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ABSTRACT  

Background and aims: There is growing evidence that tobacco smoking causes 

depression, but it is unclear which constituents of tobacco smoke (e.g., nicotine, carbon 

monoxide) may be responsible. We used Mendelian randomisation (MR) to examine the 

independent effect of nicotine on depression, by adjusting the effect of nicotine exposure 

(via nicotine metabolite ratio [NMR]) for the overall effect of smoking heaviness (via 

cigarettes per day [CPD]) to account for the non-nicotine constituents of tobacco smoke. 

Design: Univariable MR and multivariable MR (MVMR) were used to explore the total 

and independent effects of genetic liability to NMR and CPD on major depressive disorder 

(MDD). Our primary method was inverse variance weighted (IVW) regression, with other 

methods as sensitivity analyses. 

Setting and participants: For the exposures, we used genome-wide association 

study (GWAS) summary statistics among European ancestry individuals for CPD (n=143,210) 

and NMR (n=5,185). For the outcome, a GWAS of MDD stratified by smoking status was 

conducted using individual-level data from UK Biobank (n=35,871-194,881). 

Measurements: Genetic variants robustly associated with NMR and CPD. 

Findings: Univariable MR indicated a causal effect of CPD on MDD (odds ratio 

[OR]IVW=1.13, 95% confidence interval [CI]=1.04-1.23, P=0.003) but no clear evidence for an 

effect of NMR on MDD (ORIVW=0.98, 95% CI=0.97-1.00, P=0.134). MVMR indicated a causal 

effect of CPD on MDD when accounting for NMR (ORMVMR-IVW=1.19, 95% CI=1.03-1.37, 

P=0.017; ORMVMR-EGGER=1.13, 95% CI=0.89-1.43, P=0.300) and weak evidence of a small effect 

of NMR on MDD when accounting for CPD (ORMVMR-IVW=0.98, 95% CI=0.96-1.00, P=0.056; 

ORMVMR-EGGER=0.98, 95% CI=0.96-1.00, P=0.038). 
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Conclusions: The causal effect of tobacco smoking on depression appears to be 

largely independent of nicotine exposure, which implies the role of alternative causal 

pathways.  

 

Keywords: tobacco; smoking; nicotine; depression; Mendelian randomization; UK Biobank  
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INTRODUCTION 

Tobacco smoking is amongst the leading causes of preventable disease and death 

worldwide [1]. An estimated 1.14 billion adults globally smoke tobacco products regularly 

[2]. Although tobacco smoking in high income countries (e.g., US, UK) has markedly 

decreased in recent decades [3,4], smoking prevalence amongst individuals with mental 

health conditions remains approximately twice as high [5]. Major Depressive Disorder 

(MDD) is a highly prevalent psychiatric condition with an estimated lifetime prevalence of 

~14.6% for adults in high-income countries [6] and is a leading cause of global disease 

burden [7,8]. However, knowledge of actionable preventative strategies that could mitigate 

depression risk remains limited [9]. 

Considerable debate has surrounded the association between smoking and mental 

illness [10], with several proposed explanations: (i) smoking may causally impact mental 

health; (ii) those with poorer mental health may use tobacco/nicotine to self-medicate (i.e., 

the self-medication model); (iii) smoking and mental health may share one or more common 

risk factors (e.g., genetic, environmental) [11]. These explanations are not mutually 

exclusive, and each has distinct key implications for policy and practice. There is growing 

evidence across multiple study designs (e.g., longitudinal observational analyses, Mendelian 

randomisation [MR], smoking cessation interventions) that tobacco smoking causes worse 

mental health [12–15], including depression [16,17]. However, it remains unclear which 

constituents of tobacco smoke (e.g., nicotine, carbon monoxide) may confer negative effects 

for mental health [18]. 

