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 177 

Abstract  178 

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 179 

43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci 180 

identified. We report our comprehensive genome-wide association study as part of the 181 

International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 182 

3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 183 

institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as 184 

the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk 185 

factor. In subgroup analyses, we further identify for the first time genome-wide significant loci 186 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.24.24309088doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.24.24309088


7 

 

specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as 187 

enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting 188 

distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and 189 

identified VIPR1, RBPJL, and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, 190 

further highlighting the role of innate and adaptive immunity and notch signalling pathway in 191 

FTLD-TDP, with potential diagnostic and novel therapeutic implications. 192 

 193 
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Main 195 

Introduction 196 

Frontotemporal lobar degeneration (FTLD) is one of the leading causes of dementia in 197 

individuals younger than 65 years but can also affect individuals later in life. The predominant 198 

clinical presentations of FTLD are behavior and language dysfunction resulting in behavioral 199 

variant frontotemporal dementia (bvFTD)1, semantic variant primary progressive aphasia 200 

(svPPA), or nonfluent variant primary progressive aphasia (nfvPPA)2. The diagnosis of FTLD 201 

can be established with certainty only with neuropathologic postmortem examination and is 202 

characterized neuropathologically with significant atrophy of the frontal and temporal lobes 203 

and accumulation of abnormal neuronal and/or glial inclusions upon immunohistochemical 204 

analysis. FTLD-TDP, characterized by neuronal and cytoplasmic aggregates of the DNA and 205 

RNA-binding protein TDP-43, is one of the two main pathological subtypes (the other being 206 

FTLD-Tau) and can be further classified into five FTLD-TDP subtypes (FTLD-TDP A-E) 207 

based on the distribution of the neuronal cytoplasmic TDP-43-positive inclusions and 208 

dystrophic neurites in the cortical layers3,4. In general, an accurate prediction of the underlying 209 

neuropathological FTLD subtype of individual patients constitutes a diagnostic challenge; 210 

however, a few clinicopathological correlations exist. Specifically, over 80% of patients 211 

clinically presenting with svPPA are diagnosed as FTLD-TDP C at autopsy5, and patients with 212 

bvFTD with concomitant amyotrophic lateral sclerosis (ALS) almost invariably present as 213 

FTLD-TDP B at autopsy2,4,6.  214 

A small number of autosomal dominant genes and risk factors associated with FTLD-TDP have 215 

been reported7-13. The first FTLD-TDP genome-wide association study (GWAS) identified the 216 

TMEM106B locus (rs1990622), supporting lysosomal dysfunction in FTLD-TDP; however, 217 

this signal was strongly driven by GRN mutation carriers included in that study. Three 218 
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additional FTLD-TDP loci, UNC13A, DPP6 and HLA-DQA2, were identified in phase I of the 219 

International FTLD-TDP whole-genome sequencing (WGS) consortium and require 220 

replication in larger datasets11. Importantly, most FTLD-TDP patients are not yet genetically 221 

explained, and the relatively small sample size precluded rare variant analyses in phase I.  222 

To replicate and identify new genetic risk factors, we doubled the original sample size of the 223 

FTLD-TDP WGS consortium by not only sequencing more pathologically confirmed FTLD-224 

TDP cases but also including clinically defined FTLD subtypes enriched for specific FTLD-225 

TDP pathological subtypes at autopsy. GWAS analyses of both common and rare variants, 226 

followed by comprehensive gene-prioritization, enrichment analyses, and co-localization 227 

studies identified novel FTLD-TDP risk loci, including novel risk genes and loci specific to 228 

FTLD-TDP pathological subtypes. Our study highlights similarities and differences between 229 

FTLD-TDP and other neurodegenerative diseases while unique biological processes in specific 230 

tissues, brain regions, and cell types were found to characterize individual FTLD-TDP 231 

pathological subtypes. 232 

 233 

Results 234 

GWAS analysis 235 

Common variant genome-wide association study 236 

To identify novel common FTLD-TDP genetic risk factors, we performed single variant 237 

GWAS using an additive disease risk model for 6,568,099 common variants in 985 patients 238 

and 3,153 controls free of neurodegenerative disorder that passed quality control (QC). 239 

Combining all patients (FTLD-TDP All) we identified one genome-wide significant signal at 240 

the UNC13A locus (rs8111424, OR=1.37, P=1.17x10-8). We also performed separate GWAS 241 

within the FTLD-TDP A, FTLD-TDP B, and FTLD-TDP C pathological subtypes (Fig. 1, 242 
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Tables 1-2). The most significant locus identified in FTLD-TDP A was GRN (rs5848; 243 

OR=1.89, P=5.57x10-9). In phase I, this locus only reached genome-wide significance under 244 

an exploratory recessive model11, and also now, the recessive model provided an even stronger 245 

association (OR=4.12, P=8.28x10-15). We further detected 3 additional new genome-wide 246 

significant loci in FTLD-TDP A: TINAG (rs138698596), MZT1 (rs138959102) and FARP2 247 

(rs886815). In FTLD-TDP B, we detected a genome-wide significant association at the 248 

UNC13A locus (rs12973192). The lead variant rs12973192 is in linkage disequilibrium (LD) 249 

with rs8111424 (D’=1; r2=0.43) identified in the FTLD-TDP All analysis. We further detected 250 

3 new genome-wide significant risk loci in FTLD-TDP B: TNIP1 (rs871269), RCL1 251 

(rs7674221), PDS5B (rs5277499), and one in FTLD-TDP C C19orf52 (also known as 252 

TIMM29, rs576561313). 253 

In order to prioritize risk genes and identify possible biological mechanisms, we applied a range 254 

of variant annotation and molecular quantitative trait loci (QTL)-GWAS integration analyses 255 

as previously described14 (Supplementary Tables 2-13). We integrated different levels of 256 

evidence using a weighting scheme and obtained a weighted sum of the hits in different 257 

subcategories for each gene. We grouped candidate risk genes in genome-wide significant loci 258 

and in subthreshold loci and prioritized them at two levels of confidence for being a likely risk 259 

gene as tier 1 (higher confidence) and tier 2 (lower confidence). 260 

The gene prioritization analyses nominated a total of 59 tier 1 and 246 tier 2 genes in 258 261 

different loci for 4 different GWAS analyses (Fig. 2, Supplementary Table 3, 262 

Supplementary Fig. 2-5). Our results showed that the nearest protein-coding genes were 263 

prioritized as tier 1 (n=8) and tier 2 (n=1) risk genes in the genome-wide significant loci for 264 

