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ABSTRACT 

Artificial intelligence (AI) is revolutionizing medicine by automating tasks like image 

segmentation and pattern recognition. These AI approaches support seamless integration with 

existing platforms, enhancing diagnostics, treatment, and patient care. While recent 

advancements have demonstrated AI superiority in advancing microfluidics for point of care 

diagnostics, a gap remains in comparative evaluations of AI algorithms in testing microfluidics. 

We conducted a comparative evaluation of AI models specifically for the two-class classification 

problem of identifying the presence or absence of bubbles in microfluidic channels under various 

imaging conditions. Using a model microfluidic system with a single channel loaded with 3D 

transparent objects (bubbles), we challenged each of the tested machine learning (ML) (n = 6) 

and deep learning (DL) (n = 9) models across different background settings.  Evaluation revealed 

that the Random Forest ML model achieved 95.52% sensitivity, 82.57% specificity, and 97% 

AUC, outperforming other ML algorithms. Among DL models suitable for mobile integration, 

DenseNet169 demonstrated superior performance, achieving 92.63% sensitivity, 92.22% 

specificity, and 92% AUC. Remarkably, DenseNet169 integration into a mobile POC system 

demonstrated exceptional accuracy (> 0.84) in testing microfluidics at under challenging imaging 

settings.  Our study confirms the transformative potential of AI in healthcare, emphasizing its 

capacity to revolutionize precision medicine through accurate and accessible diagnostics.  The 

integration of AI into healthcare systems holds promise for enhancing patient outcomes and 

streamlining healthcare delivery.  
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INTRODUCTION 

The convergence of artificial intelligence (AI) and healthcare has opened up a new era of 

possibilities, particularly in detection diagnostics and treatment. With AI algorithms 

continuously advancing, the integration of these approaches into healthcare systems holds 

immense promise for transforming traditional practices and addressing longstanding challenges 

in healthcare delivery[1-3]. Healthcare applications driven by sophisticated machine learning 

(ML) and deep learning (DL) algorithms stand at the forefront of modern healthcare 

innovation[4-6]. These algorithms empower machines to obtain insights from vast datasets, 

predict clinical outcomes, and assist healthcare providers in making informed decisions[6]. From 

medical imaging analysis to personalized treatment strategies, AI-driven approaches have 

demonstrated significant efficacy in improving diagnostic precision and ultimately enhancing 

patient outcomes[7-10]. 

Point-of-care diagnostics represent a cornerstone of modern healthcare, offering timely 

and accessible testing solutions, particularly in resource-limited settings[11-13]. The integration 

of AI into microfluidic systems presents a promising avenue for enhancing the accessibility and 

efficiency of POC testing[14, 15]. By harnessing advanced ML and DL algorithms, AI enhances 

the sensitivity, specificity, and multiplexing capabilities of microfluidic devices, enabling rapid 

and accurate detection of a wide range of diseases and biomarkers directly at the point of 

care[16-18]. An important approach where AI is utilized to enhance microfluidic systems is in 

facilitating its integration with other approaches and image processing[19-21]. ML and DL 

learning models excel at image classification and pattern recognition tasks and can support 

microfluidic devices to perform rapid and multiplex assays, allowing for comprehensive 

screening or testing using minimal resources[22-24]. This integration addresses critical gaps in 
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healthcare access and empowers a new level of POC diagnostics, equipping frontline providers 

with actionable insights and revolutionizing the delivery of healthcare services. 

Recent advancements have demonstrated superior performance in identifying disease 

biomarkers, detecting cancer[25], viruses[26], bacteria[27], and other pathogens[28], 

underscoring the robustness and clinical relevance of AI-integrated microfluidic platforms in 

modern healthcare settings. However, despite these advancements, there remains a gap in the 

comparative evaluations of different AI algorithms in testing microfluidics, and the optimal 

approach for maximizing their performance in this context remains unclear[29-34]. To address 

this gap, this study aims to critically analyze existing AI algorithms in testing microfluidics, 

focusing on their efficiency in enabling microfluidic platforms and their implications on 

diagnostic accuracy, resource utilization, and scalability.  In the context of POC diagnostics, 

where real-world deployment considerations such as cost, power consumption, and scalability 

are paramount, the choice of algorithm can have significant implications. Such a comparative 

study is critical in gaining a comprehensive understanding of the strengths and weaknesses of 

different algorithms, informing algorithm selection, optimization, and deployment decisions 

across diverse domains and applications[35-38].  