 Multiple underlying biological mechanisms for a potential causal relationship 

between tobacco smoking and depression have been proposed [10]. A key theory relates to 

neuroadaptations in nicotinic pathways in the brain, whereby stimulation of nicotine 
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receptors augments the release of neurotransmitters (e.g., dopamine, serotonin, 

norepinephrine) which have been implicated in the aetiology of depression [19,20]. In 

support of the potential role of nicotine exposure in mental illness, there is evidence from 

observational studies that e-cigarette (i.e., electronic devices which often contain nicotine) 

use is associated with increased risk of mood disorders [21–23]. Furthermore, the reported 

benefits of smoking cessation for mental health [15] appear to be reduced in former 

smokers that report recent (i.e., past month) e-cigarette use [24,25]. However, due to the 

inherent limitations of observational methods (e.g., reverse causation, residual 

confounding) inferring causality from these studies is difficult. Furthermore, few never 

smokers regularly use e-cigarettes [26–28], thus confounding by exposure to tobacco smoke 

and its other constituents is likely.  

Randomised controlled trials (RCTs) are the gold-standard for exploring causal 

relationships [29], however an RCT of long-term nicotine exposure in non-smokers would be 

both unethical and impractical. MR is a useful, alternative approach to studying causal 

relationships where an RCT is unfeasible [30]. MR employs common genetic variants as 

instrumental variables to explore causal relationships between exposures and health 

outcomes [31]. Provided several key assumptions are met [32,33], MR can minimise bias 

due to reverse causation and residual confounding as the genetic variants used as proxies 

for the exposure of interest are randomly assigned at meiosis and fixed at conception [30]. 

MR has previously been employed using genetic variants robustly associated with 

tobacco smoking phenotypes (e.g., smoking initiation, lifetime smoking index, smoking 

heaviness) to estimate the total causal effect of a smoking-related exposure on various 

mental health outcomes [14]. However, as there are no published large genome-wide 

association studies (GWAS) of nicotine exposure without exposure to tobacco smoking (e.g., 
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e-cigarette use amongst non-smokers), disentangling the potential causal effects of nicotine 

from the non-nicotine constituents of tobacco smoking has been limited due to the 

potential shared genetic aetiology of tobacco smoking and e-cigarette use behaviours [34]. 

A novel framework, employing multivariable MR (MVMR), has recently been applied 

to explore the effects of nicotine and non-nicotine constituents of tobacco smoking for 

various physical health outcomes (e.g., lung cancer, chronic obstructive pulmonary disease) 

[35]. MVMR is an extension to MR that includes multiple exposures to estimate the effect of 

one exposure (e.g., smoking heaviness), independent of other, genetically correlated, 

exposures (e.g., nicotine metabolite ratio) [36–38]. MVMR is therefore a valuable tool to 

explore highly correlated phenotypes, such as tobacco smoke exposure and nicotine intake. 

GWAS have previously identified genetic variants associated with smoking heaviness (i.e., 

cigarettes per day) [39] and the nicotine metabolite ratio (NMR] [40] – the ratio of 

3’hydroxycotinine (3HC)/cotinine (COT) [41].  

NMR is a biomarker which represents the rate of nicotine metabolism [42]; smokers 

with a higher NMR will clear nicotine more quickly from their system. However, having a 

higher NMR is associated with smoking more cigarettes per day (CPD) (Figure 1) [43]. This 

means that the effect of NMR in a univariable MR analysis would be ambiguous.  
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Figure 1. Illustration of the impact of nicotine metabolite ratio on circulating nicotine. 

 

Note. This image is reused, with permission, from authors from Khouja and colleagues [35]. Illustration depicts the 

differences in circulating nicotine between two people who smoke, with a different NMR. Person A has a high NMR and 

Person B has a low NMR. At timepoint 1 (T1) both individuals smoke one cigarette inhaling the same amount of nicotine, 

as shown at timepoint 2 (T2). Subsequently, at timepoint 3 [T3], Person A will have less circulating nicotine in their body 

than Person B given the same nicotine exposure as more nicotine has been metabolised into cotinine. Because smokers 

with a higher NMR clear nicotine more quickly from their system, this will often result in them smoking more cigarettes 

per day at timepoint 4 (T4), whereas a smoker with a lower NMR may not. This results in Person A having more 

circulating nicotine in their body than Person B over the same time period. This figure includes images from the following 

sources in accordance with their copyright licence: https://commons.wikimedia.org/wiki/File:Bootstrap_lungs.svg; 

https://commons.wikimedia.org/wiki/File:Noun_146.svg. The lung images have been adapted to include circles. 

https://doi.org/10.1371/journal.pgen.1011157.g001  

By including both NMR and CPD in an MVMR model (Figure 2), the effect of nicotine 

exposure per cigarette smoked is fixed and the effect of nicotine exposure per cigarette can 

be explored [35]. For a full explanation of the model, please refer to Khouja and colleagues 

[35]. 
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Figure 2. Schematic of the study model. 