the distinct FTLD-TDP subtypes. Of the 8 tier 1 prioritized genes, 3 were found in common 265 

variant loci where molecular QTL-GWAS analyses aided their prioritization (Fig. 2). First, in 266 

locus A4, GRN was prioritized through consistent expression QTL (eQTL) domain hits in bulk 267 
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brain regions (eQTL PROSMAP DLPFC=6.32x10-38 and betaROSMAP DLPFC=-0.25, eQTL 268 

colocalization (coloc) PPH4s of 81.8%-99.7%, and fine-mapped [posterior inclusion 269 

probability being 100%] expression transcriptome wide association study [eTWAS] 270 

associations with P from 1.74x10-8 to 5.15x10-9 and Z-scores from -5.63 to -5.84) and in 271 

oligodendrocytes (cell type specific eQTL (ct-eQTL) coloc PPH4=90%) where genetic 272 

downregulation of GRN gene expression was associated with the FTLD-TDP A risk signal 273 

(Supplementary Tables 5, 6, and 11), which was also observed in brain proteome-wide 274 

association study (PWAS) with the same effect direction for the FTLD-TDP A risk (PROSMAP 275 

DLPFC = 3.32x10-6, ZROSMAP DLPFC = -4.65, Supplementary Table 13). Second, in locus B1, 276 

TNIP1 was prioritized because the minor allele was associated with decreased TNIP1 277 

expression (PROSMAP DLPFC = 2.40x10-4, betaROSMAP DLPFC = -0.10), the GWAS signal colocalized 278 

with a microglia splicing QTL (sQTL) associated with TNIP1 chr5:151032383-151035002 279 

known splice junction (coloc PPH4=82.2%) and because the methylation QTL (mQTL) 280 

variants for cg03340667, a CpG ~3.7 kb upstream of the transcription start site (TSS) of the 281 

canonical transcript of TNIP1, colocalized with the GWAS variants (coloc PPH4=70%) in 282 

dorsolateral prefrontal cortex (DLPFC) (Supplementary Tables 5, 7, and 8). Third, in locus 283 

B4, UNC13A was prioritized through an eQTL-GWAS colocalization in temporal cortex (coloc 284 

PPH4=81.82%, Supplementary Table 6). Furthermore, beyond genome-wide significant loci, 285 

we identified additional candidate prioritized risk genes in subthreshold regions through 286 

molecular QTL-GWAS coloc and TWAS analyses, one important example being TMEM106B 287 

as the prioritized risk gene in locus A_S14. The FTLD-TDP A GWAS signal near TMEM106B 288 

colocalized with eQTL variants regulating TMEM106B gene expression in bulk brain regions 289 

(eQTL coloc PPH4s=81.40% in MayoRNASeq temporal cortex and 89.66% in GTEx brain 290 

cortex, Supplementary Table 6). We also observed a significant eTWAS association in GTEx 291 

cortex (P=4.13x10-7, Z=-5.06), together with a significant PWAS hit (P=2.01x10-8, 292 
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Zscore=5.61) (Supplementary Tables 11, 13). Finally, a significant hit in splicing TWAS in 293 

cortex (sTWAS, P=6.66x10-7, Z=-4.97) predicted a decreased preference for the TMEM106B 294 

splice junction chr7:12224385-12229679 with the increased FTLD-TDP A GWAS risk, while 295 

we also observed methylation QTL (mQTL) coloc hits for two CpGs for TMEM106B (~500 bp 296 

upstream cg23422036 coloc PPH4=94.25% and intronic cg09613507 coloc PPH4=94.09%) 297 

(Supplementary Tables 12, 8). We summarized our gene prioritization results in Fig. 2 for 298 

the genome-wide significant loci and a selection of the suggestive loci (with genes having 299 

GWAS evidence of P ≤ 5x10-6 in 1 Mb extended regions), and full results are presented in 300 

Supplementary Tables 3-13 and Supplementary Fig. 2-5.  301 

Next, we performed gene ontology analyses on tier1 prioritized genes. The most significant 302 

term in the nominated genes in FTLD-TDP All was positive regulation of defense response to 303 

bacterium (P=3.21x10-5). Lysosomal function appeared to be strongly affected in FTLD-TDP 304 

A with several genes such as GRN and TMEM106B (lysosomal organization GO term, 305 

P=4.12x10-4) as well as cathepsin B (CTSB). We further detected enriched terms for retrograde 306 

transport in FTLD-TDP B (P=2.21x10-3) driven by DENND2A and VPS53 genes and for 307 

excitatory postsynaptic potential in FTLD-TDP C (p=1.48x10-3) driven by DMPK and P2RX5 308 

genes (Fig. 3, Supplementary Table 14). Importantly, except for lysosomal transport, no 309 

terms overlapped between subtypes of FTLD-TDP, suggesting mostly distinct genetic 310 

etiologies in the different FTLD-TDP groups. 311 

To further characterize genetic factors associated with FTLD-TDP, we performed gene-based 312 

analyses on common variants with P<10-5 using MAGMA. Analyses of FTLD-TDP All did not 313 

yield exome-wide significant loci; however, FTLD-TDP A showed exome-wide significant 314 

signals for the two genes located at the GRN locus (FAM171A2, ITGA2B) and for TMEM106B 315 

(P=4.74x10-7). The TMEM106B signal was driven by the rs10281425 variant (OR=0.54, 316 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.24.24309088doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.24.24309088


13 

 

P=2.12x10-7). No exome-wide significant signal was detected for the other two FTLD-TDP 317 

pathological subtypes.  318 

Expression of the top suggestive signals in cell types and brain regions 319 

To find tissues and cell types for which gene expression profiles were enriched for genes within 320 

FTLD-risk loci, we combined gene-based association statistics calculated using MAGMA with 321 

gene expression patterns from the Genotype–Tissue Expression (GTEx) project in a gene set 322 

enrichment analysis. We observed an enrichment in genes expressed in brain tissue 323 

(cerebellum, frontal cortex, and cortex) in FTLD-TDP A and B. This was strikingly different 324 

from the signature observed in FTLD-TDP C for which significant enrichment was only 325 

detected in non-central nervous system tissue, in particular small intestine terminal ileum (Fig. 326 

4, Supplementary Table 15). We also compared FTLD gene expression loci with similar data 327 

obtained from Alzheimer’s disease and related disorders (ADRD)14 and ALS GWAS15. FTLD-328 

