1 SUPPLEMENTARY MATERIALS

- 2 Title
- 3 Type I interferon responses contribute to immune protection against mycobacterial infection

4 Authors

- 5 Andrea Szydlo-Shein¹, Blanca Sanz-Magallón Dugue de Estrada¹, Joshua Rosenheim¹, Carolin T.
- 6 Turner¹, Evdokia Tsaliki¹, Marc C. I. Lipman^{2,3}, Heinke Kunst^{4,5}, Gabriele Pollara¹, Philip M. Elks⁶,
- 7 Jean-Pierre Levraud⁷, Elspeth M. Payne⁸, Mahdad Noursadeghi¹, Gillian S. Tomlinson^{1*}

8 Affiliations

- 9 ¹Division of Infection and Immunity, University College London, London, UK
- 10 ²Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK
- 11 ³UCL Respiratory, University College London, London, UK
- 12 ⁴Barts Health NHS Trust, London, UK
- 13 ⁵Blizard Institute, Queen Mary University of London, London, UK
- ⁶The Bateson Centre, School of Medicine and Population Health, The University of Sheffield,
 Sheffield, UK
- ⁷Université Paris-Saclay, CNRS UMR9197, Institut Pasteur, Université Paris-Cité, Institut des
 Neurosciences Paris-Saclay, 91400 Saclay, France
- 18 ⁸Research Department of Haematology, Cancer Institute, University College London, London, UK
- 19 *Corresponding author

20 Corresponding author

21 Gillian S. Tomlinson, Email: g.tomlinson@ucl.ac.uk

23 LIST OF SUPPLEMENTARY MATERIALS

- Fig. S1. Batch correction, interindividual variation and pathway enrichment analysis of tuberculin skin test (TST) transcriptomic data from people with active tuberculosis (TB).
- 26 Fig. S2. Identification of upstream regulator target gene modules.
- Fig. S3. Relationship between the entire TST transcriptomic signature and interferon gammainducible gene modules with TB disease severity.
- 29 Fig. S4. Schematic representation of zebrafish experiments.
- 30 Fig. S5. *stat2* mutagenesis blocks type I interferon signalling.
- 31 Fig. S6. Quantitation of cellular recruitment to the site of sterile tailfin transection.
- 32 Table S1. Interferon response modules.
- 33 Table S2. Zebrafish lines.
- 34 Table S3. *stat2* crRNAs, primers and amplicon sequences.
- 35 Table S4. ImageJ macro description.
- 36 Table S5. Python script workflow and programming.
- 37 Data file S1. Collated original data.
- 38 This pdf file includes Figs S1-S6 and Tables S2, S4 and S5.
- 39 Tables S1 and S3 and Data file S1 are provided as separate files.

41 SUPPLEMENTARY FIGURES

Fig. S1. Batch correction, interindividual variation and pathway enrichment analysis of
 tuberculin skin test (TST) transcriptomic data from people with active tuberculosis (TB),
 related to Figure 1. Principal component analysis of the integrated list of the 10% genes with least
 interindividual variance in expression from each library preparation run before (A) and after (B) batch

- correction. (C) TST transcriptome genes (rows) for each study subject (columns); outlier transcripts
- are indicated in black. (**D**) Reactome pathway enrichment within the integrated list of 3222 outlier transcripts derived from the entire cohort, which comprise the TST transcriptome.

53 Fig. S2. Identification of upstream regulator target gene modules, related to Figure 1. (A) 54 Schematic of a putative functional gene network (target genes B,C,D) regulated by an upstream 55 molecule predicted to determine its expression (gene A). Correlation coefficients for the expression 56 levels of its component genes are indicated (r1, r2, r3). (**B**, **C**) Z-scores derived from the distribution of average correlation coefficients obtained from 100 iterations of randomly selecting groups of 57 genes from the TB TST transcriptome are shown in light blue (z-score=1), green (z-score=2) and 58 orange (z-score=3). Average correlation coefficients of upstream regulator target gene modules 59 60 identified within TST transcriptome genes negatively correlated (B) or positively correlated (C) with disease severity are shown in dark blue (z-score ≥ 2 , FDR ≤ 0.05) and grey (z-score $\leq 2 + -$ FDR ≥ 0.05) 61 62 compared to equivalent sized random gene modules.