 

Note. Schematic adapted from Khouja and colleagues [35], with permission, to reflect outcome of interest. NMR=Nicotine 

Metabolite Ratio; MDD=Major Depression. G=genetic variants associated with the named exposure. Where causal 

directions between variables are known (i.e., evidenced in previous research), the direction of the effect is indicated as 

‘positive’ or ‘negative’. A higher genetic liability (G-NMR, G-CPD [cigarettes per day]) has a positive, or increasing, effect on 

NMR and CPD (i.e., higher NMR and greater number of CPD). A higher NMR has a negative, or decreasing, effect on 

circulating nicotine as an individual with a higher NMR has a faster rate of nicotine metabolism.  

 

Identifying which constituents of tobacco smoking are causally related to mental 

illness has been identified as a priority for future research [10,18], and has the potential to 

inform current and future perspectives on tobacco smoking policies. We employed a 

summary-level (i.e. two-sample) MVMR framework to explore the independent causal 

effects of nicotine compared to the non-nicotine constituents of tobacco smoke on MDD.   
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METHODS 

Our statistical analysis plan was pre-registered (https://osf.io/udqkm; 18/12/2023). 

See supplementary materials for protocol deviations (Supplementary Note S1).  

Ethics statement 

 UK Biobank received ethics approval from the North West Multi-Centre Research 

Ethics Committee as a Research Tissue Bank approval (REC; 11/NW/0382). Approval to use 

these data was sought and approved by UK Biobank (Project ID: 9142).  

Data sources 

 Summary-level genetic data from well-powered, published GWAS were used to 

identify relevant instrumental variables (IVs) for NMR and smoking heaviness (measured via 

CPD) [39,40]. Both GWAS were performed amongst smokers; the NMR GWAS was 

performed among current smokers [40] and the CPD GWAS was performed among ever 

smokers (i.e., current and former smokers) [39]. Information regarding the contributing 

cohorts, periods of recruitment, genotyping, imputation, and quality control are described in 

detail in the original meta-analyses [39, 40]. To the best of our knowledge, there were not 

existing available GWAS for depression that were appropriately stratified (i.e., stratified by 

ever versus never smoking status), which is necessary to meet the assumption that 

summary-level MR samples are drawn from the same underlying population [30,44]. As 

such, we used UK Biobank data to conduct a GWAS of major depressive disorder (MDD) 

which was stratified by smoking status and restricted to individuals of European ancestry. 

GWAS were stratified by whether participants had (1) ever smoked, and further stratified 

into (2) current smoker, or (3) former smoker, with (4) never smoker as the comparator. 
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GWAS were performed using the MRC Integrative Epidemiology Unit UK Biobank GWAS 

pipeline (V2) [45,46]. 

Smoking heaviness 

 Liu and colleagues [39] report summary-level statistics from a GWAS meta-analysis 

of smoking heaviness (measured by standard deviation [SD] change in CPD categories, 

equivalent to 2-3 additional CPD) among 337,334 ever smokers of European ancestry. To 

eliminate sample overlap with our GWAS of MDD, summary statistics were obtained with UK 

Biobank (n=120,744) removed. 23&Me participants (n=73,380) were also excluded from the 

summary data due to data sharing restrictions. The remaining sample consisted of data 

from 143,210 participants. Smoking heaviness was defined as the average number of 

cigarettes smoked per day (e.g., “How many cigarettes do/did you smoke per day?”) as a 

current or former smoker. Self-reported quantities were binned (1-5 CPD, 6-15 CPD, 16-25 

CPD, 26-35 CPD, 36+ CPD) or else pre-defined contributing cohort bins were used [39]. 

Analyses were adjusted for age, sex, genetic principal components and smoking status (i.e., 

current versus former). SNPs were reported as independent if they explained additional 

variance in conditional analyses using a partial correlation-based score statistic [47]. The 55 

genome-wide significant conditionally independent SNPs associated with CPD explained 

~4% of the variance in CPD.  