TDP subtypes presented with a distinct genetic signature as compared to these related disorders 329 

highlighting the importance of regional specificity in FTLD-TDP.   330 

We subsequently queried PsychENCODE frontal-cortex single-cell RNA-seq datasets of 331 

human-derived brain samples to specify further which brain-specific enriched cell types 332 

express the genetic loci associated with FTLD-TDP risk (Fig. 4, Supplementary Table 16). 333 

We observed a significant enrichment in genes expressed in excitatory neurons for FTLD-TDP 334 

A loci (Ex4 P=3.55x10-2, Ex5b P=2.72x10-2), and FTLD-TDP B loci (Ex8 P=1.27x10-4), while 335 

no other cell type reached significance. While FTLD-TDP C loci were also significantly 336 

enriched in genes expressed in excitatory neurons (Ex3e P=2.10x10-2), they were additionally 337 

enriched in genes expressed in astrocytes and oligodendrocyte progenitor cells (P=4.69x10-2, 338 

P=2.53x10-2). Genes expressed in microglia were enriched only in ADRD gene loci 339 

(P=1.90x10-2). Overall, loci comprising genes expressed in excitatory neurons were enriched 340 
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in the three FTLD-TDP subtypes with stronger specificity for specific neuron types in each 341 

FTLD-TDP subtype as compared to what was observed for ALS gene loci.  342 

UNC13A and TNIP1 loci 343 

To provide further support for the identified FTLD-TDP risk loci, we performed a meta-344 

analysis of our FTLD-TDP cohort with the Dementia-seq study (phs001963.v1.p1) that 345 

includes 2,102 clinical FTLD patients and 1,748 controls. Given that this cohort lacks details 346 

on the FTLD pathology underlying each patient, pathological subgroup analyses could not be 347 

performed. Meta-analysis confirmed UNC13A and identified the new TNIP1 locus as genome-348 

wide significantly associated with FTLD (Prs12973192=8.85x10-10; Prs871269=3.42x10-8, 349 

respectively). Note that the most significant single nucleotide variant (SNV) at the UNC13A 350 

locus was rs12608932 (p=9.13x10-11), in strong LD with rs12973192 (r2=0.96 D’=0.99). 351 

Both UNC13A and TNIP1 were previously associated with other neurodegenerative 352 

diseases14,16 . Colocalization analyses showed that our UNC13A signal was shared with ALS 353 

(coloc PPH4=95.71%), strongly confirming the genetic overlap between both diseases (Fig. 354 

5A). Interestingly, for TNIP1 we found strong colocalization with the ADRD association 355 

signal14,16 (coloc PPH4=99.2%) while its colocalization with ALS was weaker (71.5%), which 356 

was confirmed in a specificity analysis (coloc PPH4=20.1%, for p12=10e-06), possibly 357 

reflecting multiple independent association signals in FTLD in this locus (Fig. 5B-C).  358 

Rare variant analysis 359 

To identify genes carrying rare variants contributing to FTLD-TDP, we performed a burden 360 

test in genes with variants likely to affect protein function. In the overall FTLD-TDP cohort, 361 

no exome wide significant gene was detected (Supplementary Table 17). We did detect five 362 

exome-wide significant signals within FTLD-TDP pathological subtypes (Table 3, 363 

Supplementary Table 18). TBK1 was associated with disease status in FTLD-TDP A and B 364 

(P=1.27x10-11, P=3.17x10-12, respectively). The signal was driven by 3 carriers in FTLD-TDP 365 
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A patients (3/193=1.5%) and 5 carriers in FTLD-TDP B patients (5/288=1.7%). We also 366 

detected an enrichment in rare variants in VIPR1 in FTLD-TDP B (P=4.65e-07, 3/288 FTLD-367 

TDP B and 1/3153 control; Fig. 6) and 2 exome wide significant signals in FTLD-TDP C 368 

L3MBTL1 (P=2.87x10-7, 8/467 FTLD-TDP C and 3/3153 controls) and RBPJL (P=6.39x10-7, 369 

5/467 FTLD-TDP C and 3/3153 controls). Weighted gene coexpression network analysis using 370 

the ROSMAP dataset and the BrainExp database17 revealed that L3MBTL1 and RBPJL 371 

belonged to the same module (yellow, PL3MBTL1=1.32x10-45, PRBPJL=1.00x10-79; 372 

Supplementary Figure 6) that is enriched in neuroactive ligand-receptor interaction and the 373 

cytokine-cytokine receptor interaction gene-ontology terms (PFDR=3.7x10-12, PFDR=5.8x10-12, 374 

respectively).  While expression of L3MBTL1 was throughout the central nervous system cells, 375 

RBPJL expression was restricted to inhibitory neurons and in particular to Parvalbumin 376 

neurons (Supplementary Figure 6).  377 

Discussion 378 

In this work, we report 8 new genome-wide significant FTLD-TDP risk loci and 3 new genes 379 

harboring rare variants contributing to FTLD-TDP risk, by performing the largest FTLD-TDP 380 

WGS study to date, including 985 patients and 3,153 controls. A comprehensive analysis of 381 

our data highlights the genetic overlap between FTLD-TDP, ADRD, and ALS while also 382 

defining tissue and cell type enrichment unique to FTLD-TDP. Most importantly, we highlight 383 

distinct genetic aetiologies for each of the three main FTLD-TDP pathological subtypes (A, B 384 

and C) suggesting that multiple distinct pathomechanisms underlie the TDP-43 dysfunction 385 

and deposition in FTLD-TDP (Fig. 7). 386 

We confirm and replicate for the first time our previously reported GWAS signal at the 387 

UNC13A locus in FTLD-TDP patients11. The UNC13A risk haplotype tagged by rs12973192 388 

and rs12608932 was previously shown to increase cryptic splicing of UNC13A in brain tissue 389 

by modulating TDP-43 binding18,19. The cryptic splicing leads to transcripts with premature 390 
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stop codons and the subsequent loss of UNC13A protein, significantly impacting the release 391 

of vesicles in glutamatergic synapses20. Since UNC13A thus represents a shared risk factor 392 

between ALS and FTLD-TDP additional genetic or environmental mechanisms likely drive 393 

disease presentation.  394 

We further establish and replicate a novel genetic association between the TNIP1 locus and 395 