63 64

Fig. S3. Relationship between the entire TST transcriptomic signature and interferon gamma inducible gene modules with TB disease severity, related to Figure 1. (A-E) Average expression of the 3222 gene TST transcriptome (A) and three largely non-overlapping interferon gamma inducible gene modules derived from independent experimental data (B-E) is not significantly correlated with radiographic TB severity. r values and p values were derived from two-tailed Spearman rank correlations. CXR = Chest x-ray, M Φ = Macrophage, KC = Keratinocyte.

66

65

77 Fig. S4. Schematic representation of zebrafish experiments, related to Figures 2-7. (A) Three guide RNA (gRNA)/Cas9 ribonucleoproteins (RNPs) targeting distinct exons of stat2 are injected into 78 79 the yolk sac of wild type (WT) early one cell stage embryos to generate stat2 CRISPants. Embryos from the same clutch are injected with three negative control "scrambled" RNPs (scr) which have no 80 81 genomic target. 28-30 hour post-fertilisation control and stat2 CRISPant embryos are intravenously 82 infected with 400 colony forming units (cfu) of fluorescent *M. marinum* (Mm). Bacterial burden and 83 dissemination are evaluated four days after inoculation by quantitative fluorescence microscopy. (B-**D)** *Tg(mxa:mCherry), Tg(mpeg1:mCherry)* and *Tg(mpx:eGFP)* embryos (Tg) are injected with three 84 85 stat2 RNPs or scr RNPs as described in (A) to generate CRISPant embryos with fluorescent Mxa 86 protein expression, macrophages or neutrophils, respectively. (B) Three day post-fertilisation (dpf) 87 stat2 CRISPant and control transgenic larvae are injected via the coelomic cavity with 1 nl of 88 recombinant interferon phi 1 protein (1.25 mg/ml). Induced expression of the interferon stimulated 89 gene (ISG) Mxa is measured by fluorescence microscopy at 24 hours. (C) A small portion of the tail 90 fin is removed using a sterile microscalpel from three dpf stat2 CRISPant and control transgenic 91 embryos. Cellular recruitment to the site of sterile injury is assessed at 1, 6 and 24 hours post-wound, using quantitative fluorescence microscopy. (D) Two dpf stat2 CRISPant and control transgenic 92 93 embryos are infected with 200 cfu of *M. marinum* by injection into the hindbrain ventricle. 94 Recruitment to the site of localized *M. marinum* infection is evaluated by fluorescence microscopy at 95 18 hours for macrophages and 6 hours for neutrophils.

96

98 Fig. S5. stat2 mutagenesis blocks type I interferon signalling, related to Figure 2. (A) 99 Percentage of mutated (gray) and frameshifted (orange) DNA sequencing reads for each guide RNA 100 (gRNA) target site, predicted using the ampliCan R package, for individual 4-5 day post-fertilization 101 (dpf) zebrafish larvae subjected to yolk sac injection at the one cell stage with three gRNA/Cas9 102 ribonucleoproteins (RNPs) targeting distinct stat2 exons. Frameshifting mutations are those in which the length of inserted or deleted nucleotide sequences is not a multiple of three, leading to disruption 103 104 of the normal reading frame. (B) Overlays of brightfield (gray) and fluorescence (magenta) images 105 of stat2 CRISPant and scrambled RNP injected Tg(mxa:mCherry) four dpf larvae 24 hours following 106 intra-coelomic injection of 1 nl of bovine serum albumin (BSA) control or recombinant interferon phi 1 107 $(IFN_{0}1)$ protein (1.25 mg/ml). Scale bar = 1 mm. The red signal in the lens is due to the secondary 108 cryaa:DsRed reporter to identify transgene carriers. (C) Quantitation of mean fluorescence intensity (MFI) representing Mxa protein expression in the gastrointestinal tract (dashed white outline in **B**). 109 Data points represent individual zebrafish larvae and lines and error bars the median and 110 111 interquartile range. p values were derived from two-tailed Mann-Whitney tests. * = p < 0.05. Data are 112 representative of two independent experiments.

- 113
- 114

- 115
- 116 Fig. S6. Quantitation of cellular recruitment to the site of sterile tailfin transection, related to
- 117 **Figures 5 and 6. (A)** Sholl circles (green) superimposed on an image of a three day post-fertilisation
- 118 Tg(mpx:eGFP) zebrafish larva six hours after tailfin transection. (B) Integrated fluorescence within
- 119 each circle provides a surrogate for the number of cells at each locus. px = Pixels.
- 120
- 121

122 SUPPLEMENTARY TABLES AND TABLE LEGENDS

123 **Table S1. Interferon response modules.** Gene composition of the interferon response modules.