Nicotine metabolite ratio 

 Buchwald and colleagues [40] report summary-level statistics from a GWAS meta-

analysis of NMR (measured by SD change in NMR), among 5,185 current smokers with 

cotinine levels ≥10ng/ml (i.e., indicative of recent smoking) of European descent. NMR is a 

ratio of 3’hydroxycotinine/cotinine and indicates how quickly a person metabolises and 
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clears nicotine [41]. Analyses were adjusted for population substructure, age, sex, BMI, 

alcohol use and birth year. SNPs were reported as independent if they explained additional 

variance in a stepwise conditional regression using genome-wide complex trait analysis 

(GCTA) [48]. The seven genome-wide significant conditionally independent SNPs associated 

with NMR explained ~38% of the variance in NMR. 

Major depressive disorder 

 We conducted a GWAS of MDD using data from UK Biobank, a population-based 

cohort consisting of ~500,000 people aged between 37 and 73 years recruited between 2006 

and 2010 from across the UK [49]. Participants provided extensive information about their 

lifestyle, physical measures and had blood, urine and saliva samples collected and stored 

for future analysis. Participants attended a baseline assessment, and subsets of participants 

completed repeat assessments including an online mental health questionnaire (MHQ) in 

2017 [50]. A detailed description of the study design, participants and quality control (QC) 

methods has been reported previously [49–51]. 

 The full data release contains the cohort of successfully genotyped samples 

(n=488,377). Analyses were restricted to individuals of ‘European’ ancestry as defined by an 

in-house k-means cluster analysis [45]. Information about genotyping and imputation can 

be found in Supplementary Note S2. The GWAS were conducted using the linear mixed 

model (LMM) association method as implemented in BOLT-LMM (v2.3) [52] and were 

adjusted for age, sex and genotype array [45]. Betas and their corresponding standard 

errors were transformed to log odds ratios and their corresponding 95% confidence 

intervals [52]. Smoking status was categorised using self-reported information on smoking 

status (ID: 20116). Using this variable an ‘ever smokers’ category was derived, defined as 

currently or previously smoking occasionally, most days or daily (i.e., more than once or 
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twice). Current smoking was defined as currently smoking occasionally, most days or daily. 

Former smoking was defined as not currently smoking, but previously smoking occasionally, 

most days or daily. Individuals who reported trying smoking once or twice, or reported 

never smoking, were categorised as never smokers.  

 MDD cases were identified following a validated approach to defining lifetime major 

depression in UK Biobank [53]. Full details, and UK Biobank field IDs, are provided in 

Supplementary Notes S3–S5. Briefly, ‘non-MHQ’ cases were identified if endorsing at least 

two measures of depression from: ‘help-seeking’, ‘self-reported depression’, ‘antidepressant 

usage’, ‘depression (Smith)’ [54] or ‘hospital (ICD-10) depression’. ‘MHQ cases’ were identified 

from the online follow-up if they met criteria for lifetime MDD, as assessed by the 

Composite International Diagnostic Interview–Short Form (CIDI-SF) which approximates 

DSM criteria [50]. Controls comprised individuals who did not endorse any of the depression 

phenotypes (i.e., excluding those endorsing one case indicator at baseline) or any of five 

psychosis phenotypes: ‘self-reported psychosis’, ‘antipsychotic usage’, ‘bipolar (Smith)’ [54], 

‘hospital (ICD-10) psychosis’ and ‘psychosis (MHQ)’. Flowcharts of samples contributing to 

each stratified GWAS are provided in Supplementary Figures S1–S4.  

 To explore population stratification, SNP-based heritabilities (Supplementary Table 

S1) were calculated using linkage-disequilibrium score regression (LDSC v1.0.1) [55, 56] and 

QQ plots were generated (Supplementary Figure S5).  