FTLD-TDP. Recently, Restuadi et al. deeply characterized the GPX3/TNIP1 locus associated 396 

with ALS and suggested that GPX3 should be prioritized for deeper exploration into disease 397 

mechanisms related to this region21. GPX3, encoding for glutathione peroxidase 3, is a secreted 398 

enzyme involved in the regulation of oxidative damage, and its levels were found to be reduced 399 

in ALS sera22. Interestingly, however, the risk variant associated with FTLD-TDP (rs871269) 400 

is an expression quantitative trait locus for TNIP1 in the dorsolateral prefrontal cortex, and 401 

along with the fact that we only observed a weak colocalization signal with the ALS locus, we 402 

highlight TNIP1 as the most likely gene candidate for FTLD-TDP. In fact, we observed a 403 

shared signal at this locus between our FTLD-TDP GWAS and the recent large ADRD 404 

GWAS14, suggesting genetic and/or clinical overlap between AD and FTLD-TDP. TNIP1 is a 405 

ubiquitin-binding adaptor protein that regulates cell death and innate immune response through 406 

NF-kb activation23-25. TNIP1 undergoes phosphorylation by TBK1 and interacts with OPTN26, 407 

two proteins associated with FTLD-TDP etiology12,27. While this functional connection further 408 

supports TNIP1 as FTLD-TDP risk gene, more work is needed to understand the mechanisms 409 

underlying disease onset. Overall, we substantiate the genetic overlap between ALS, ADRD, 410 

and FTLD-TDP and emphasize the need for deeper exploration into pathways underlying 411 

disease-specific risk.  412 

One of the most striking conclusions from this phase II FTLD-TDP GWAS is the distinct 413 

association signals among FTLD-TDP pathological subtypes. Even the UNC13A and TNIP1 414 

risk loci, which reach genome-wide significance in the meta-analysis stage, show stronger 415 
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association in FTLD-TDP B alone, and for the first time, genome-wide significant common 416 

risk loci are reported for each of the individual pathological FTLD-TDP subtypes. 417 

In FTLD-TDP A, in addition to individual genome-wide significant common variants assigned 418 

to GRN, TINAG, MZT1, and FARP2 risk loci, we identified exome-wide significant association 419 

with the burden of common variants in GRN and TMEM106B, in addition to multiple QTL-420 

based analyses prioritizing TMEM106B as a tier 1 risk gene, re-enforcing the specific 421 

connection of these genes with FTLD-TDP A, even in patients without loss-of-function GRN 422 

mutations11,28. While GRN and TMEM106B are also reported as AD risk genes14, an even 423 

stronger connection exists between these genes and limbic-predominant age-related TDP-43 424 

encephalopathy (LATE)29,30, which has a more restricted neuroanatomical distribution of TDP-425 

43 pathology as compared to FTLD-TDP but with some characteristics of FTLD-TDP type 426 

A31,32. The TMEM106B signal is primarily influenced by rs10281425, a variant located in the 427 

3'UTR of TMEM106B, which tags the previously reported TMEM106B risk haplotype33 428 

associated with an increase in TMEM106B mRNA expression33 and a higher burden of 429 

insoluble disease-associated TMEM106B C-terminal fragments34. More broadly, also 430 

including prioritized genes from the subthreshold regions, gene ontology analysis in FTLD-431 

TDP A revealed enrichment in genes implicated in lysosomal function driven by GRN, 432 

TMEM106B but also CSTB, three genes which also had the highest individual gene scores in 433 

the prioritization analysis in FTLD-TDP A. CSTB encodes one of the most abundant lysosomal 434 

proteases in the brain35, and has been reported as a progranulin protease36,37. Genes involved 435 

in lysosomal dysfunction were also overrepresented in FTLD-TDP B, including GRN and 436 

PPT1. PPT1, is a lysosomal enzyme which facilitates the degradation of fatty-acylated proteins 437 

by lysosomal hydrolases. Mutations in PPT1 cause neuronal ceroid lipofuscinosis 138,39 and 438 

Ppt1 knock-out mice displayed fewer lipid droplets (LD) than wild type, indicating impairment 439 

of lipophagy, previously associated with FTLD/ALS40-43. Overall, our genetic data provides 440 
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compelling evidence that lysosomal dysfunction contributes to the pathobiology of FTLD-TDP 441 

A, and, to a lesser extent FTLD-TDP B.  442 

For FTLD-TDP B, additionally, we identified individual genome-wide significant associations 443 

with variants in the RCL1 and PDS5 loci, and we observed enrichment for gene ontology terms 444 

related to retrograde transport resulting from the VPS53 and DENND2A loci. VPS53 is part of 445 

the Golgi-associated retrograde protein (GARP) complex44,45 involved in intracellular 446 

cholesterol transport by targeting NPC2 to lysosomes46. Recently, laser capture 447 

microdissection and single-cell mass spectrometry-based proteomics in motor neurons of ALS 448 

patients revealed a strong reduction in endolysosomal trafficking complexes such as the GARP 449 

complexes47. Limited information about DENN2A function is currently available, but 450 

structural and functional analysis indicates it may be involved in intracellular vesicle 451 

trafficking to the lysosome and to the Golgi through its guanine nucleotide exchange factor 452 

activity and regulation of RAB family GTPases48. However, retrograde transport has been 453 

previously implicated in ALS with, for instance, mutations in DCTN149,50 and KIF5A51,52, 454 

highlighting functional connections of prioritized genes from the subthreshold loci with TDP-455 

43 dysfunction and ALS. Future GWAS with larger sample sizes, potentially combining 456 

FTLD-TDP B and ALS, are required to firmly establish a genetic contribution of this pathway 457 

to disease. 458 

Focusing on rare variants, exome-wide significant association with TBK1 was observed in both 459 

FTLD-TDP A and B (but not FTLD-TDP C), confirming TBK1 mutations as the most common 460 

cause of FTLD-TDP after GRN and C9orf7212. We further unveiled rare predicted pathogenic 461 

variants associated with FTLD-TDP B within VIPR1, which encodes for the vasoactive 462 

intestinal peptide receptor 1. The variants are predicted to lead to an alteration of VIPR1 463 

function, impairing the vasoactive intestinal peptide (VIP) biological pathway. Indeed, VIPR1 464 

is activated upon binding by VIP, which exerts a neuroprotective effect mainly through glial 465 
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cells53,54 even though neurons also express VIPRs55,56. Notably, VIP is also a key regulator of 466 

innate and adaptive immunity57, making it an important therapeutic target for multiple 467 

neurodegenerative diseases. Altogether, our studies suggest that lysosome dysfunction and/or 468 

alterations in the innate and adaptive immune system are important contributors to both FTLD-469 

TDP A and B risk, yet to varying degrees in each pathological subtype and with likely 470 

important variability in the contribution from each pathway among individual patients.  471 

