Appendix

Population clustering of structural brain aging and its association with brain development

Contents

Appendix 1: supplementary methods

Appendix 1: supplementary tables

Appendix 1—table 1. ICD-10 primary and secondary diagnostic codes for exclusion criteria.

Appendix 1—table 2. Self-reported illness codes for exclusion criteria.

Appendix 1—table 3. Cortical and subcortical brain regions.

Appendix 1—table 4. Loadings matrix for the first 15 principal components.

Appendix 1—table 5. Baseline and demographic characteristics for participants in the total population and stratified by brain aging patterns.

Appendix 1—table 6. Associations between results of biological aging biomarkers and subgroups stratified by whole-brain TGMV trajectories.

Appendix 1—table 7. Associations between results of cognitive function tests and subgroups stratified by whole-brain TGMV trajectories.

Appendix 1—table 8. Genome-wide association study details.

Appendix 1—table 9. Polygenic Risk Scores comparisons between two subgroups. Data supporting these scores were obtained either entirely from external GWAS data (the Standard PRS set).

Appendix 1—table 10. Polygenic Risk Scores comparisons between two subgroups. Data supporting these scores were obtained external and internal UK Biobank data (the Enhanced PRS set).

Appendix 1—table 11. Most significant single-variant associations ($P < 5 \times 10^{-8}$) detected in the GWAS analyses.

Appendix 1—table 12. Association between gene expression profiles of mapped genes and estimated APC during brain development.

Appendix 1—table 13. Association between gene expression profiles of mapped genes and estimated APC during brain aging.

Appendix 1—table 14. Model evaluation results using relative measures: AIC, BIC, likelihood ratio test and intra-class correlation (ICC).

Appendix 1: supplementary figures

Appendix 1—figure 1. The sample selection workflow.

Appendix 1—figure 2. Estimated rates of change in regional volumes for 33 bilateral brain regions.

Appendix 1—figure 3. Stratification of the identified brain aging patterns using linear and non-linear dimensionality reduction methods.

Appendix 1—figure 4 Effect size for comparing each individual blood biochemical metric (used to calculate the PhenoAge) between participants with brain aging patterns 1 and 2.

Appendix 1—figure 5. Gene set enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) of biological processes.

Appendix 1—figure 6. Optimal number of clusters was chosen using elbow method (a) and silhouette method (b).

Appendix 1: Supplementary Methods

Cognitive assessment

Reaction time This cognitive function test is based on 12 rounds of the card-game 'Snap'. The participant is shown two cards at a time; if both cards are the same, they press a button-box that is on the table in front of them as quickly as possible. The score used for analysis is mean time to correctly identify matches (UK Biobank data field 20023), which is the mean duration to first press of snap-button summed over rounds in which both cards matched.

Numeric memory The participant was shown a 2-digit number to remember. The number then disappeared and after a short while they were asked to enter the number onto the screen. The number became one digit longer each time they remembered correctly (up to a maximum of 12 digits). This test is available for a subset of participants. The score used for analysis is maximum digits remembered correctly (UK Biobank data field 4282), which is longest number correctly recalled during the numeric memory test.

Fluid intelligence / **reasoning** 'Fluid intelligence' is defined as the capacity to solve problems that require logic and reasoning ability, independent of acquired knowledge. The participant has 2 minutes to complete as many questions as possible from the test. This test was incorporated into the touchscreen towards the end of recruitment. The score used for analysis is fluid intelligence score (UK Biobank data field 20016), which is a simple unweighted sum of the number of correct answers given to the 13 fluid intelligence questions. Participants who did not answer all of the questions within the allotted 2 minutes limit are scored as zero for each of the unattempted questions.

Trail making The participant was presented with sets of digits/letters in circles scattered around the screen and asked to click on them sequentially according to a specific algorithm. The scores used for analysis are duration to complete numeric path (trail #1) (UK Biobank data field 6348) and duration to complete alphanumeric path (trail #2) (UK Biobank data field 6350).

Matrix pattern completion The participant was presented with a series of matrix pattern blocks with an element missing and asked to select the element that best completed the pattern from a range of displayed choices. The score used for analysis is number of puzzles correctly solved (UK Biobank data field 6373).

Symbol digit substitution The participant was presented with one grid linking symbols to single-digit integers and a second grid containing only the symbols. They were then asked to indicate the numbers attached to each of the symbols in the second grid using the first one as a key. The score used for analysis is number of symbol digit matches made correctly (UK Biobank data field 23324).

Tower rearranging The participant was presented with an illustration of three pegs (towers) on which three differently-colored hoops had been placed. The were then asked to indicate how many moves it would take to re-arrange the hoops into another specific position. The score used for analysis is number of puzzles correct (UK Biobank data field 21004).

Paired associate learning In the paired associate learning test the participants were shown 12 pairs of words (for 30 seconds in total) then, after an interval (in which they did a different test), presented with the first word of 10 of these pairs and asked to select the matching second word from a choice of 4 alternatives. The words were presented in the order: huge, happy, tattered, old, long, red, sulking, pretty,

tiny and new. The score used for analysis is number of word pairs correctly associated (UK Biobank data field 21097), which is the number of word pairs correctly associated out of ten attempts.

Prospective memory Early in the touchscreen cognitive section, the participant is shown the message "At the end of the games we will show you four colored shapes and ask you to touch the Blue Square. However, to test your memory, we want you to actually touch the Orange Circle instead." The score used for analysis is prospective memory result (UK Biobank data field 20018), which condenses the results of the prospective memory test into 3 groups ("0" : instruction not recalled, either skipped or incorrect, "1" : correct recall on first attempt, "2" : correct recall on second attempt). We divided the test results into two groups for simplicity of analysis: "0" indicating no correct recall, and the combination of "1" and "2" indicating correct recall.