Statistical analysis 

 All analyses were conducted using R version 4.3.1. Statistical analysis was completed 

using the TwoSampleMR, MVMR and MendelianRandomization packages [57 - 59] and the 

statistical code and data used is available online (https://doi.org/10.5281/zenodo.12187311). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.25.24309292doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.25.24309292
http://creativecommons.org/licenses/by/4.0/


14 
 

Selection of genetic variants 

 SNPs that were identified as conditionally independent at the genome-wide 

significant level (p < 5 x 10-8) in the GWAS analyses of NMR and CPD were selected for 

inclusion in the analysis [39,40], which yielded 55 SNPs associated with smoking heaviness 

and 7 SNPs associated with NMR. All identified SNPs were available in the outcome GWAS of 

MDD. After harmonising, the combined exposure datasets (i.e., SNPs for CPD and NMR) 

were clumped (LD R2 <0.1, >500kb) to remove overlapping loci and ensure overall 

independence for the MVMR analysis. Supplementary Table S2 details which SNPs were 

included and provides reasons for exclusion. Supplementary Note S6 provides additional 

detail on the harmonisation and clumping methods.  

Univariable MR 

 To provide a comparison for the MVMR analysis, the total effect of NMR and smoking 

heaviness on MDD were examined using univariable MR. The main method was inverse 

variance weighted (IVW) regression [60]. We investigated how robust estimates were to 

violations of the exclusion restriction instrumental variable (IV) assumption (i.e., no 

horizontal pleiotropy) with MR-Egger [61], weighted median [62] and weighted mode [63] 

applied as sensitivity methods. Consistent results (i.e., direction, size of effects) across these 

estimators suggest findings are less likely to be driven by pleiotropic or heterogeneous 

effects. Details on the assumptions of MR and the univariable analysis methods are 

reported in Supplementary Note S6.  

We computed Cochran’s Q to assess heterogeneity between SNP-estimates in each 

instrument and the F-statistic to assess instrument strength, whereby F >10 suggests lower 

risk of weak instrument bias and Q-statistic should be less than the number of SNPs [64]. To 
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assess whether the NO Measurement Error (NOME) assumption (defined in Supplemental 

Note 6) was satisfied for MR-Egger, we computed the I2
GX statistic, with values >0.9 indicating 

low risk of bias due to measurement error [65]. We additionally generated scatter plots of 

SNP effect sizes, and performed leave-one-out analyses to further explore heterogeneity 

and potential pleiotropic effects [33]. Steiger filtering, which computes the amount of 

variance each SNP explains in the exposure and outcome variables, was conducted to 

confirm the direction of effect [66] (i.e., identify SNPs which are more predictive of the 

outcome than the exposure).  

Multivariable MR 

 The independent effects of NMR and smoking heaviness on MDD were explored 

using two complementary MVMR methods: MVMR-IVW and MVMR-Egger [38,67]. For MVMR-

Egger, results are reported for analyses with SNPs oriented with respect to each exposure of 

interest [68]. 

 An additional assumption for MVMR is that instruments are strongly associated with 

each exposure given the other exposures included in the model, or ‘conditional relevance’ 

[38]. In univariable MR, weak instruments will bias estimated effects in the direction of the 

observational estimate; however, in MVMR, it is unclear which direction of bias will occur 

due to weak instruments [38]. The conditional F-statistic (FTS) for summary-level MR was 

calculated to evaluate the strength of the SNP-exposure associations, conditional on other 

exposures (i.e., whether SNPs jointly predict NMR after predicting smoking heaviness, and 

vice versa), with values ≥10 indicating results are unlikely to suffer from weak instrument 

bias [58]. A modified form of Cochran’s Q statistic for MVMR was applied to detect 

heterogeneity among the SNPs included, where Q estimates should be less than the number 

of SNPs included in the model to indicate no excessive heterogeneity [58]. 
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 For both univariable and MVMR, analyses were performed amongst never smokers 

as a negative control analysis to explore potential bias from horizontal pleiotropy (i.e., 

effects observed among never smokers could indicate SNPs influencing the outcome 

directly or via another phenotype, but not via the target exposure). 
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RESULTS 

Descriptive statistics 

In GSCAN, information on cigarettes smoked per day, either current or former 

average, was collected from 337,334 current and former smokers with an average binned 

level of 16-25 CPD [39]. In the study by Buchwald and colleagues [40], NMR data were 

collected from 5,185 current smokers with an average of 11.5 (SD 6.0) to 20.3 (SD 7.9) CPD 

and average NMR of 0.41 (SD 0.22) to 0.47 (SD 0.24) across the five contributing cohorts. The 

average case prevalence of MDD amongst the stratified smoking groups in UK Biobank was: 

25.5% (ever smokers), 30.7% (current smokers), 24.0% (former smokers) and 20.3% (never 

smokers).  