124

125 **Table S2. Zebrafish lines.** Zebrafish lines used in this study are listed.

Zebrafish Line	Experiments
AB/TL (Tüpfel long fin) referred to as	CRISPant generation
wild type	Intravenous <i>M. marinum</i> infection
Tg(cryaa:DsRed/MXA:mCherry-F) ^{ump7}	CRISPant generation
(71) referred to as <i>Tg(mxa:mCherry)</i>	Confirmation that <i>stat2</i> mutagenesis blocks type I interferon signalling
Tg(mpeg1:Gal4-FF)gl25;Tg(UAS-	CRISPant generation
E1b:nfsB.mCherry)c264 (72) referred to as Tg(mpeg1:mCherry)	Quantitation of steady state macrophage numbers
	Macrophage recruitment to tailfin transection and hindbrain ventricle <i>M. marinum</i> infection
Tg(mpx:eGFP) (26)	CRISPant generation
	Quantitation of steady state neutrophil numbers
	Neutrophil recruitment to tailfin transection and hindbrain ventricle <i>M. marinum</i> infection

126

127 Table S3. stat2 crRNAs, primers and amplicon sequences. Sequences of the stat2 crRNAs,

128 Miseq primers and amplicon sequences.

Table S4. ImageJ macro description. The workflow and ImageJ functions used to semi-automate generation of single maximum intensity projection montages from the four contiguous z-stacks captured per zebrafish larva using a high-content wide-field fluorescence microscope (Hermes, IDEA Bio-Medical). The macro opens individual images, stitches them together, converts them into a stack, creates a single two-dimensional image with the maximum intensity values and saves the result as a tagged image format (TIF) file in the chosen folder. The saved files can be used for further analysis. The macro is designed to support batch processing, iterating through the specified steps for multiple positions, and concluding with the closure of windows for a clean and efficient workflow.

Function	Description	Steps
getDirectory	Prompt the user to select a directory containing images to be processed	Open a dialog box allowing the user to choose a directory
getString	Prompt the user to input a keyword representing the specific well position for processing eg A1	Open an input dialog prompting the user to enter the keyword
open	Open an image file for processing	Open individual image files corresponding to the specified keyword and naming convention
selectWindow	Select a specific image window for processing	Select the opened image windows according to the specific naming convention for each image in the series
run	Execute specific ImageJ commands for image processing	Execute the <i>"Stack to Images"</i> command to convert individual z planes into a stack
		Use the <i>"Images to Stack"</i> command with the <i>"use keep"</i> option to combine the individual images into a stack while preserving their original order
		Use the <i>"Z Project"</i> command with the <i>"projection = [Max Intensity]</i> option to create a max intensity projection of the stack
saveAs	Save the processed image with a standardised filename and format	Save the processed image as a TIFF file with a filename constructed using the specified keyword and suffix to indicate processing steps
close	Close the active image window or stack after processing	Close the active image windows or stacks to maintain a tidy workspace

135

- 137 **Table S5. Python script workflow and programming.** The workflow and package functions used to generate measures of total cell numbers and
- 138 cellular recruitment. BF = Brightfield.

Workflow	Steps	Package functions used
get_user_input	Initialize window for user to select BF and fluorescence images	OpenCV: cv2.namedWindow, NumPy: np.array
	Open BF image and ask for user-defined start and end point	OpenCV: cv2.imread, cv.2setMouseCallback, cv2.imshow, cv2.waitKey
	Return coordinates of selected points	
draw_sholl_circles	Calculate distance between selected points	NumPy: np.linalg.norm, np.array
	Set distance between Sholl circles	OpenCV: cv2.line, cv2.circle
calculate_total_fluorescence	Image preprocessing	OpenCV: cv2.cvtColor, cv2.GaussianBlur, cv2.adaptiveThreshold, SciPy: measure.regionprops, ndimage.label
	Calculate integrated fluorescence of entire image	NumPy: np.sum, SciPy: measure.regionprops
calculate_fluorescence_per_circle	Mask image based on each Sholl circle	OpenCV: cv2.circle, cv2.bitwise
1	Compute integrated fluorescence for each Sholl circle	SciPy: measure.regionprops
create_csv_files	Organise and save data to CSV files	Pandas: pd.read_csv, pd.DataFrame.to_csv, os: os.path.join, OpenCV: cv2.writer
process_image	Coordinate image processing tasks	OpenCV: cv2.imread, cv2.destroyAllWindows
	Read input image	OpenCV: cv2.imread