We employed a model microfluidic system, featuring a single microfluidic channel 

loaded with 3D transparent objects of bubbles. This model is designed to rigorously challenge 

the performance of commonly used AI models and provide insights into their effectiveness in 

real-world diagnostic scenarios. We integrated various ML and DL algorithms into our study, 

including CNNs like MobileNetV2, ResNet101V2, and DenseNet169, alongside commonly used 

ML models in healthcare applications such as Naive Bayes, logistic regression, KNN, SVM, and 

Random Forest[39-43]. Among the six evaluated ML algorithms, the Random Forest model 
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performed best, achieving 95.52% sensitivity, 82.57% specificity, and 97% AUC. Similarly, 

among the nine DL models, DenseNet169 stood out, achieving 92.63% sensitivity, 92.22% 

specificity, and 92% AUC. 

 

RESULTS AND DISCUSSION 

The integration of AI in medicine is driven by its remarkable ability to analyze and 

classify images and datasets. This computational capability of AI algorithms is foundational 

across diverse domains, prominently within diagnostics and medical testing, where AI-driven 

image analysis stands as a transformative force, providing rapid data processing and precise 

assessment devoid of infrastructure constraints or specialized human oversight[3, 44, 45]. This 

technological paradigm bears profound implications, particularly on POC diagnostics, through its 

role in facilitating the integration of microfluidics into POC applications[46]. By harnessing 

sophisticated ML and DL algorithms, AI streamlines the imaging and analysis of microfluidic 

devices, such as smartphone-captured assays, reducing the total testing cost and time, enhancing 

accuracy, and expanding utility[22, 47, 48]. This convergence of AI and microfluidics within 

POC holds immense potential to democratize healthcare access, particularly in underserved 

regions, by providing affordable, accurate, and accessible diagnostic solutions[14, 22, 49, 50].  

In our study, we investigated the efficacy of AI algorithms, including both ML and DL, 

to facilitate the process of testing microfluidics within POC settings. We employed a 

microfluidic system comprising a single microfluidic channel to rigorously assess a set of 15 AI 

models recognized for data analysis and image classification across biomedical and diagnostic 

domains. Our experimental setup incorporated testing configurations featuring varying densities 
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of bubbles. Bubbles as a readout was selected to probe the imaging and analytical performance 

of the examined algorithms. Despite bubbles being less prevalent than conventional color-based 

or fluorescence-based readouts, their inherent 3D transparency poses challenges, as they may be 

mistaken for non-targeted constituents within the sample matrix, microfluidic system or the 

testing environment and background. Colorimetric readouts, though linear and would allow 

comparatively easier workflow, fail to sufficiently encapsulate the intricacies necessary for 

discerning strengths and weaknesses of the tested algorithms. Meanwhile, fluorescence, although 

know to support high specificity and sensitivity testing, remains impractical for widespread POC 

adoption due to the need for bulky equipment and specialized setup to achieve the required 

sensitivity and specificity in most analyses. 

Our set of AI algorithms included ML models, such as Naive Bayes, logistic regression, 

k-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random Forest, alongside 

DL CNNs such as MobileNetV2, ResNet101V2, and DenseNet169. By combining traditional 

ML algorithms with state-of-the-art CNN architectures, we created a diverse ensemble of models 

that can collectively leverage different aspects of the data. This ensemble approach is essential to 

enhance robustness and generalization performance, particularly in scenarios where the dataset 

may be limited or the target features are challenging to discern (i.e., bubbles). The incorporation 

of traditional ML algorithms stemmed from their robustness in handling various types of 

features, including those extracted from images, and their suitability for the often constrained 

datasets characteristic of microfluidic diagnostics at POC settings. The CNN architectures like 

MobileNetV2, ResNet101V2, and DenseNet169 have unparalleled ability to capture intricate 

spatial relationships within images, which is crucial for discerning subtle patterns like 

challenging signals such as bubbles. This aligns with the evolving field of diagnostics, which is 
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moving towards inventing and incorporating more versatile readouts like bubbles to allow for 

more sensitive and unique detection capabilities, distinct from common ones like color and 

fluorescence. These CNN architectures offer distinct trade-offs in terms of model size, 

computational efficiency, and classification accuracy, offering flexibility in addressing the 

specific nuances of the dataset. 

