing records
Lahat et al.	2023	20 research questions	GPT	Generating gastroenterology research questions	Relevant and clear questions generated, low originality
Laique et al.	2021	35,914 colonoscopy reports	Optical Character Recognition (OCR) and NLP	Extracting quality metrics	High accuracy in detecting clinical variables
Blumenthal et al.	2015	1,531 patients	NLP tool called QPID	Predicting non-adherence to colonoscopy	Effective prediction supported by Non-Adherence Ratio
Harkema et al.	2011	679 colonoscopy and pathology reports	Rule-based NLP engine	Quality measurement in colonoscopy	High accuracy in automated quality assessment

Raju et al.	2015	12,748 colonoscopy patients	Custom NLP software	Reporting colonoscopy quality metrics	Comparable to manual methods, high ADR detection
Nayor et al.	2018	8,032 screening colonoscopies	NLP pipeline	Calculating adenoma and serrated polyp detection rates	Perfect precision and recall
Atarere et al.	2024	20 questions using AI models	ChatGPT, BingChat, and YouChat™	CRC screening advice	High inter-rater reliability, variable accuracy
Seong et al.	2023	280,668 colonoscopy reports	LSTM, BioBERT, Bi-LSTM-CRF	Extracting information from reports	Superior performance in extracting colonoscopic findings
Lee et al.	2019	800 colonoscopy reports	Commercial NLP tool	Identifying quality and large polyps	High sensitivity and specificity in data extraction
Denny et al.	2010	200 patients	KnowledgeMap concept identifier	Detecting colonoscopy timing and status	High recall and precision, improved scheduling
Parthasarathy et al.	2020	323,494 colonoscopy patients	NLP	Diagnosing serrated polyposis syndrome	High accuracy in identifying SPS, improved detection rates
Rammohan et al.	2024	NR	GPT-4 and Bard	Answering standard gastroenterology questions	ChatGPT 4.0 more reliable and accurate than Bard
Pereyra et al.	2024	238 physicians	GPT-3.5	Assessing CRC screening recommendations	Lower performance compared to physicians, variable responses
Song et al.	2022	1,000 validation, 248,966	Custom NLP pipeline	Extracting information from EGD reports	High sensitivity, precision, and accuracy in data extraction

		application EGD reports			
Peng et al.	2024	131 colorectal cancer questions	GPT-3.5	Answering CRC-related questions	High reproducibility, less comprehensive than expert answers
Tinmouth et al.	2023	1,450 pathology reports	NLP	Identifying adenomas for ADR	High accuracy, supported system-level ADR measurement
Mehrotra et al.	2012	24,157 colonoscopy reports	NLP (C-QUAL)	Assessing colonoscopy quality measures	Identified variability in provider performance
Becker et al.	2019	2,513 German clinical notes from 500 patients	German-specific NLP pipeline	Guideline-based treatment evaluation	High precision and recall in extracting treatment information
Hou et al.	2013	575 colonoscopy pathology reports	Automated Retrieval Console (ARC)	Identifying surveillance colonoscopy	Effective in classifying surveillance colonoscopy
Gorelik et al.	2023	20 clinical scenarios	GPT-4	Post-colonoscopy patient management	High compliance with guidelines, accurate recommendations
Samaan et al.	2023	91 questions on liver cirrhosis	GPT	Answering cirrhosis-related questions	Lower accuracy in Arabic, significant discrepancies
Cankurtaran et al.	2023	20 questions on Crohn's disease and ulcerative colitis	GPT	Responding to IBD queries	Higher reliability in professional context, variable in patients

Wenker et al.	2022	1 000 matianta fan	CLAMP NLP	Identifician descularia in Demottle	II al annual annihisiter and annaisian in
wenker et al.	2023	1,000 patients for NLP validation	software	Identifying dysplasia in Barrett's Esophagus	High accuracy, sensitivity, and precision in dysplasia identification
Imler et al.	2018	23,674 ERCP procedures	NLP	Quality measurement for ERCP	High accuracy and precision in identifying quality measures
Li et al.	2021	5,570 patients	NLP	Identifying Lynch Syndrome for MMR screening	High accuracy in classifying MMR IHC results
Li et al.	2022	22,206 patients across various tests	ENDOANGEL-AS NLP and deep learning	Identifying high-risk patients for surveillance	High accuracy in patient identification and risk classification
Wagholikar et al.	2012	53 patients	NLP	Providing colonoscopy surveillance guidance	High effectiveness in clinical decision support
Sciberras et al.	2024	38 questions from IBD patients	GPT-3.5	Generating responses to IBD patient queries	High accuracy and moderate completeness
Stidham et al.	2023	1,240 patients with IBD	NLP	Detecting and inferring EIM activity status	High effectiveness in improving disease management
Ganguly et al.	2023	2,276 colonoscopy procedures	NLP	Adenoma detection and report card generation	High sensitivity, specificity, and consistency
Ma et al.	2024	165 esophageal ESD cases	GPT-3.5	Post-procedural quality control for esophageal ESD	Improved efficiency and accuracy in quality assessments
Gravina et al.	2024	Questions from 2023 Italian medical exam	GPT 3.5 and Perplexity AI	Answering medical residency exam questions	High accuracy in exam responses, educational potential
Fevrier et al.	2020	401,566 colonoscopy linked	SAS® PERL NLP tool	Extracting data from colonoscopy reports	High performance in classifying key clinical variables

		with pathology reports			
Benson et al.	2023	24,584 pathology reports	NLP pipeline	Extracting features of colorectal polyps	High precision and efficiency in feature extraction
Zand et al.	2020	16,453 lines of dialog from 424 patients	NLP model	Developing a chatbot for IBD patient support	Effective in categorizing patient dialog
Ananthakrishnan et al.	2013	1,200 patients for Crohn's and UC	NLP techniques	Improving EMR case definitions for IBD	Enhanced sensitivity and predictive value in identifying IBD
Wang et al.	2024	200 medical discharge summaries	GPT-4	Classifying GI bleeding events	High accuracy, outperforms ICD coding
				Hepatology	
Benedicenti et al.	2023	56 gastroenterologists, 25 residents, 31 specialists	GPT-3	Answering clinical vignettes on Hepatology and Gastroenterology	Demonstrated improvement over time, underperformed vs. humans
Li et al.	2023	1,463 postoperative colorectal cancer patients	NLP and machine learning integration	Predicting liver metastases	High accuracy in risk prediction
Wang et al.	2022	LiverTox database	DeepCausality framework	Causal inference for drug-induced liver injury	High accuracy and concordance with clinical guidelines
Yeo et al.	2023	164 questions about cirrhosis and	GPT	Providing answers on cirrhosis and HCC	Good accuracy, but not comprehensive

		hepatocellular carcinoma			
Sherman et al.	2024	3,134 patients with liver disease	NLP	Classifying liver disease pathology	High predictive values, enabled insights into disease progression
Van Vleck et al.	2019	38,575 patients	CLiX clinical NLP engine	Identifying NAFLD patients and disease progression	High sensitivity in tracking disease progression
Sada et al.	2016	1,138 patients identified from ICD-9 codes	Automated Retrieval Console (ARC)	Improving identification of hepatocellular cancer	Enhanced accuracy in HCC case identification
Pradhan et al.	2024	22 patients/caregivers and transplant hepatologists	Multiple LLMs	Generating patient educational materials about cirrhosis	Comparable understandability and accuracy to human materials
Schneider et al.	2023	2.15 million pathology and 2.7 million imaging reports	Rule-based NLP algorithm	Identifying hepatic steatosis	Effective detection of undiagnosed cases