Pairs matching Participants are asked to memorize the position of as many matching pairs of cards as possible. The cards are then turned face down on the screen and the participant is asked to touch as many pairs as possible in the fewest tries. Multiple rounds were conducted. The first round used 3 pairs of cards and the second 6 pairs of cards. In the pilot phase an additional (i.e., third) round was conducted using 6 pairs of cards. However this was dropped from the main study as the extra set of results were very similar to the second and not felt to add significant new information. The score used for analysis is number of incorrect matches in round 2 (UK Biobank data field 399.2).

Appendix 1: Supplementary Tables

Condition	Code		
Malignant neoplasm	C70, C71		
Dementia	F00, F01, F02, F03, F04		
Mental and behavioural disorders due to psychoactive substance use	F10-F19		
Schizophrenia, schizotypal and delusional disorders	F20-F29		
Mood [affective] disorders	F30-F39		
Mental retardation	F70-F79		
Disorders of psychological development	F80-F89		
Hyperkinetic disorders	F90		
Inflammatory diseases of the central nervous system	G00-G09		
Systemic atrophies primarily affecting the central nervous system	G10, G11, G122, G13		
Extrapyramidal and movement disorders	G20, G21, G22, G23		
Other degenerative diseases of the nervous system	G30-G32		
Demyelinating diseases of the central nervous system	G35-G37		
Episodic and paroxysmal disorders	G40, G41, G45, G46		
Infantile cerebral palsy	G80		
Cerebrovascular diseases	I60-I69		
Down's syndrome	Q90		
Intracranial injury	S06		

Appendix 1—table 1. ICD-10 primary and secondary diagnostic codes for exclusion criteria.

Field ID	Condition	Code
20001	Brain cancer/primary malignant brain tumour	1032
	Meningeal cancer/malignant meningioma	1031
20002	Benign neuroma	1683
	Brain abscess/intracranial abscess	1245
	Brain haemorrhage	1491
	Cerebral aneurysm	1425
	Cerebral palsy	1433
	Chronic/degenerative neurological problem	1258
	dementia/alzheimers/cognitive impairment	1263
	Encephalitis	1246
	Epilepsy	1264
	Fracture skull/head	1626
	Head injury	1266
	Ischaemic stroke	1583
	Meningioma/benign meningeal tumour	1659
	Meningitis	1247
	Motor Neurone Disease	1259
	Multiple Sclerosis	1261
	Nervous system infection	1244
	Neurological injury/trauma	1240
	Other demyelinating disease (not Multiple Sclerosis)	1397
	Other neurological problem	1434
	Parkinson's Disease	1262
	Spina Bifida	1524
	Stroke	1081
	Subarachnoid haemorrhage	1086
	Subdural haemorrhage/haematoma	1083
	Transient ischaemic attack	1082

Appendix 1—table 2. Self-reported illness codes for exclusion criteria.

Desikan–Killiany Atlas
bankssts
caudal anterior cingulate
caudal middle frontal
cuneus
entorhinal
fusiform
inferior parietal
inferior temporal
isthmus cingulate
lateral occipital
lateral orbitofrontal
lingual
medial orbitofrontal
middle temporal
parahippocampal
paracentral
pars opercularis
pars orbitalis
pars triangularis
pericalcarine
postcentral
posterior cingulate
precentral
precuneus
rostral anterior cingulate
rostral middle frontal
superior frontal
superior parietal
superior temporal
supramarginal
frontal pole
transverse temporal
insula
ASEG Atlas
thalamus proper
caudate
putamen
pallidum
hippocampus
amygdala
accumbens area

Appendix 1—table 3. Cortical and subcortical brain regions.

Appendix 1—ta	ble 4. I	loadir	ngs ma	atrix f	for the	e first	15 pr	incip	al con	iponei	nts.	
	DC1	DC1	DCI	DCI	DCC	DCC	DC7	DCO	DCO	DC10	DC11	