To investigate the capabilities of the selected set of ML and DL algorithms in testing 

microfluidics, we captured 19,097 images of our microfluidic model with bubbles in various 

settings, including different environments, lighting conditions, times of the day, and backgrounds 

(Figure 1). We labeled the captured images either positive or negative, based on the number of 

bubbles, around a threshold value of 10 bubbles per microchip, to train our ML and DL models 

(Figure 1a). Out of the 19,097 labelled images (Figure 1b), 15,530 images were utilized for 

training using Python running on Lambda Vector GPU Workstation (Intel i9-10900x CPU, 

NVIDIA RTX A6000 GPU) system.  

To test the performance of ML models, we used 1595 randomly selected images, 

excluding those used for training, to evaluate their classification accuracy. We employed 

standard performance metrics, including accuracy, precision, recall (i.e., sensitivity), specificity, 

F1 score, and Matthews's correlation coefficient (MCC) (Supplementary Table 1), obtained 

from each model to determine their effectiveness[51]. We conducted all statistical analyses and 

data visualizations using TensorFlow and TensorBoard tools with necessary Python libraries as 

matplotlib, NumPy, Keras, Sklearn, pandas, torch[52, 53]. The comparison primarily centered 

around specificity and sensitivity values, which are metrics influencing overall performance and 

gives information about other metrics.  
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Our analysis of the ML models revealed that logistic regression and Random Forest 

models exhibited exceptional sensitivity (>90%), while K-nearest neighbors and Random Forest 

models demonstrated high specificity (>80%) (Figure 2a). The results showed that the highest 

sensitivity value was obtained from the Random Forests (95.52%) and the highest specificity 

value was obtained from K-nearest neighbors (89.68%) ML models. we assessed the confusion 

matrix to better understand the positive and negative predictions. Out of 1595 images, 1447 were 

classified correctly, with 45 false negatives and 103 false positives. The model primarily made 

errors in the classification of negative samples. (Figure 2b and Supplementary Figure 1). The 

ROC analysis of the trained models indicated that the Random Forest (AUC: 97%) (Figure 2c) 

and K-nearest neighbors (AUC: 90%) have highest area under the ROC, which represents the 

diagnostic ability of the model (Supplementary Figure 2). Additionally, the Random Forest 

model outperformed others in terms of F1 score (92.8%) and accuracy (90.72%). This shows that 

the Random Forest provides most balanced results between precision and sensitivity with highest 

accuracy. Consequently, the most effective model was observed as Random Forest with notable 

metrics as 95.52% sensitivity, 82.57% specificity, 90.72% accuracy, 90.3% precision, 92.8% F1 

score, 79.95% MCC, and 97% AUC (Supplementary Table 1).  

To test the performance of DL models, we continued by evaluating the performance of 

the selected CNNs architectures using the same dataset of 1595 images. The performance 

evaluation step was conducted using developed Python algorithms with the help of Pandas, 

NumPy, Sklearn, Matplotlib, Keras and Tensorflow libraries[52]. The deep learning models 

utilized for this evaluation included MobileNetV2, EfficientNetV2B0, EfficientNetV2B2, 

DenseNet169, DenseNet201, InceptionV3, ResNet50V2, EfficientNetB5, and ResNet101V2. In 

selecting these deep learning models, we prioritized those that does not require significant 
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computing power and thus ensure compatibility for evaluation and testing microfluidics at POC. 

We also ensured that the chosen models were commonly employed for computer vision tasks, 

prioritizing ease of integration and robust performance on POC compatible mobile devices[22]. 