FTLD-TDP C was previously recognized as a clinicopathological entity distinct from FTLD-472 

TDP A and B58, and our genetic studies support this notion showing no overlap in common or 473 

rare risk genes with the other FTLD-TDP types. Importantly, however, while often considered 474 

a sporadic FTLD subtype13,59,60, we implicate several genes and risk loci in FTLD-TDP C and 475 

uncover a potential role for mitochondrial membrane dysfunction and the notch signaling 476 

pathway. C19orf52 (TIMM29), which mediates the import and insertion of multi-pass 477 

transmembrane proteins into the mitochondrial inner membrane, was identified as the first 478 

genome-wide significant risk locus for FTLD-TDP C. Rare-variant burden analyses further 479 

associated rare predicted pathogenic variants in the RBPJL gene with FTLD-TDP C. RBPJL 480 

encodes for the recombination signal binding protein for immunoglobulin kappa J region like 481 

transcription factor. RBPJL is able to repress Notch target gene expression (Hey1, Hey2, HeyL 482 

and Notch3)61. As such, our findings align with a previous analysis of sub-genome-wide 483 

significant genes in clinical svPPA patients, enriched in FTLD-TDP C, which highlighted an 484 

overrepresentation of the Notch pathway62. Interestingly RBPJL and L3MBTL1, the second 485 

gene carrying rare predicted pathogenic variants in FTLD-TDP C, are part of the same co-486 

expression module, suggesting that they are functionally related. Moreover, L3MBTL1, a 487 

histone methyl-lysine binding protein, is a key regulator of proteotoxicity associated with 488 

C9orf72 dipeptide repeats and mutant SOD163 and was found to be increased in spinal cord of 489 

ALS patients. Furthermore, reduction of L3MBTL1 expression in drosophila models with the 490 
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C9orf72-associated dipeptides poly(PR) or poly(GR) ameliorated the rough-eye phenotype63, 491 

suggesting that loss of L3MBTL1 expression is beneficial. While no RNA samples were 492 

accessible from rare variant carriers, nonsense-mediated decay escape has been reported in 493 

other genes linked to ALS64. It is thus possible that the L3MBTL1 variants lead to the generation 494 

of truncated proteins with toxic gain-of-function, but additional work is necessary to 495 

understand the disease etiology fully. 496 

When analyzed in sum, common variants associated with the different FTLD-TDP pathological 497 

subtypes appeared to be located in genes expressed in excitatory neurons in contrast to AD risk 498 

variants, which are enriched in microglia. Interestingly, glutamatergic transmission impairment 499 

has been reported in FTLD65-69 and voxel-based brain changes have been significantly 500 

associated with spatial distribution of mGluR5 in symptomatic C9orf72 and GRN carriers70. 501 

Therefore, and in line with previously reported studies, our data suggest that neurons are the 502 

major players in disease etiology, as compared to what has been observed in ADRD. 503 

Interestingly, the distribution of risk loci was specific to the cerebellar hemisphere and the 504 

frontal-cortex for both FTLD-TDP A and B, as opposed to FTLD-TDP C where genes 505 

expressed in small intestine were enriched in risk loci. While the link between gut microbiome 506 

and FTLD remains limited71, our data suggest that the gut-brain axis might be of interest for 507 

future studies. In fact, emerging evidence also supports a role for the gut-brain axis in 508 

autoimmune diseases72, a group of disorders that were found to be enriched in svPPA patients73.   509 

In prior studies, besides UNC13A, common variants in the HLA and DPP6 loci were reported 510 

to be associated with FTLD11,13. The HLA-DR5 locus was identified as associated with clinical 511 

FTLD but was not replicated in phase I of our International FTLD-TDP WGS Consortium.  512 

HLA-DQA2 and DPP6 loci were reported as overall FTLD-TDP risk loci in phase I11 but were 513 

not replicated in the current study. The relative composition of patients with FTLD-TDP 514 

pathological subtypes in phase I and II (e.g., less FTLD-TDP A in phase II) and inclusion of 515 
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clinically diagnosed individuals in phase II may have contributed to this; however, it is also 516 

possible that the increase in sample size reduced type I errors from phase I. Importantly, we 517 

did identify and replicate in two independent cohorts the UNC13A and TNIP1 loci associated 518 

with FTLD-TDP. Replication of the newly identified risk loci, each specific to distinct 519 

neuropathological FTLD-TDP subtypes, will require additional GWAS studies in the future. 520 

Obtaining sufficient samples will, however, be challenging, especially for FTLD-TDP A, 521 

which lacks a clear clinical correlate of the pathological phenotype. Functional characterization 522 

of the newly identified genes and loci may also provide mechanistic insight.  523 

In conclusion, we confirmed UNC13A and identified 8 new genetic loci, i.e. TNIP1, GRN, 524 

TINAG, MZT1, FARP2, RCL1, PDS5B, and C19orf52, and 3 new genes with rare variants 525 

associated with FTLD-TDP risk, i.e. VIPR1, RBPJL, and L3MBTL1. By enriching in 526 

neuropathologically confirmed patients and substantially increasing our cohort size, we gained 527 

important knowledge in our understanding of FTLD-TDP pathophysiology. The recognition 528 

that individual FTLD-TDP subtypes could in fact be considered separate diseases with distinct 529 

pathomechanisms has significant implications for the design of clinical trials and therapeutic 530 

interventions. 531 

 532 

Methods 533 

Samples 534 

Our current dataset includes previously generated data through the International FTLD-TDP 535 

WGS consortium phase I11 with 554 persons with clinicopathologically defined FTLD-TDP 536 

and newly generated phase II sequencing data from 32 FTLD-TDP A, 43 FTLD-TDP B, 66 537 

FTLD-TDP C, 4 FTLD-TDP E, and 9 with unclassifiable FTLD-TDP pathology (abbreviated 538 

as FTLD-TDP U, Supplementary Table 19). To increase statistical power, we also sequenced 539 

70 persons with clinical diagnosis of bvFTD/ALS, a clinical subtype associated with FTLD-540 
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TDP B, and 283 persons with svPPA, a clinical subtype associated with FTLD-TDP C. Overall, 541 

the total cohort pre-quality control was a combined FTLD-TDP cohort of 202 FTLD-TDP A, 542 

237 FTLD-TDP B, 225 FTLD-TDP C, 4 FTLD-TDP D, 11 FTLD-TDP E, 29 FTLD-TDP U 543 

persons, 70 persons with bvFTD/ALS and 283 persons with svPPA. All persons clinically or 544 

pathologically diagnosed with FTLD are referred to as patients throughout the manuscript. We 545 

further used WGS data from 982 participants from the Mayo Clinic Biobank (from phase I)11,74, 546 