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15
Cortical															
bankssts	0.12	-0.25	0.01	0.30	-0.13	0.01	0.09	0.34	0.04	0.05	-0.10	0.16	-0.09	-0.20	0.02
caudal.anterior.cingulate	0.12	-0.06	-0.02	0.13	0.39	0.28	0.13	-0.09	-0.37	0.24	0.05	0.03	-0.04	-0.13	0.07
caudal.middle.frontal	0.15	0.01	-0.10	-0.11	0.34	-0.21	0.10	0.06	0.03	-0.28	-0.23	-0.20	0.24	0.00	0.25
cuneus	0.13	0.47	-0.01	0.06	-0.01	0.00	0.07	0.12	0.01	0.07	0.12	-0.05	-0.09	0.08	-0.07
entorhinal	0.09	0.07	0.13	0.08	0.10	0.17	-0.53	-0.18	0.06	0.04	-0.19	-0.10	0.13	0.01	-0.04
fusiform	0.18	-0.03	0.01	0.13	-0.02	0.02	-0.20	-0.02	0.15	0.30	-0.01	-0.28	-0.23	0.08	0.21
inferior.parietal	0.15	-0.18	0.01	0.39	-0.09	0.01	0.14	-0.04	0.16	0.05	-0.20	-0.02	-0.15	-0.02	0.02
inferior.temporal	0.16	-0.13	0.01	0.26	-0.01	0.15	-0.04	-0.10	0.14	-0.08	-0.08	-0.25	0.20	0.29	-0.01
isthmus.cingulate	0.15	0.23	0.02	0.11	-0.14	-0.03	0.08	-0.03	-0.23	-0.07	-0.22	0.16	0.43	0.04	0.11
lateral.occipital	0.16	0.30	0.00	0.12	-0.02	0.02	0.05	0.10	0.16	0.18	0.06	-0.23	-0.23	0.12	0.17
lateral.orbitofrontal	0.22	-0.04	-0.08	-0.17	-0.05	0.15	-0.02	-0.15	0.09	-0.02	-0.01	0.40	-0.01	0.22	0.17
lingual	0.12	0.43	0.03	0.14	-0.01	-0.02	0.07	0.11	-0.01	-0.03	-0.10	0.16	0.02	-0.09	-0.08
medial.orbitofrontal	0.21	-0.06	-0.06	-0.06	-0.05	0.10	-0.01	-0.13	0.18	-0.06	0.13	0.17	0.05	0.01	-0.25
middle.temporal	0.17	-0.17	-0.01	0.27	-0.14	0.10	0.21	0.25	0.09	-0.15	-0.09	0.04	0.07	0.05	-0.11
parahippocampal	0.12	0.09	0.13	0.05	0.06	0.14	-0.46	0.02	-0.02	0.09	-0.22	0.09	0.03	-0.32	0.02
paracentral	0.19	-0.05	-0.10	-0.07	0.18	-0.23	-0.11	-0.06	0.01	0.03	-0.02	0.06	-0.35	-0.01	-0.35
pars.opercularis	0.16	-0.02	-0.06	-0.23	-0.19	0.10	0.14	0.01	-0.16	-0.13	-0.43	-0.29	-0.16	-0.06	0.00
pars.orbitalis	0.18	0.02	-0.05	-0.17	-0.11	0.24	0.03	-0.17	0.23	0.08	0.01	0.41	-0.14	0.05	0.24
pars.triangularis	0.16	0.02	-0.03	-0.35	-0.26	0.23	0.13	-0.05	-0.06	-0.06	-0.25	-0.17	-0.21	-0.08	-0.05
pericalcarine	0.10	0.47	-0.01	0.08	-0.01	0.01	0.09	0.13	-0.02	-0.01	0.02	0.08	-0.03	0.03	-0.17
postcentral	0.20	-0.04	-0.11	0.06	0.16	-0.29	-0.09	0.12	0.08	0.03	-0.09	0.10	0.04	0.01	0.04
posterior.cingulate	0.18	-0.08	-0.04	0.02	0.24	0.09	0.08	-0.02	-0.30	0.01	-0.07	0.10	-0.05	-0.12	-0.31
precentral	0.21	-0.01	-0.10	-0.08	0.28	-0.29	-0.09	0.08	0.15	-0.05	-0.15	0.13	-0.06	0.05	0.12
precuneus	0.20	0.02	-0.02	0.13	-0.24	-0.26	0.01	-0.35	-0.20	-0.04	0.06	-0.04	0.00	0.03	0.07
rostral.anterior.cingulate	0.15	-0.07	-0.07	0.05	0.31	0.21	0.15	-0.05	-0.30	0.13	0.11	-0.06	0.00	0.18	0.15
rostral.middle.frontal	0.20	0.02	-0.05	-0.05	0.10	0.14	0.22	-0.11	0.17	-0.11	0.24	-0.14	0.19	-0.22	0.14
superior.frontal	0.22	-0.03	-0.09	-0.21	0.14	-0.13	-0.01	0.06	0.20	-0.18	0.06	-0.11	0.02	0.00	-0.16
superior.parietal	0.17	0.02	-0.05	0.14	-0.18	-0.29	0.01	-0.45	-0.16	0.00	0.14	-0.08	-0.08	-0.06	0.04
superior.temporal	0.21	-0.13	-0.02	-0.06	-0.10	0.01	-0.07	0.40	-0.07	0.13	0.24	-0.05	0.02	-0.06	0.08
supramarginal	0.17	-0.15	-0.08	0.06	-0.24	-0.23	-0.13	0.03	-0.21	0.04	0.11	0.10	0.14	-0.08	-0.06
frontal.pole	0.16	0.03	-0.10	0.01	0.00	0.16	0.03	-0.13	0.28	0.05	0.28	-0.16	0.26	-0.38	-0.22
transverse.temporal	0.15	-0.01	-0.10	-0.27	-0.17	-0.10	-0.16	0.25	-0.22	0.19	0.24	-0.10	0.09	0.04	0.16
insula	0.19	-0.08	0.01	-0.22	-0.12	0.10	-0.07	0.11	-0.06	0.15	-0.08	0.00	0.19	0.16	-0.23
Subcortical															
thalamus.proper	0.09	-0.02	0.31	-0.08	0.03	-0.08	0.08	0.00	0.02	-0.21	0.11	0.10	-0.19	-0.37	0.33
caudate	0.06	-0.03	0.32	-0.12	0.02	-0.10	0.15	-0.02	0.11	0.31	-0.11	0.09	0.27	0.14	0.12
putamen	0.08	-0.03	0.42	-0.12	0.03	-0.13	0.13	-0.03	0.05	0.22	-0.05	-0.14	0.07	-0.02	-0.17
pallidum	0.03	-0.03	0.42	-0.07	0.00	-0.13	0.16	-0.06	0.04	0.20	-0.07	0.00	0.04	-0.20	-0.06
hippocampus	0.12	0.01	0.33	0.04	-0.02	0.11	-0.20	0.08	-0.16	-0.39	0.09	0.03	-0.11	-0.03	0.05
amygdala	0.13	-0.03	0.31	0.05	-0.01	0.12	-0.13	0.09	-0.07	-0.35	0.25	-0.09	-0.02	0.24	-0.01
accumbens.area	0.11	-0.05	0.31	-0.02	0.12	-0.07	0.11	-0.04	0.00	-0.03	0.10	0.09	-0.14	0.34	-0.18