Instrument strength and heterogeneity 

The conditional F-statistics indicated that the SNPs used in these analyses are strong 

(F > 10) instruments for assessing the independent effects of smoking heaviness while 

accounting for the effect of NMR (F=23.13) and for assessing the independent effects of 

NMR while accounting for smoking heaviness (F=26.16; Supplementary Table S3). 

Cochran’s Q statistics (Supplementary Table S3) and scatter plots (Supplementary 

Figures S6–S7) indicated heterogeneity for some analyses, highlighted in each relevant 

results section. As such, both univariable and multivariable analyses are interpreted 

alongside methods to explore pleiotropy (i.e., MR-Egger and MVMR-Egger) which generate 

estimates robust to directional horizontal pleiotropy under the assumption that the 

exposure effects of the individual SNPs are independent of their pleiotropic effects on the 

outcome (i.e., InSIDE assumption) [69]. However, MR-Egger and MVMR-Egger methods have 
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much lower statistical power when compared to other methods. Therefore, we focus on 

consistency in the direction, rather than supporting statistical evidence for the effect. 

Univariable MR 

Results are presented as odds ratios (OR) per standard deviation (SD) increase in the 

exposure phenotype (i.e., per SD increase in the NMR or cigarettes per day). ORs are 

presented for inverse variance weighted (ORIVW), MR-Egger (OREGG), weighted median 

(ORMED) and weighted mode (ORMOD) analyses.  

Among ever smokers, the MR-IVW results provided no clear evidence that NMR 

affects MDD risk (ORIVW=0.99, 95% CI 0.97–1.00; p=0.135; Supplementary Table S3). This was 

supported by the MR-Egger, weighted median and weighted mode results (OREGG=0.99, 95% 

CI 0.96–1.02, p=0.650; ORMED=0.99, 95% CI 0.97–1.01, p=0.273; ORMOD=0.99, 95% CI 0.97–

1.01, p=0.297; respectively; Supplementary Table S4).  

The MR-IVW results provided evidence that increased smoking heaviness increases 

MDD risk (ORIVW=1.13, 95% CI 1.04–1.23, p=0.003; Supplementary Table S3), and MR-Egger, 

weighted median and weighted mode showed consistent effects (OREGG=1.09, 95% CI 0.96–

1.24, p=0.180; ORMED=1.12, 95% CI 1.02–1.23, p=0.018; ORMOD=1.13, 95% CI 1.04–1.22, 

p=0.004; respectively; Supplementary Table S4).  

Although there was evidence of considerable heterogeneity in the smoking 

heaviness analyses indicated by the Q-statistic (Q=80.62; Supplementary Table S3) and 

scatter plot (Supplementary Figure S7), direction of effect was supported by the MR-Egger 

results and the intercept indicated heterogeneity was likely not due to directional horizontal 

pleiotropy (MR-Egger intercept p=0.456; Supplementary Table S3). Additionally, there was no 

strong evidence of pleiotropy or bias due to population stratification indicated by the results 
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among never smokers (Supplementary Table S3; Supplementary Figure S8) and leave-one-

out analyses suggested overall effect estimates were not driven by one particular SNP 

(Supplementary Figures S11–S12). 

Figure 3. Forest plot displaying the effect of NMR and smoking heaviness on MDD: 

univariable and multivariable MR (MVMR) results among ever smokers. 

 

Note. OR=Odds Ratio. CI=Confidence Interval. MR=Mendelian Randomisation. MVMR=Multivariable MR. IVW=Inverse 

Variance Weighted. Light red = univariable MR. Dark red = multivariable MR.   
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Multivariable MR 

Among ever smokers, the MVMR-IVW results provided weak evidence of a small 

causal effect of NMR on MDD risk (ORIVW=0.98, 95% CI 0.96–1.00, p=0.057; OREGG=0.98, 95% 

CI 0.96–1.00, p=0.038; Supplementary Table S3). The MVMR-IVW results provided evidence 

that increased smoking heaviness increases MDD risk (ORIVW=1.20, 95% CI 1.04–1.38, 

p=0.017) and was supported by the direction of effect in the MVMR-Egger analyses 

(OREGG=1.13, 95% CI 0.90–1.43, p=0.300; Supplementary Table S3).  