322 new controls free of neurodegenerative disorder from Mayo Clinic with WGS available, 547 

and 2,037 controls derived from the Alzheimer’s disease sequencing project (ADSP). C9orf72 548 

repeat expansions were assessed in all patients using our previously reported two-step protocol 549 

and Sanger sequencing was used to perform mutation analyses of GRN7,9. Patients with 550 

C9orf72 repeat expansion and LOF mutations in GRN were removed prior to WGS. Study 551 

protocols were reviewed and approved by the appropriate institutional review boards. 552 

Whole genome sequencing 553 

In phase I of the International FTD-TDP WGS consortium, WGS was generated on 554 patients 554 

with FTLD-TDP (512 passed QC in that study)11. Briefly, whole blood- or brain-derived DNA 555 

from 499 unrelated FTLD-TDP patients and 982 participants from the Mayo Clinic Biobank 556 

Study were sequenced at HudsonAlpha using the standard library preparation protocol using 557 

NEBNext® DNA Library Prep Master Mix Set for Illumina® (New England BioLabs Inc., 558 

Ipswich, MA, USA), Concentration of the libraries was assessed by Qubit® 2.0 Fluorometer, 559 

and the quality of the libraries was estimated by a DNA 5 K chip on a Caliper GX. Accurate 560 

quantification was determined using the qPCR-based KAPA Biosystems Library 561 

Quantification kit (Kapa Biosystems, Inc., Woburn, MA, USA). Each sample was sequenced 562 

on one lane of Illumina’s HiSeq X instrument using v2 flow cells and reagents to target 30× 563 

genomic coverage. Fastq files previously generated on an Illumina HiSeq X for 55 FTLD-TDP 564 

patients were obtained from 3 sites: UCSF (n = 36), DZNE (n = 14) and NSW (n = 5). In phase 565 
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II, additional WGS of 507 patients with FTLD-TDP, svPPA, bvFTD/ALS and 322 controls 566 

free of neurodegenerative disorders was performed at USUHS sequencing center or Mayo 567 

Clinic Rochester using the TruSeq DNA PCR-Free Library preparation Kit (Illumina) followed 568 

by Whole Genome Sequencing by synthesis (SBS) chemistry on HiSeq X Illumina platform 569 

using the HiSeq X Ten Reag. kit v2.5. For all patients and controls, fastq files were transferred 570 

to Mayo Clinic and processed through the Mayo Genome GPS v4.0 pipeline in batches of up 571 

to 75 samples. Briefly, reads were mapped to the human reference sequence (GRCh38 build) 572 

using the Burrows–Wheeler Aligner, and local realignment around indels was performed using 573 

the Genome Analysis Toolkit (GATK). Variant calling was performed using GATK 574 

HaplotypeCaller followed by variant recalibration (VQSR) according to the GATK best 575 

practice recommendations. At the time of analysis, participants from the Mayo Clinic Biobank 576 

with possible clinical diagnosis or family history of a neurodegenerative disorder were 577 

removed. We also included genotypic data (vcf) from 2,037 controls from the Alzheimer’s 578 

Disease Sequencing Project, leading to a total of 1,061 patients and 3,341 controls.  579 

Sample level quality control and definition of subgroups  580 

Samples with less than 30× coverage in more than 50% of the genome, call rate below 85%, 581 

sex error, contamination defined by a FREEMIX score above 4 or non-Caucasian ethnicity 582 

were removed. At this step, joint genotyping on all samples was performed, a final relatedness 583 

measurement was calculated using PREST75, and duplicates were removed, while only one 584 

individual per family was kept. In total, 985 pathologically confirmed FTLD-TDP or presumed 585 

FTLD-TDP patients clinically presenting with svPPA or bvFTD/ALS, as well as 3,153 586 

neurologically normal controls passed all quality control measures (Supplementary Table 1). 587 

Age at onset of svPPA and bvFTD/ALS did not differ from the age at onset of FTLD-TDP C 588 

(P=1) and FTLD-TDP B patients (P=1), respectively. Based on these findings and the 589 

previously established associations between the svPPA and bvFTD/ALS clinical diagnoses 590 
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with specific FTLD-TDP pathological subtypes, we combined svPPA with FTLD-TDP C and 591 

bvFTD/ALS with FTLD-TDP B patients in all analyses. Within our overall cohort of 193 592 

FTLD-TDP A, 288 FTLD-TDP B (defined as FTLD-TDP B and bvFTD/ALS) and 467 FTLD-593 

TDP C (defined as FTLD-TDP C and svPPA), the ages at onset and death differed significantly 594 

between the pathological FTLD-TDP subtypes (Table 2; Supplementary Figure 1). FTLD-595 

TDP A patients had a later age at onset than FTLD-TDP B and FTLD-TDP C groups 596 

(P=4.73x10-8, P=1.37x10-13, respectively), and a later age at death (P=4.00x10-15, P=3.00x10-597 

6, respectively). FTLD-TDP B had an earlier age at death as compared to FTLD-TDP C 598 

(P=5.60x10-8). Differences in age distribution in between patient groups were assessed using 599 

the Kruskal-Wallis test followed by Wilcoxon test correcting for multiple testing. Corrected P 600 

are provided.  601 

Variant level quality control 602 

Genotype calls with genotype quality (GQ) < 20 and/or depth (DP) < 10 were set to missing, 603 

and variants with edit-distance > 4 and call rate < 80% were removed from all subsequent 604 

analyses leading to a total of 85,345,466 variants. For all analyses, only variants that pass 605 

VQSR (127,658 variants removed) and with a call rate > 95% in cases or controls were 606 

considered (591,431 variants removed). Functional annotation of variants was performed using 607 

ANNOVAR (version2016Feb01). Rare loss of function variants (frameshift 608 

insertion/deletion/block substitution, stopgain, stoploss and splicing single nucleotide 609 

variants—SNVs) identified in exome-wide significant associated genes in the rare variant 610 

analyses (Supplementary Table 17) were confirmed in patients by Sanger sequencing 611 

(primers available upon request). For the known neurodegenerative disease genes (GRN, 612 

MAPT, TBK1, OPTN, VCP, TARDBP, CHCHD10, SQSTM1, UBQLN2, hnRNPA1, 613 

hnRNPA2B1, CSF1R, FUS, CHMP2B, and LRRK2), potentially pathogenic rare variants were 614 

also identified and confirmed by Sanger sequencing (n=25; Supplementary Table 20). 615 
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Generation of principal components 616 