	Total	Pattern 1	Pattern 2
	(n=37,013)	(n=18,929)	(n=18,084)
Age (years), mean (SD)	63.9 (7.63)	63.9 (7.64)	63.8 (7.63)
Female, n (%)	19,958 (53.9)	10,117 (53.4)	9,841 (54.4)
Ethnicity, n (%)			
White	34,219 (92.5)	17,509 (92.5)	16,710 (92.4)
Mixed	1,137 (3.1)	573 (3.0)	564 (3.1)
Asian or Asian British	1,210 (3.3)	612 (3.2)	598 (3.3)
Other	447 (1.2)	235 (1.2)	212 (1.2)
Smoking status, n (%) ^a			
Never smoker	23,633 (64.4)	12,269 (65.4)	11,364 (63.4)
Previous smoker	12,213 (33.3)	6,085 (32.4)	6,128 (34.2)
Current smoker	833 (2.3)	414 (2.2)	419 (2.3)
TDI, mean (SD) ^b	-1.94 (2.69)	-1.97 (2.66)	-1.90 (2.71)
BMI (kg/m^2), mean (SD) ^c	26.4 (4.32)	26.3 (4.17)	26.5 (4.46)
Years of Schooling, mean (SD) d	16.8 (4.32)	16.9 (4.29)	16.8 (4,35)

Appendix 1—table 5. Baseline and demographic characteristics for participants in the total population and stratified by brain aging patterns.

Abbreviations: TDI = Townsend Deprivation Index, BMI = Body Mass Index.

^a Missing 334

^b Missing 36

° Missing 1,937

^d Missing 337

Appendix 1—table 6. Associations between results of biological aging biomarkers and subgroups stratified by whole-brain TGMV trajectories. Cohen's d measures the standardized difference of means between brain aging pattern 2 and brain aging pattern 1.

Biological aging biomarkers	Brain a	ging pattern 1	Brain aging pattern 2		
biological aging biolitarkers	N	Mean(SD)	N	Mean(SD)	
LTL	17,691	0.083(0.98)	16,876	0.055(0.97)	
PhenoAge	15,228	41.35(8.17)	14,323	41.58(8.32)	

Dialogical aging	Una	ndjuste	d	Adjusted				
biomarkers	Cohen's d (95% CI)	Р	P.Bonferroni	Cohen's d (95% CI)	Р	P.Bonferroni		
LTL	-0.028 (-0.049, -0.007)	0.009	0.019	-0.030 (-0.051, -0.009)	0.006	0.011		
PhenoAge	0.027 (0.004, 0.050)	0.019	0.039	0.092 (0.070, 0.116)	3.05E-15	6.11E-15		

Appendix 1—table 7. Associations between results of cognitive function tests and subgroups stratified by whole-brain TGMV trajectories. Cohen's d measures the standardized difference of means between brain aging pattern 2 and brain aging pattern 1.

Cognitive functions	Brai	n aging pattern 1	Braiı	n aging pattern 2
Cognitive functions	N	Mean(SD)	N	Mean(SD)
Reaction time	17,749	-594.70(108.15)	16,831	-594.68(110.50)
Numeric memory	13,350	6.82(1.26)	12,346	6.72(1.27)
Fluid intelligence	17,580	6.73(2.06)	16,612	6.53(2.04)
Trail making A	13,052	-224.50(84.82)	12,036	-227.56(84.85)
Trail making B	Trail making B 12,743		11,753	-576.55(260.75)
Matrix pattern completion	13,064	8.07(2.11)	12,064	7.91(2.14)
Symbol digit substitution	13,077	19.08(5.15)	12,056	18.87(5.35)
Tower rearranging	12,952	9.96(3.20)	11,958	9.83(3.23)
Paired associate learning	ired associate learning		12,198	6.88(2.65)
Prospective memory	17,831	N/A	16,949	N/A
Pairs matching	17,840	-3.58(2.90)	16,956	-3.67(2.94)

	Unadj	usted		Adjusted				
Cognitive functions	Cohen's d (95% CI)	Cohen's d (95% CI) P P.FI		Cohen's d (95% CI)	Р	P.FDR		
Reaction time	0.000 (-0.021, 0.021)	0.99	0.99	0.006 (-0.016, 0.028)	0.61	0.61		
Numeric memory	-0.082 (-0.106, -0.057)	5.97E-11	3.28E-10	-0.080 (-0.106, -0.055)	8.99E-10	4.95E-09		
Fluid intelligence	-0.102 (-0.123, -0.080)	5.94E-21	6.54E-20	-0.99 (-0.121, -0.077)	3.30E-18	3.63E-17		
Trail making A	-0.036 (-0.061, -0.011) 0.004 0.006		-0.050 (-0.074, -0.024)	1.46E-04	2.29E-04			
Trail making B	-0.053 (-0.078, -0.028)	3.16E-05	8.68E-05	-0.067 (-0.093, -0.041)	6.16E-07	1.69E-06		
Matrix pattern completion	-0.076 (-0.101, -0.051)	1.84E-09	6.74E-09	-0.078 (-0.104, -0.052)	3.67E-09	1.35E-08		
Symbol digit substitution	-0.040 (-0.065, -0.015)	0.002	0.002	-0.053 (-0.079, -0.027)	6.15E-05	1.13E-04		
Tower rearranging	-0.041 (-0.066, -0.016)	0.001	0.002	-0.049 (-0.075, -0.023)	2.18E-04	3.00E-04		
Paired associate learning	-0.051 (-0.076, -0.027)	4.64E-05	1.02E-04	-0.054 (-0.079, -0.028)	4.89E-05	1.08E-04		
Prospective memory	OR: 0.943 (0.891, 0.999)	0.047	0.052	OR: 0.940 (0.883, 1.000)	0.052	0.057		
Pairs matching	-0.029 (-0.050, -0.008)	0.006	0.008	-0.033 (-0.055, -0.011)	0.003	0.004		

Appendix 1—table 8. Genome-wide association study details. Loci associated with risk were thresholded at $P < 5 \times 10^{-8}$, then distance-based clumping was used to define independently significant loci.