There was evidence of heterogeneity indicated by the Q-statistic (Q=68.49; 

Supplementary Table S3), but direction of effect was supported by the MR-Egger results, the 

intercepts indicated heterogeneity was likely not due to directional horizontal pleiotropy 

(MVMR-Egger intercepts p=0.368–0.812) and there was no clear evidence of an effect among 

never smokers (Supplementary Table S3; Supplementary Figure S8).  

Supplementary and sensitivity analyses 

Among ever and never smokers, Steiger filtering indicated no clear evidence to 

support reverse causality (i.e., depression influencing smoking heaviness). All the genetic 

instruments for CPD and NMR explained more variance in the exposure instrument than in 

MDD (Supplementary Table S5).  

The results among current and former smokers can be found in Supplementary 

Tables S3-S4. Analyses across both groups indicated no clear evidence for an independent 

or total casual effect of NMR on MDD, and slightly weaker evidence for an independent and 

total causal effect of CPD on MDD amongst current smokers (Supplementary Note S7; 

Supplementary Figures S9-S10).  
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DISCUSSION 

 

In this study, we employed a summary-level MR approach to test putative causal 

effects of nicotine exposure and smoking heaviness on MDD. We used univariable MR and 

multivariable MR to distinguish the independent effects of nicotine from the independent 

effects of non-nicotine components of tobacco smoke, employing genetic variants robustly 

associated with NMR and CPD as proxies, as has been applied in previous work to examine 

the effects of smoking on various physical health outcomes (e.g., lung cancer) [35]. 

Our results suggest no clear evidence for a total causal effect of nicotine exposure 

on MDD, although MVMR analysis provided weak evidence for a small, potentially negligible, 

independent effect of NMR on MDD, such that increased genetic liability to NMR (i.e., 

decreased nicotine exposure per cigarette smoked) reduced the risk of MDD. We found 

evidence consistent with a total causal effect of increased smoking heaviness on MDD and 

after adjusting for NMR, the magnitude of effect was slightly larger, although with 

overlapping confidence intervals. Together these results suggest we cannot rule out nicotine 

as a potential mechanism underlying the effect of tobacco smoking on depression. 

However, the observed effects of smoking heaviness after adjusting for NMR indicate the 

involvement of other causal pathways beyond nicotine exposure. Results obtained were 

consistent across different sensitivity analyses performed that rely on different 

assumptions, providing stronger evidence to support the potential causal role of tobacco 

smoking on MDD [70].  

If the observed causal effect of tobacco smoking on MDD was largely independent of 

nicotine exposure there are several mechanisms, biological and non-biological, which could 

explain the effect [10, 71]. A plausible biological mechanism relates to inflammation and 
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oxidative stress. Uptake of toxins in cigarette smoke (e.g., fine particulate matter, 

heavy/transition metals) can lead to neuroinflammation and cerebral oxidative stress [10, 

71]. Smoking behaviour is associated observationally with both depression and increased 

oxidative stress biomarkers [72, 73] and evidence from a multivariable MR analysis of 

lifetime smoking, depression and inflammation, proxied via IL-6 activity, suggests that the 

causal effect of smoking on depression is substantially attenuated when accounting for the 

effects of inflammation [74]. Alternatively, a plausible non-biological mechanism relates to 

the effect of tobacco smoking on MDD via social pathways such as social isolation or 

loneliness. Smoking has been found to increase social isolation [75, 76] and loneliness [75, 

77]. There are various reasons why smoking may increase social isolation and loneliness 

(e.g., development of smoking-related illness, perceived stigma, legislative restrictions on 

smoking in public places, effect of smoking on mobility and functional capacity) [75], which 

are, in turn, associated with increased risk of MDD [77, 78].  

Another potential explanation for the difference in results between smoking 

heaviness and NMR, which doesn’t relate to differences in underlying true causal effects, is 

horizontal pleiotropy in the smoking heaviness instrument which is a particularly important 

issue in MR studies of behavioural risk factors and psychiatric outcomes [79]. Although 

evidence for horizontal pleiotropy has been found to a lesser extent for smoking heaviness 

versus smoking initiation [80], caution is still advised when using this instrument and results 

should be interpreted alongside pleiotropy-robust sensitivity methods (e.g., MR-Egger) and 

alternative approaches (e.g., negative control analyses) as we have applied in this study. 