Prior to running genetic association analyses, principal component (PC) analysis was 617 

performed using a subset of variants meeting the following criteria: minor allele frequency 618 

(MAF)>5% and full sample Hardy–Weinberg Equilibrium (HWE) P>1x10-5. Influential 619 

regions such as the HLA region were removed, and variants were pruned by linkage 620 

disequilibrium with r2 threshold of 0.1 prior to PC analysis. This analysis identified 13 PCs that 621 

were significantly associated with patient/control status, which were subsequently used as 622 

covariates in all genetic association analyses. 623 

Variant-level analysis of common variants 624 

For the common variant GWAS, single nucleotide variants (SNV) with MAF>0.01 in patients 625 

or controls (n=7,178,250 variants) and HWE P>1.00x10-6 in controls were analyzed (17,450 626 

variants removed). In addition, since whole genome sequencing of FTLD-TDP patients and 627 

controls was performed at multiple sites, a test was performed to identify variants with 628 

significant differences in genotype distributions between sequencing batches, and 592,701 629 

SNVs showing evidence of batch effects (p < 0.05) were removed leading to a total of 630 

6,568,099 variants analyzed. 631 

For all remaining variants, association of genotypes with the patient/control status was assessed 632 

using logistic regression with allele dosage as the predictor assuming log-additive allele effects. 633 

Sex and the first thirteen PCs were included as covariates in the models. The SNV-level 634 

analyses were performed using PLINKv.00a23LM2 combining all FTLD-TDP cases (FTLD-635 

TDP All) and in FTLD-TDP pathological subtypes. Meta-analyses of FTLD-TDP phase II with 636 

publicly available dataset from the Dementia-seq project (phs001963.v2.p1) was performed 637 

under a fixed-effects model comparing our data with 2,102 FTLD cases and 1,748 controls 638 

from the Dementia-seq project using Metal76. Dementia-seq vcf were processed the exact same 639 
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way as our data except that 10 PCs were included in the model to perform common variant 640 

association analysis.  641 

Colocalization analyses 642 

We performed colocalization analysis for UNC13A and TNIP1 loci (top SNVs ±100 kb) with 643 

ALS (GCST90027164) and ADRD (GCST90027158) using the ‘coloc’ package version 4.0.4 644 

in R using our meta-analyses data.  When the summary statistics of the other trait was expressed 645 

on another build than GRCh38, the variant alleles and positions were converted. We set the 646 

prior probabilities to π1 = 1×10−4, π2 = 1×10−4 and π12 = 1×10−5 for a causal variant in trait 1 647 

or trait 2 and a shared causal variant between traits 1 and 2, respectively (default parameters). 648 

Sensitivity analysis was performed at π12=1x10-6. P <0.05 was considered statistically 649 

significant. 650 

Tissue and cell type enrichment analysis 651 

Tissue and cell type enrichment analyses were performed using the summary statistics and 652 

FUMA. Briefly, FUMA aggregates summary statistics per gene to calculate gene-wise 653 

association signals using MAGMA version 1.6 and subsequently tests whether tissues and cell 654 

types are enriched for expression of these genes. For tissue enrichment analysis, we used the 655 

GTEx version 8 reference set. P<0.05 across all tissues (n = 54) were considered statistically 656 

significant. For cell type enrichment analyses, we used human-derived single-cell RNA-seq 657 

data from major brain cell types (PsychENCODE). Excitatory and inhibitory neurons from the 658 

PsychENCODE dataset were labeled based on their transcriptional profile from 1 to 877.  659 

P<0.05 were considered statistically significant. 660 

Gene prioritization and functional interpretation of GWAS 661 

We performed the gene prioritization and functional interpretation analyses for FTLD-TDP All 662 

and each FTLD-TDP pathological subtype separately by using the subtype-specific GWAS 663 

summary statistics. We adapted a systematic gene prioritization and functional interpretation 664 
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strategy (as previously described in Bellenguez et al.14) to prioritize GWAS-implicated 665 

candidate risk genes and nominate possible downstream biological mechanisms. Briefly, six 666 

distinct domains, that are related to lead variant annotation and molecular QTL-GWAS 667 

integration analyses (e.g., colocalization and TWAS) in FTLD-relevant tissues and cell types 668 

were systematically assessed: (1) variant annotation, (2) eQTL-GWAS integration, (3) sQTL-669 

GWAS integration, (4) protein expression QTL (pQTL)-GWAS integration, (5) mQTL-GWAS 670 

integration, and (6) histone acetylation QTL (haQTL)-GWAS integration; for which detailed 671 

information on categories and subcategories is provided in Supplementary Table 2. 672 

In the variant annotation domain, for each lead variant at each locus, we queried which 673 

candidate risk genes were the nearest protein-coding genes with respect to the genomic position 674 

of the lead variants, and/or whether the lead variant was a rare (MAF < 1% in gnomAD v4 non-675 

Finnish European samples) and/or protein-altering (missense or predicted LOF) variant for the 676 

same nearest protein-coding genes. In the molecular QTL-GWAS integration domains, we 677 

leveraged molecular cis-QTL catalogues for different molecular phenotypes (i.e., gene 678 

expression, splicing, protein expression, methylation, and histone acetylation) in FTLD-679 

relevant tissues and cell types, we performed genetic colocalization analyses between 680 

molecular cis-QTL and GWAS signals, TWAS, and proteome-wide association studies 681 

(PWAS). For these analyses, we processed and used publicly available molecular QTL 682 

catalogues; namely, FTLD-relevant bulk brain regions from AMP-AD78-81 (as reanalyzed in 683 

Bellenguez et al.14) and GTEx v882 cohorts for the bulk brain eQTLs and sQTLs, eight major 684 

brain cell types (excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, 685 

microglia, oligodendrocyte precursor cells/committed oligodendrocyte precursors 686 

[OPCs/COPs], pericytes, and endothelial cells) from Bryois et al.83 and primary microglia from 687 

Young et al.84 and the MiGA study85 for the brain cell-type-specific eQTLs (ct-eQTL) and for 688 

microglia sQTLs (from the MiGA study), dorsolateral prefrontal cortex (DLPFC) pQTLs from 689 
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Wingo et al.86 (v2), and DLPFC mQTLs and haQTLs from Brain xQTL serve (June 2021 690 

release)86,87. Finally, we also included naïve state monocyte and macrophage eQTL 691 

catalogues88-93 reanalyzed by eQTL Catalogue (Release 6)94 and lymphoblastoid cell line 692 