Our results indicated that DenseNet169, EfficientNetB5, and EfficientNetV2B0 exhibited 

outstanding sensitivity values of 92.63%, 95.82%, and 91.93%, respectively (Figure 3a and 

Supplementary Figure 3-5). ResNet50V2 (89.17%) and InceptionV3 (88.49%) demonstrated 

high specificity values, while DenseNet169 displayed an exceptional specificity of 92.22% 

(Supplementary Table 2). The confusion matrix revealed further insights into the performance 

of these algorithms. DenseNet169 algorithm excelled in detecting negative samples, accurately 

classifying 545 out of 591, while also achieving the second-highest performance in positive 

classification with 930 out of 1004, resulting in the highest overall performance at 92% (Figure 

3b). Other algorithms including EfficientNetB5 correctly identified 962 out of the tested 1004 

positive samples. However, it misclassified 293 negative samples as positive, resulting in a 

50.4% performance rate for negative samples and an overall performance rate of 79%. 

EfficientNetV2B0 exhibited similar performance, albeit with a 7% overall performance rate 

downgrade, reflecting a 4% difference in true positive performance rate and an 11% decrease in 

true negative performance rate. The results of MobileNetV2, EfficientNetV2B2, DenseNet201, 

InceptionV3, ResNet50V2, and ResNet101V2 algorithms are shown in Supplementary Figure 4, 

5 with misclassification rates < 38%. The ROC analysis of the trained DL models, ResNet50V2 

(AUC: 96%), ResNet101V2 (AUC: 96%), InceptionV3 (AUC: 95%) and DenseNet169 (AUC: 

92%) and DenseNet201 (AUC: 90%) had the highest area under the ROC (Supplementary 

Figure 6, 7). Additionally, the DenseNet169 model outperformed other models in terms of F1 

score (93.94%) and accuracy (92.48%) (Supplementary Table 2). Overall, DenseNet169 
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outperformed other models with the performance metrics and gives the applicable model with 

0.92 AUC (Figure 3c).  

We compared the performance of Random Forest and DenseNet169, as these models had 

outperformed others in our evaluations. To challenge them further, we used a set of 184 

microchips prepared with varying numbers of bubbles. A new test set of images was created 

under different environmental conditions than those used during training. This test set included 

images taken against different backgrounds (including black, red, brown, metallic grey, and dark 

blue), rotation, and brightness. This approach allowed us to assess user experience in suboptimal 

conditions, ensuring a thorough and comprehensive evaluation of the models' performance in 

real-world microchip testing scenarios. The generated positive and negative prediction rates were 

analyzed against the ground truth values of bubbles per chip to evaluate the performance of each 

model. The results revealed that the DenseNet169 DL model achieves prediction rates with better 

performance compared to the Random Forest ML model with 80.4% and 88.2% accuracy; 

77.98% and 91.81% precision; 81.51% and 87.84% F1 score; 75.3% and 92.31% specificity; and 

61.03% and 76.69% MCC for Random Forest and DenseNet169, respectively. The confusion 

matrix and ROC analyses, on the other hand, confirmed that the DenseNet169 DL algorithm is 

the optimal prediction model for testing our microfluidic model, outperforming the Random 

Forest ML algorithm by 87% in AUC and 92% in accuracy classifying true positive and true 

negative (Figure 4b, c). 

To demonstrate the effectiveness of incorporating AI in real-world sample testing 

scenarios using POC-compatible systems, a mobile application capable of running the 

DenseNet169 model seamlessly was developed, without the need for further optimization. The 

application features a simple interface for initiating model evaluation and presents results in 
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terms of positive and negative prediction rates, along with images of the tested microfluidic chips 

(Supplementary Figure 8). Out of 250 images, 212 were classified correctly, 29 were classified 

as false negatives, and 9 were classified as false positives. The model primarily made errors in 

classifying positive samples. The performance metrics were as follows: Accuracy: 84.8%, 

Precision: 93.23%, Sensitivity/Recall: 81.05%, F1 Score: 86.71%, Specificity: 90.72%, and 

MCC: 70.09. The deep learning model achieved an AUC value of 0.90, highlighting its 

superiority in testing our microfluidic model with bubbles (Figure 5b). Furthermore, upon 

examining the confusion matrix alongside sensitivity and specificity values. Results showed that 

the DenseNet169 deep learning model achieved 81.05% sensitivity and 90.72% specificity 

(Figure 5a). Heatmap analysis was conducted using images with bubble counts ranging from 0 to 

100. The results indicated a higher margin of error around the threshold of 10 bubbles, 

particularly chips with around 20 to 30 bubbles are ~30 % misclassified as negative. 