Study	Number cases	Number controls	Number of genome-wide independently significant loci	Download link
Attention deficit hyperactivity disorder ¹	20,183	35,191	12	https://figshare.com/ndownloader/fi les/28169253
Autism spectrum disorder ²	18,381	27,969	5	https://figshare.com/ndownloader/fi les/28169292
Alzheimer's disease ³	71,880	383,378	25	https://ctg.cncr.nl/software/summar y_statistics
Parkinson's disease ⁴	37,688, and 18,618 (proxy- cases)	1,417,791	90	https://drive.google.com/file/d/1FZ 9UL99LAqyWnyNBxxlx6qOUlfA nublN/view?usp=sharing
Bipolar disorder ⁵	41,917	371,549	64	https://figshare.com/ndownloader/fi les/40036705
Major depressive disorder ⁶	135,458	344,901	44	https://figshare.com/ndownloader/fi les/39504667
Schizophrenia ⁷	76,755	243,649	287	https://figshare.com/ndownloader/fi les/34517828
Delayed Brain Development ⁸	7,662 (proxy pho continuous)	enotype,	1	https://delayedneurodevelopment.p age.link/amTC

Appendix 1—table 9. Polygenic Risk Scores comparisons between two subgroups. Data supporting these scores were obtained either entirely from external GWAS data (the Standard PRS set). The bold P values reflect significance after FDR correction.

Trait	n1	n2	statistic	р	p.adjust
AAM	18,429	17,586	-2.218	0.027	0.080
AMD	18,429	17,586	1.753	0.080	0.169
AD	18,429	17,586	0.735	0.462	0.616
AST	18,429	17,586	-0.861	0.389	0.543
AF	18,429	17,586	-0.100	0.920	0.945
BD	18,429	17,586	3.557	<u>3.75E-04</u>	0.002
BMI	18,429	17,586	-3.309	<u>0.001</u>	0.005
CRC	18,429	17,586	-0.544	0.586	0.703
BC	18,429	17,586	-3.140	<u>0.002</u>	0.008
CVD	18,429	17,586	-2.104	<u>0.035</u>	0.091
CED	18,429	17,586	1.046	0.296	0.484
CAD	18,429	17,586	-1.588	0.112	0.202
CD	18,429	17,586	-0.094	0.925	0.945
EOC	18,429	17,586	-2.183	<u>0.029</u>	0.080
EBMDT	18,429	17,586	-11.343	<1.00E-20	<1.00E-20
HBA1C_DF	18,429	17,586	-2.948	<u>0.003</u>	0.013
HEIGHT	18,429	17,586	6.658	<u>2.81E-11</u>	3.37E-10
HDL	18,429	17,586	0.884	0.377	0.543
HT	18,429	17,586	-3.539	<u>4.02E-04</u>	0.002
IOP	18,429	17,586	-1.605	0.109	0.202
ISS	18,429	17,586	-2.383	<u>0.017</u>	0.056
LDL_SF	18,429	17,586	-0.686	0.492	0.627
MEL	18,429	17,586	2.025	<u>0.043</u>	0.103
MS	18,429	17,586	-0.069	0.945	0.945
OP	18,429	17,586	12.029	<1.00E-20	<1.00E-20
PD	18,429	17,586	1.456	0.145	0.249
POAG	18,429	17,586	-0.856	0.392	0.543
PC	18,429	17,586	-0.240	0.810	0.941
PSO	18,429	17,586	-1.781	0.075	0.169
RA	18,429	17,586	-2.437	<u>0.015</u>	0.053
SCZ	18,429	17,586	0.158	0.874	0.945
SLE	18,429	17,586	1.695	0.090	0.180
T1D	18,429	17,586	0.666	0.505	0.627
T2D	18,429	17,586	-5.523	<u>3.35E-08</u>	3.02E-07
UC	18,429	17,586	0.883	0.377	0.543
VTE	18,429	17,586	-0.170	0.865	0.945

Trait n1 n2 statistic p.adjust р AAM 3,407 3,409 -1.7080.088 0.344 AMD 3,407 3,409 0.584 0.931 0.547 AD 3,407 3,409 0.756 0.450 0.820 APOEA 3,407 3,409 0.023 0.982 0.993 APOEB 3,407 3,409 0.119 0.905 0.968 AST 3,407 0.112 0.911 0.968 3,409 AF 3,409 1.306 0.192 0.600 3,407 BD 3,407 3,409 0.561 0.575 0.931 BMI 3,407 3,409 -0.976 0.329 0.730 CRC 3,407 3,409 0.984 0.325 0.730 BC 3,407 -0.995 0.320 0.730 3,409 0.074 0.326 CAL 3,407 3,409 -1.786 CVD -0.009 0.993 0.993 3,407 3,409 CED 3,407 3,409 1.280 0.200 0.600 0.231 0.961 CAD 3,407 3,409 0.818 DOA 3,407 3,409 -0.326 0.745 0.961 EOC 3,407 3,409 -2.1670.030 0.155 3,409 1.04E-09 2.65E-08 EBMDT 3,407 -6.111 EGCR 3,407 3,409 0.413 0.680 0.961 0.834 0.961 EGCY 3,407 3,409 -0.210 HBA1C DF 3,407 3,409 0.130 0.896 0.968 HEIGHT 3,407 3,409 4.351 1.38E-05 2.35E-04 HDL 3,407 3,409 0.294 0.769 0.961 ΗT -0.884 0.377 0.743 3,407 3,409 IOP 3,407 3,409 -2.366 0.018 0.151 ISS 3,407 3,409 0.066 0.947 0.986 LDL SF 3,407 3,409 -0.193 0.847 0.961 3,407 MEL 3,409 2.659 0.008 0.080 MS 3,407 3,409 -2.293 0.022 0.151 OTFA 3,407 3,409 0.318 0.750 0.961 **OSFA** 0.770 0.441 3,407 3,409 0.820 OP 3,407 3,409 6.484 9.54E-11 4.87E-09 PD 3,407 3,409 1.041 0.298 0.730 PDCL 3,407 3,409 0.663 0.507 0.862 PHG 3,407 3,409 0.392 0.695 0.961 PFA 3,409 0.495 0.932 3,407 0.621 POAG 3,409 -1.083 0.279 0.730 3,407 PC 3,407 3,409 0.675 0.500 0.862 PSO 3,407 3,409 -2.234 0.026 0.151 3,407 3,409 0.501 0.932 RMNC 0.617