Results for smoking heaviness were consistent across pleiotropy robust methods, with no 

strong evidence for directional horizontal pleiotropy indicated by the MR-Egger intercept or 

analyses amongst non-smokers.  
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Importantly, smoking heaviness is a time-varying exposure and genetic influences 

for smoking behaviour are not static over age [81]. In this scenario, MR estimates can be 

interpreted as the lifetime effect of being on a trajectory for the exposure associated with 

having an exposure level that is a unit higher at the time it is measured [82]. While GWAS 

procedures for identifying smoking heaviness SNPs control for age [39,81], this does not 

account for potential developmental sensitivity [81]. For example, it has been demonstrated 

that the genetic risk for CPD relates to adult, but not adolescent smoking heaviness [83]. 

Furthermore, the incidence of many mental health conditions is not uniformly distributed 

across the lifespan. For example, MDD is typically developed in early adulthood, with an 

estimated median age of onset of 31 years [84]. As such, our results will not capture any 

time-sensitive effects (e.g., exposure to higher levels of nicotine during critical development 

periods such as adolescence).  

Strengths and limitations 

Our study has several strengths, including: (i) the application of a genetically 

informed approach to strengthen causal inference; (ii) the use of a smoking heaviness 

phenotype to examine the effect of frequency of use on risk of depression; (iii) the use of 

several sensitivity analyses and robust MR methods to examine the validity of core MR 

assumptions; and (iv) the inclusion of a negative control exposure.  

However, the results should be interpreted considering some important limitations. 

First, a limitation which applies to all MR studies is that results may be impacted by selection 

bias. This may occur if both smoking heaviness and MDD influence selection into our study. 

The participants of UK Biobank are substantially better educated, healthier (e.g., fewer 

chronic health conditions) and less likely to smoke than the general population [85], which 

can distort genetic associations and downstream analyses (e.g., MR estimates) especially for 
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socio-behavioural traits such as smoking [86]. Future GWAS using UK Biobank should 

consider the application of inverse probability weighting to correct for participation bias in 

this cohort [86]. Second, genetic variants linked to smoking heaviness are correlated with 

cognitive (e.g., years of education) [39,87] and physical traits (e.g., obesity) [39] which are 

associated with mental health and could be possible sources of pleiotropy. Whilst we 

employed methods to explore horizontal pleiotropy, future research could further explore 

the role of pleiotropic effects using MVMR to test the independent effects of tobacco 

smoking controlling for potential confounding factors, or novel PheWAS-based clustering of 

MR instruments [88]. Third, although multi-ancestry GWAS of smoking heaviness and major 

depression are available [89,90] the NMR GWAS was restricted to individuals of European 

ancestry and the MDD GWAS would not be stratified by smoking status, leading to violations 

of an assumption of MVMR is that all data included in the model are drawn from the same 

underlying population [30,44]. Thus, our findings may not be generalizable to other 

populations. Finally, although MR represents a useful methodology to explore causal effects, 

results from MR studies should not be interpreted in isolation and should be triangulated 

with results from studies using different and unrelated key sources of bias [91]. One 

potential avenue of research could be to conduct secondary analyses of data from e-

cigarette cessation trials, where changes in depressive symptoms are compared between 

cessation and continued use, as has been applied to smoking cessation trials [15]. 

Alternatively, secondary analyses of data from trials of reduced nicotine content cigarettes 

could be used to compare depressive symptoms between participants using lower versus 

higher nicotine content cigarettes.  
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CONCLUSION 

 

 Our study provides supporting evidence of a causal effect of tobacco smoking on 

depression, as reported in previous MR studies using different exposure instruments (e.g., 

lifetime smoking, smoking initiation). To some extent, our results suggest that the causal 

effect of tobacco smoking on depression is largely independent of nicotine exposure and 

implies the role of alternative causal pathways (e.g., driven by other constituents of tobacco 

smoke, non-biological pathways). Although further research is required to triangulate these 

findings [91], our results underpin the importance of strategies to prevent individuals from 

initiating tobacco smoking and targeting smoking cessation efforts to reduce the incidence 

of depression. 
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