Our study provides a comprehensive evaluation of both ML and deep learning DL 

algorithms in the context of microfluidics testing under POC settings. Among the ML models, 

Random Forest emerged as the top performer with a sensitivity of 95.52%, specificity of 82.57%, 

and an AUC of 97%, showcasing its strong capability in accurately classifying microfluidic 

device images. The high sensitivity and specificity values underscore Random Forest's 

effectiveness in distinguishing positive from negative samples even in challenging imaging 

conditions. However, the higher rate of false positives indicates a potential area for improvement. 

In contrast, DL models, particularly DenseNet169, exhibited outstanding performance with 

sensitivity and specificity values of 92.63% and 92.22%, respectively. DenseNet169's consistent 

high performance across different testing conditions, including variations in background and 
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lighting, highlights its robustness and adaptability, making it highly suitable for real-world POC 

diagnostics where consistent and reliable performance is crucial. 

Despite the promising results, several challenges must be addressed to facilitate the 

widespread adoption of AI in microfluidic POC diagnostics. One key issue is the 

misclassification of samples with a marginal number of bubbles, especially around the threshold 

of 10 bubbles, which was evident in the heatmap analysis. Further refinement of the AI models 

and incorporating additional features or training data will be necessary to enhance accuracy in 

borderline cases. Combining multiple algorithms can also help overcome these challenges. For 

example, employing ensemble techniques that integrate models like U-Net for image 

segmentation and Canny edge detection for edge detection could improve precision in detecting 

subtle features. Additionally, integrating algorithms such as YOLO (You Only Look Once) for 

real-time object detection and HOG (Histogram of Oriented Gradients) for robust feature 

extraction can further enhance the accuracy and reliability of microfluidic POC diagnostics. Such 

hybrid approaches can leverage the strengths of different algorithms, providing a more 

comprehensive and accurate analysis. 

 Moreover, integrating AI models into mobile applications for point-of-care (POC) testing 

will necessitate ensuring seamless operation across a wide range of devices and environmental 

conditions, with a strong emphasis on user-friendliness and reliability. This integration is pivotal 

for achieving the robustness required for practical deployment in diverse healthcare settings. The 

successful implementation of AI in microfluidic POC diagnostics has far-reaching implications 

for the healthcare industry, especially in resource-limited settings where access to sophisticated 

medical infrastructure is often constrained. By enabling rapid, accurate, and on-site testing, AI-

driven POC systems address one of the most pressing challenges in modern medicine: the need 
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for timely and precise diagnostics. By democratizing access to high-quality diagnostic tools, AI-

integrated POC systems empower frontline healthcare providers with actionable insights, 

fostering a more equitable distribution of medical resources. This shift supports personalized 

medicine approaches, tailoring treatment plans to individual patient profiles based on accurate 

and immediate diagnostic data. Ultimately, the widespread adoption of AI-enhanced microfluidic 

POC diagnostics can transform healthcare delivery, making it more accessible, efficient, and 

responsive to the needs of diverse populations worldwide. 

 

Conclusion 

The transformative impact of AI on healthcare is rapidly increasing, particularly in 

advancing precision medicine through accurate and accessible diagnostics. By conducting a 

comprehensive comparative evaluation of AI models in testing microfluidics, we have 

demonstrated the superiority of AI-driven approaches over traditional methods, particularly in 

the context of POC diagnostics. Through the integration of ML and DL algorithms, we created a 

diverse ensemble of models capable of leveraging various aspects of the data, thereby enhancing 

robustness and generalization performance. Our results revealed that the Random Forest ML 

model and the DenseNet169 DL model exhibited exceptional performance, surpassing other 

algorithms in terms of sensitivity, specificity, and AUC values. DenseNet169 integration into a 

mobile POC system demonstrated exceptional accuracy, outperforming traditional visual 

interpretation by a significant margin. This confirms the potential of AI to revolutionize 

diagnostics, offering more accurate and efficient testing solutions in resource-limited settings. 