Appendix 1—table 10. Polygenic Risk Scores comparisons between two subgroups. Data supporting these scores were obtained external and internal UK Biobank data (the Enhanced PRS set). The bold P values reflect significance after FDR correction.

RHR	3,407	3,409	-2.865	0.004	0.053
RA	3,407	3,409	0.297	0.766	0.961
SCZ	3,407	3,409	-0.880	0.379	0.743
SGM	3,407	3,409	-0.224	0.823	0.961
SLE	3,407	3,409	1.458	0.145	0.493
TCH	3,407	3,409	0.191	0.848	0.961
TFA	3,407	3,409	0.892	0.372	0.743
TTG	3,407	3,409	1.212	0.226	0.640
T1D	3,407	3,409	1.771	0.077	0.326
T2D	3,407	3,409	-2.218	0.027	0.151
VTE	3,407	3,409	-1.613	0.107	0.390

Appendix 1—table 11. Most significant single-variant associations ($P < 5 \times 10^{-8}$) detected in the GWAS analyses. Six independent SNPs at genome-wide significance level were identified by linkage disequilibrium (LD) clumping (r2 < 0.1 within a 250 kb window). The location (chromosome [chr] and base position [bp]), alleles (A1 = effect allele and A2 = other allele), effect (β) and its standard error (β SE) with respect to A1, and association p-values from regression model of the variants are given, along with functional consequences of SNPs on gene by performing ANNOVAR.

SNP	A1	A2	p-value	β	β SE	Location (chr:bp)	Gene symbol	Position relative to gene
rs10835187	С	Т	1.70e-14	-0.02558	0.003333	11:27505677	LGR4, LIN7C	intergenic
rs7776725	С	Т	4.47e-13	-0.02640	0.003644	7:121033121	FAM3C	intronic
rs779233904	AAC	А	1.57e-09	0.02083	0.003449	6:151910404	CCDC170	intronic
rs2504071	Т	С	3.34e-09	0.01959	0.003311	6:152084862	ESR1	intronic
17:43553496:A:AAT	А	AAT	6.65e-09	-0.02472	0.004261	17:43553496	PLEKHM1	intronic
10:104227791:G:GA	GA	G	1.48e-08	-0.01889	0.003334	10:104227791	TMEM180	intronic

Gene Symbol	Spearman's p	Pvalue	P.permutation
ACTR1A	0.096	0.440	0.328
ARHGAP27	0.051	0.684	0.445
ARL17B	0.047	0.705	0.452
BDNF-AS	0.256	<u>0.038</u>	0.038
CCDC170	0.268	<u>0.030</u>	0.069
ESR1	0.021	0.870	0.483
FAM3C	-0.096	0.444	0.356
KANSL1	-0.262	<u>0.034</u>	0.073
KANSL1-AS1	0.067	0.594	0.313
LGR4	0.558	<u>1.78E-06</u>	2.50E-04
LIN7C	0.036	0.775	0.464
LRRC37A4P	-0.272	0.027	0.148
MAPT	0.024	0.846	0.405
PLEKHM1	-0.276	0.025	0.109
SPPL2C	0.116	0.351	0.189
STH	-0.147	0.238	0.277
SUFU	0.407	0.001	0.028

Appendix 1—table 12. Association between gene expression profiles of mapped genes and estimated APC during brain development. The bold P values reflect significance after the spatial permutation test.

Appendix 1—table 13. Association between gene expression profiles of mapped genes and estimated APC during brain aging. The bold P values reflect significance after the spatial permutation test.

Gene Symbol	Spearman's p	Pvalue	P.permutation
ACTR1A	-0.235	0.058	0.052
ARHGAP27	0.486	<u>4.48E-05</u>	5.50E-04
ARL17B	0.090	0.473	0.240
BDNF-AS	0.490	<u>3.68E-05</u>	1.50E-04
CCDC170	0.206	0.098	0.075
ESR1	0.532	<u>6.02E-06</u>	1.50E-04
FAM3C	-0.366	<u>0.003</u>	0.005
KANSL1	0.213	0.086	0.078
KANSL1-AS1	-0.262	<u>0.034</u>	0.059
LGR4	0.070	0.576	0.348
LIN7C	0.177	0.154	0.120
LRRC37A4P	0.143	0.250	0.165
MAPT	-0.287	<u>0.020</u>	0.022
PLEKHM1	0.202	0.104	0.080
SPPL2C	0.211	0.089	0.059
STH	-0.001	0.997	0.490
SUFU	-0.036	0.773	0.373