Moreover, our findings highlight the significant role that AI can play into healthcare systems, as 
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it holds promise for enhancing patient outcomes, streamlining healthcare delivery, and 

ultimately, democratizing access to high-quality diagnostic services. Moving forward, further 

research and development efforts are warranted to optimize AI algorithms for real-world 

deployment, ensuring their seamless integration into clinical practice and maximizing their 

impact on global health outcomes. 
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MATERIAL AND METHODS 

Microfluidic chip model design and fabrication. 

We developed a microfluid chip system that features a single microfluidic channel. The 

microchip was designed using the vector graphics editor CorelDRAW Graphics suite software, 

and fabricated of polymethyl methacrylate (PMMA) (3.125 mm thick), DSA film (100 μm thick, 

3M, USA), and glass slides (25 mm x 75 mm). The fabrication process starts by cutting PMMA 

and DSA film using a laser cutter (Boss Laser LS-1416, USA). The PMMA was prepared to 

contain the microfluidic channel inlet and outlet, while DSA film included the main testing 

channel. All materials were precleaned with 70% ethanol, and deionized water using lint-free 

tissue. The surface of the cleaned glass slides was treated and cleaned using oxygen plasma (PE-

25, 100 mW, 15% oxygen; Plasma Etch Inc.) for 10 minutes. Then PMMA and DSA film were 

assembled on the modified glass slide, forming the model microfluidic chip system. Each system 

was loaded with platinum nanoparticle-seeded bubbles.  PtNPs synthesized using our previously 

published protocol were mixed with a peroxide-containing solution (5% hydrogen peroxide and 

20% glycerol) and loaded on chip system.  The concentration of added PtNPs was controlled to 

prepare systems with variable numbers of bubbles (0 – >200 bubbles per chip), randomly 

distributed within the microfluidic channel.    

AI models selection, training and performance testing 

We selected a set of 15 models that encompass a number of machine learning and deep 

learning models, widely reported to have high performance in image classification and pattern 

recognition.  The machine learning models included Naive Bayes, Logistic Regression, Decision 

Tree, K-Nearest Neighbors, Support Vector Machine and Random Forest, while the deep 
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learning models of MobileNetV2, EfficientNetV2B0, EfficientNetV2B2, DenseNet169, 

DenseNet201, InceptionV3, ResNet50V2, EfficientNetB5 and ResNet101V2, were selected to 

support workflow running on mobile devices and systems. We generated a dataset of 19,097 

images of the model microfluidic system captured using Moto XT1575, iPhone X and Vivo 

smartphones. The dataset comprises two groups, i.e., positive (with > 10 bubbles per microchip) 

and negative (in range of < 10 bubbles per microchip) sample images.  The microfluidic system 

imaging was performed at different angles (0 – 360º) and backgrounds and environments to 

maximize the variations, and make our dataset more robust and comprehensive. We used 15530 

images for training, 1788 images for validation and 1012 images for testing the performance of 

the selected ML and DL models in testing the model microfluidic system and classifying samples 

into positive and negative based on bubble signal.  We started the process by importing pre-

trained models available from Scikit-learn and Keras libraries to develop the selected ML and 

DL models, respectively. In the pre-processing step, the images of our training dataset were 

resized to the input dimensions of the selected models, leveraging the features learned by 

ImageNet pretrained network. We performed the batch normalization then used Adam optimizer 

to fine-tune the network using a global learning rate of 0.001. In addition, we employed a varied 

number of epochs to test the algorithms optimal performance and we set the number to 50 

epochs. Then we performed the transfer learning by removing the final classification layer from 

the chosen networks and trained with our dataset. All the algorithms were trained on Vector 

Workstation (Intel i9-10900x CPU and NVIDIA RTX A6000 GPU, Lambda) and after training, 

we tested the performance of the best-performing ML and DL algorithms individually using a 

challenging dataset of 400 images. This testing dataset included rotated images, images with 

various colored backgrounds (matte, bright, reflective), and images with lens distortion and 
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brightness variations. The ML algorithms were evaluated using the sklearn and torch libraries, 

while the DL algorithm was evaluated using the TensorFlow library. Performance metrics such 

as accuracy, precision, sensitivity, and F1-score were employed to quantitatively measure 

classification accuracy and the ability of each model to correctly identify the tested microchip.  

AI testing on a POC compatible system.  

We utilized the open-source platform Android Studio (version Giraffe 2022.3.1) to 

develop an AI-enabled mobile application. Android Studio offers an integrated development 

environment (IDE) tailored for Android application development. The application facilitates the 

capture of sensor images through the smartphone's built-in camera or from images stored in the 

device's memory. A trained DL model, DenseNet169, was converted to TensorFlow Lite and 

integrated into the application, which was developed for Android 6.0 (API level 23). This 

application was installed on a Moto XT1575 and used as a proof-of-concept system for testing 

microfluidics with images simulating real-world conditions. We evaluated the performance of 

the AI model using a testing set of 250 images, each featuring 0-100 bubbles per chip. This 

testing set included images with challenging backgrounds and imaging conditions, such as noise, 

blur, hand interaction, daylight, artificial light, natural and artificial occlusion, resolution 

variability, and the presence of small bubbles. The classification results, displayed on the user 

interface, indicate the probability of a sample being positive (>50%) or negative (<50%). The 

correlation between AI-generated classification results and the number of bubbles per chip was 

analyzed, and prediction accuracy rates were employed to generate performance metrics. 
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Figure 1. AI algorithms integration and the tested microfluidic model system. (a)
Microfluidics testing using an integrated POC compatible system running AI algorithm on a
cellphone. The system supports a broad range of AI algorithms including both machine learning
(ML) and deep learning (DL) models.  (b) The developed microfluidic model with a single
microfluidic channel (length 42 mm, width 5 mm and height 100 µm) containing platinum
nanoparticle-seeded bubbles of variable shapes and sizes. (c) Snapshot of the image library of the
tested microfluidic model collected using cellphone POC system (161 randomly selected images
out of 19,097), illustrating the diversity of color, background and brightness.  
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Figure 2. Performance evaluation of machine learning in testing microfluidics. (a) Barplots 
showing the performance (sensitivity and specificity) of the tested ML algorithms (n = 6). All 
algorithms were trained on our dataset of 15,530 images to classify the model microfluidic chip 
system with bubble signal into positive or negative around the threshold value of 10 bubbles. (b) 
Confusion matrix showing the number of true negative, false positive, false negative and true 
positive results when comparing the interpretation of Random Forest ML algorithm to the 
ground truth classification results. (c) ROC analysis of Random Forest performance in testing the 
model microfluidic chip with bubble signal. 
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Figure 3. Performance evaluation of deep learning in testing microfluidics. (a) Barplots 
showing the performance (sensitivity and specificity) of the tested DL algorithms (n = 5). All 
algorithms were trained on our dataset of 15,530 images to classify the model microfluidic chip 
system with bubble signal into positive or negative around the threshold value of 10 bubbles. (b) 
Confusion matrix showing the number of true negative, false positive, false negative and true 
positive results when comparing the interpretation of DenseNet169 DL algorithm to the ground 
truth classification results. (c) ROC analysis of DenseNet169 performance in testing the model 
microfluidic chip system with bubble signal. 
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Figure 4. Performance evaluation of machine learning compared to deep learning in testing 
microfluidics under POC settings. (a) Performance matrices (accuracy, precision, sensitivity, 
F1 score, specificity, and MCC) of the Random Forest ML and the DenseNet169 DL in testing 
the model microfluidic chip system under challenging imaging conditions that simulate POC 
testing settings (i.e., different backgrounds, brightness, resolution, cameras, and rotations). (b) 
Confusion matrices showing the number of true negative, false positive, false negative and true 
positive results when comparing the interpretation of the Random Forest ML and the 
DenseNet169 DL algorithms to the ground truth classification results. (c) ROC analysis of the 
Random Forest ML and the DenseNet169 DL algorithms performance in testing the model 
microfluidic chip system with bubble signal.  
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Figure 5. Performance evaluation of AI in testing microfluidics under POC settings using a 
compatible cellphone system. (a) The confusion matrix showing the number of true negative, 
false positive, false negative and true positive results when comparing AI (i.e., the DenseNet169 
DL algorithm) interpretation to the ground truth classification results based on the number of 
bubbles per microchip. (b) ROC analysis of AI performance in testing the model microfluidic 
chip system with bubble signal. (c) Heatmap plot of the probability values of the model 
microfluidic testing interpretation by AI performance based on the number of bubbles per 
microchip.  
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