model	AIC	BIC	lrtest	ICC_ad	ICC_una
				justed	djusted
lmer_intr_thalamus.proper	79444.24	79591.29	6.45E-15	0.8875	0.3958
lmer_slope_thalamus.proper	79382.89	79547.24	6.45E-15	0.8889	0.3986
lmer_intr_caudate	95845.48	95992.54	2.68E-71	0.9543	0.6824
lmer_slope_caudate	95524.49	95688.84	2.68E-71	0.9564	0.6817
lmer_intr_putamen	92106.06	92253.12	2.40E-42	0.9398	0.5946
lmer_slope_putamen	91918.4	92082.75	2.40E-42	0.9424	0.5933
lmer_intr_pallidum	90500.3	90647.36	4.21E-42	0.8859	0.5116
lmer_slope_pallidum	90313.76	90478.12	4.21E-42	0.8862	0.5093
lmer_intr_hippocampus	89833.92	89980.97	1.37E-08	0.9309	0.5505
lmer_slope_hippocampus	89801.71	89966.06	1.37E-08	0.9329	0.5505
lmer_intr_amygdala	89976.98	90124.03	4.01E-06	0.8697	0.4898
lmer_slope_amygdala	89956.13	90120.48	4.01E-06	0.8713	0.4897
lmer_intr_accumbens.area	96936.19	97083.24	1.69E-14	0.8228	0.5295
lmer_slope_accumbens.area	96876.77	97041.12	1.69E-14	0.8233	0.5310
lmer_intr_bankssts	97981.96	98129.01	0.001818	0.9339	0.6798
lmer_slope_bankssts	97973.34	98137.69	0.001818	0.9354	0.6814
lmer_intr_caudal.anterior.cingulate	109133.2	109280.3	0.131507	0.8638	0.7653
lmer_slope_caudal.anterior.cingulate	109133.2	109297.5	0.131507	0.8644	0.7659
lmer_intr_caudal.middle.frontal	93118.13	93265.19	8.31E-06	0.9227	0.5929
lmer_slope_caudal.middle.frontal	93098.74	93263.09	8.31E-06	0.9246	0.5949
lmer_intr_cuneus	101801.4	101948.5	0.014429	0.9242	0.7256
lmer_slope_cuneus	101796.9	101961.3	0.014429	0.9245	0.7262
lmer_intr_entorhinal	109404.9	109551.9	1.63E-14	0.8013	0.6908
lmer_slope_entorhinal	109345.4	109509.7	1.63E-14	0.8037	0.6928
lmer_intr_fusiform	87545.88	87692.93	9.17E-05	0.9139	0.5062
lmer_slope_fusiform	87531.28	87695.63	9.17E-05	0.9163	0.5074
lmer_intr_inferior.parietal	89044.43	89191.48	5.89E-14	0.9374	0.5564
lmer_slope_inferior.parietal	88987.51	89151.86	5.89E-14	0.9419	0.5603
lmer_intr_inferior.temporal	84066.47	84213.52	5.73E-07	0.9384	0.4956
lmer_slope_inferior.temporal	84041.73	84206.08	5.73E-07	0.9405	0.4977
lmer_intr_isthmus.cingulate	92442.12	92589.17	0.127191	0.9275	0.5862
lmer_slope_isthmus.cingulate	92442	92606.35	0.127191	0.9284	0.5869
lmer_intr_lateral.occipital	89550.4	89697.45	0.003943	0.9121	0.5273
lmer_slope_lateral.occipital	89543.33	89707.68	0.003943	0.9129	0.5282
lmer_intr_lateral.orbitofrontal	86224.13	86371.18	1.29E-08	0.8466	0.4323
lmer_slope_lateral.orbitofrontal	86191.79	86356.14	1.29E-08	0.8497	0.4345
lmer_intr_lingual	102605.2	102752.2	0.041242	0.9181	0.7268
lmer slope lingual	102602.8	102767.2	0.041242	0.9181	0.7272

Appendix 1—table 14. Model evaluation results using relative measures: AIC, BIC, likelihood ratio test and intra-class correlation (ICC).

lmer_intr_medial.orbitofrontal	89954.36	90101.41	2.25E-06	0.7832	0.4219
lmer_slope_medial.orbitofrontal	89932.35	90096.7	2.25E-06	0.7872	0.4241
lmer_intr_middle.temporal	83331.01	83478.06	0.0019	0.9177	0.4615
lmer_slope_middle.temporal	83322.48	83486.83	0.0019	0.9195	0.4629
lmer_intr_parahippocampal	108997.1	109144.2	4.99E-05	0.8686	0.7639
lmer_slope_parahippocampal	108981.3	109145.6	4.99E-05	0.8690	0.7639
lmer_intr_paracentral	98058.63	98205.68	0.015686	0.8695	0.5958
lmer_slope_paracentral	98054.32	98218.67	0.015686	0.8705	0.5960
lmer_intr_pars.opercularis	96829.05	96976.1	1.20E-12	0.9354	0.6658
lmer_slope_pars.opercularis	96778.15	96942.5	1.20E-12	0.9396	0.6698
lmer_intr_pars.orbitalis	96989.61	97136.67	1.39E-05	0.8785	0.5892
lmer_slope_pars.orbitalis	96971.25	97135.6	1.39E-05	0.8805	0.5912
lmer_intr_pars.triangularis	96637.58	96784.63	4.55E-18	0.9402	0.6710
lmer_slope_pars.triangularis	96561.72	96726.07	4.55E-18	0.9439	0.6748
lmer_intr_pericalcarine	105115.9	105263	0.022841	0.9429	0.8190
lmer_slope_pericalcarine	105112.4	105276.7	0.022841	0.9441	0.8200
lmer_intr_postcentral	91605.6	91752.65	0.000549	0.8764	0.5189
lmer_slope_postcentral	91594.59	91758.94	0.000549	0.8789	0.5203
lmer_intr_posterior.cingulate	96853.73	97000.78	2.21E-19	0.8913	0.6014
lmer_slope_posterior.cingulate	96771.82	96936.17	2.21E-19	0.8949	0.6022
lmer_intr_precentral	91186.59	91333.64	2.61E-12	0.8478	0.4864
lmer_slope_precentral	91137.25	91301.6	2.61E-12	0.8504	0.4864
lmer_intr_precuneus	84734.58	84881.63	1.23E-08	0.9088	0.4708
lmer_slope_precuneus	84702.16	84866.51	1.23E-08	0.9126	0.4730
lmer_intr_rostral.anterior.cingulate	95688.68	95835.73	2.64E-12	0.9093	0.6097
lmer_slope_rostral.anterior.cingulate	95639.36	95803.72	2.64E-12	0.9122	0.6129
lmer_intr_rostral.middle.frontal	80873.84	81020.89	2.57E-17	0.9137	0.4354
lmer_slope_rostral.middle.frontal	80801.44	80965.79	2.57E-17	0.9191	0.4395
lmer_intr_superior.frontal	79730.6	79877.65	1.25E-11	0.8921	0.4038
lmer_slope_superior.frontal	79684.38	79848.73	1.25E-11	0.8972	0.4060
lmer_intr_superior.parietal	92895.95	93043	8.55E-07	0.8899	0.5487
lmer_slope_superior.parietal	92872.01	93036.36	8.55E-07	0.8934	0.5512
lmer_intr_superior.temporal	86495.24	86642.29	0.003021	0.9148	0.4959
lmer_slope_superior.temporal	86487.64	86651.99	0.003021	0.9168	0.4971
lmer_intr_supramarginal	87390.39	87537.44	3.67E-13	0.9263	0.5221
lmer_slope_supramarginal	87337.12	87501.47	3.67E-13	0.9320	0.5258
lmer_intr_frontal.pole	110426.3	110573.4	1.95E-65	0.6907	0.5868
lmer_slope_frontal.pole	110132.3	110296.7	1.95E-65	0.6957	0.5882
lmer_intr_transverse.temporal	102753.2	102900.2	0.032413	0.9130	0.7247
lmer_slope_transverse.temporal	102750.3	102914.7	0.032413	0.9144	0.7258
lmer_intr_insula	88693.2	88840.26	7.61E-14	0.8263	0.4416
lmer_slope_insula	88636.79	88801.14	7.61E-14	0.8290	0.4420

Appendix 1: Supplementary Figures

Appendix 1—figure 1. The sample selection workflow. Confounding diseases that resulted in participant exclusion were listed in Appendix 1—table 1 and S2. Covariates that were required for inclusion were age, sex, assessment center, handedness and ethnicity. Participants included in neurodevelopmental and neurodegenerative disorders PRS and brain aging pattern GWAS analysis were of 'White-British' background and passed all other QC measures. When describing the mirroring pattern of the brain, people who have repeated imaging measurements are included.

Appendix 1—figure 2. Estimated rates of change in regional volumes for 33 bilateral brain regions. The shaded area around the fit line denotes the 95% CI. Rates of volumetric change for two aging patterns were estimated by the first derivatives of the median whole-brain standardized trajectories. Whole-brain standardized gray matter volume trajectories in mid-to-late adulthood were estimated for two patterns using GAMM, incorporating both cross-sectional and longitudinal information from a total of 40,921 observations. Covariates including sex, site, handedness, ethnic, and ICV were considered in the analysis.

Appendix 1—figure 3. Stratification of the identified brain aging patterns using linear and nonlinear dimensionality reduction methods. (a) The principal component space of PC1 and PC2, and (b) two-dimensional projected locally linear embedding space derived from brain volumetric measures. Points have been colored and shaped according to grouping labels of the brain aging patterns.

Appendix 1—figure 4. Effect size for comparing each individual blood biochemical metric (used to calculate the PhenoAge) between participants with brain aging patterns 1 and 2. Results were presented such that each blood biochemical metric is in the same direction as their weights in calculating PhenoAge (indicated by the sign in parentheses after the metric name). Positive Cohen's D indicate older biological age in participants with brain aging pattern 2 compared to those with pattern 1. Width of the lines extending from the center point represent 95% confidence interval. Two-sided P values were obtained using adjusted (for sex, age, ethnic, BMI, smoking status, alcohol frequency and education years) multivariate regression models. Stars indicate statistical significance after FDR correction for 9 comparisons. ****: $p \le 0.001$, *: $p \le 0.05$, ns: p > 0.05.

Appendix 1—figure 5. Gene set enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) of biological processes. 990 genes (a) or 1,149 genes (b) were spatially positively or negatively correlated with the first PLS component of delayed structural brain development, and 2,081 genes (c) or 2,293 genes (d) were spatially positively or negatively correlated structural brain aging.

Appendix 1—figure 6. Optimal number of clusters was chosen using elbow method (a) and silhouette method (b). Both elbow method and silhouette method suggest that 2 should be determined as the optimal number of clusters.

Supplementary References

- 1. Demontis D, Walters R K, Martin J, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder[J]. Nature genetics, 2019, 51(1): 63-75.
- 2. Grove J, Ripke S, Als T D, et al. Identification of common genetic risk variants for autism spectrum disorder[J]. Nature genetics, 2019, 51(3): 431-444.
- 3. Jansen I E, Savage J E, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk[J]. Nature genetics, 2019, 51(3): 404-413.
- Nalls M A, Blauwendraat C, Vallerga C L, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies[J]. The Lancet Neurology, 2019, 18(12): 1091-1102.
- Mullins N, Forstner A J, O'Connell K S, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology[J]. Nature genetics, 2021, 53(6): 817-829.
- 6. Wray N R, Ripke S, Mattheisen M, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression[J]. Nature genetics, 2018, 50(5): 668-681.
- 7. Trubetskoy V, Pardiñas A F, Qi T, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia[J]. Nature, 2022, 604(7906): 502-508.
- 8. Shi, R. *et al.* Structural neurodevelopment at the individual level a life-course investigation using ABCD, IMAGEN and UK Biobank data. *medRxiv* 2023–09 (2023).