(LCL) eQTLs from GTEx v882 and the European Alzheimer & Dementia Biobank (EADB) 693 

Belgian LCL cohorts14. Using each of these molecular QTL catalogues, we first investigated 694 

whether the reported lead variants in this study were significant molecular QTLs for the 695 

quantified levels of molecular phenotypes in tissues and cell types of interest. Moreover, for 696 

each quantified molecular phenotype in these catalogues we performed molecular QTL-GWAS 697 

coloc (v5.2.2) analyses to determine if specific molecular QTL signals are colocalized (at coloc 698 

PP4 ≥ 70%) with FTLD subtype GWAS signals. Finally, we conducted TWAS (using FUSION  699 

and S-PrediXcan [implemented in MetaXcan] tools) for each heritable feature modelled in gene 700 

expression (eTWAS; followed by eTWAS fine mapping with FOCUS95 [v0.803] within 1 Mb 701 

extended genome-wide significant lead variant genetic regions in each FTLD-TDP subtype 702 

GWAS), splicing (sTWAS), and PWAS reference panels derived from AMP-AD bulk brain78-703 

81, GTEx bulk brain and LCL82, EADB Belgian LCL14, and Wingo et al. DLPFC data86, to 704 

identify the significant associations (after Bonferroni correction) between predicted levels of 705 

gene expression, splicing, and protein expression with each FTLD subtype-specific genetic 706 

risk. Detailed description and details (e.g., number of samples, significance criteria, references 707 

and sources) of these molecular QTL catalogues used in this study for the systematic gene 708 

prioritization strategy and functional interpretation of FTLD-TDP GWAS results can be found 709 

in Supplementary Table 5. 710 

Using a predetermined weighting scheme for each type of evidence (see Supplementary Table 711 

3), we computed a gene prioritization score (between 0 and 87) for each gene which was 712 

constructed by the weighted sum of the hits in different subcategories within six distinct 713 

domains described above. As described in Bellenguez et al.14 in detail, we gave higher weights 714 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.24.24309088doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.24.24309088


29 

 

for the hits obtained through the brain QTLs rather than other tissue QTLs, for the replicated 715 

hits across multiple catalogues or reference panels, and for the fine-mapped eTWAS hits. After 716 

obtaining weighted gene prioritization scores in each FTLD-TDP subtype-specific gene 717 

prioritization analysis, we first assigned each candidate risk gene (with gene prioritization score 718 

>0) to the genome-wide significant loci if their gene coordinates (based on GENCODE v24) 719 

are positioned within a ±1 Mb window of the identified lead variants (Table 2). The rest of the 720 

candidate risk genes in subthreshold regions (nominated by coloc and TWAS analyses only) 721 

were grouped together if they were positioned together (<1 Mb), and these subthreshold regions 722 

were indexed and named as subthreshold loci. The candidate risk genes in genome-wide 723 

significant and subthreshold loci were also annotated by the evidence of minimum P observed 724 

within 1 Mb of the gene coordinates in related FTLD-TDP subtype-specific GWAS summary 725 

statistics. We then ranked the protein-coding genes per locus in each FTLD subtype-specific 726 

analysis based on their total weighted scores, and investigated the relative score differences 727 

between the highest ranked protein-coding gene and the other candidate risk genes in each 728 

locus, together with the overall total weighted score of the top-ranked gene. We then classified 729 

candidate risk genes in each locus as tier 1 and tier 2 prioritized risk genes, respectively having 730 

a higher and lower level of confidence for being a true risk gene in a given locus (see 731 

Bellenguez et al.14 for detailed description). As also described in Bellenguez et al.14, the gene 732 

prioritization pipeline determines a single tier 1 prioritized risk gene in each locus if there is 733 

adequate evidence, meanwhile additional tier 2 prioritized risk genes in the same loci or 734 

multiple tier 2 prioritized risk genes in a locus can also be assigned based on the score 735 

distribution of candidate genes in the investigated loci. 736 

Gene Ontology analyses 737 

Gene ontology on tier 1 genes identified in FTLD-TDP All or in individuals FTLD-TDP 738 

subtype analyses were performed using anRichment R package which aggregates summary 739 
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statistics and assesses gene ontology term enrichment. Gene ontology terms were collapsed 740 

using the rrvigo R package. Only terms with 2 or more genes were considered in the analyses. 741 

P <0.05 was considered statistically significant. 742 

Gene-level analysis of rare variants 743 

Association of rare variants with the patient/control status was assessed using an unweighted 744 

burden test implemented using the SKAT_1.2.1 R package. Only VQSR pass variants with call 745 

rate > 90%, ED ≤ 4, and MAF < 0.01 in either patients or controls were included. We included 746 

only frameshift (insertion/deletion/block substitution), stopgain, stoploss and splicing SNVs 747 

(jointly defined as loss-of-function (LOF) variants), and non-synonymous SNVs with REVEL 748 

score above 0.7596. Sex and the first thirteen PCs were used as covariates. Genome-wide 749 

significance was defined as P<5x10-8 and exome-wide significance as a p value < 2.5x10-6 750 

(Bonferroni correction for 20,000 genes).  751 

RBPJL and L3MBTL1 RNA expression 752 

Assessment of module membership of RBPJL and L3MBTL1 was performed using the gene 753 

co-expression analysis from the BrainEXP-NPD17 website using default parameters. Single 754 

nuclei RNA expression was assessed using the transcriptomic comparative viewer if the Seattle 755 

Alzheimer’s Disease Brain cell Atlas from middle temporal gyrus of 84 aged donors (42 756 

cognitively normal and 42 with dementia). 757 

Data Availability 758 

Summary statistics will be available on dbGAP platform post publication. 759 

Datasets and molecular QTLs used in the gene prioritization are publicly available (see also 760 

Supplementary Table 4): 761 
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eQTLs and eTWAS reference panels in AD-relevant bulk brain regions from AMP-AD 762 

cohorts and in LCLs from the EADB Belgian cohort, as analyzed by Bellenguez et 763 

al.14: https://doi.org/10.5281/zenodo.5745927; 764 

sQTLs and sTWAS reference panels in AD-relevant bulk brain regions from AMP-AD 765 

cohorts and in LCLs from the EADB Belgian cohort, as analyzed by Bellenguez et 766 

al14.:  https://doi.org/10.5281/zenodo.5745929; 767 

Bryois et al.83 ct-eQTL catalogues (https://doi.org/10.5281/zenodo.5543734); 768 

eQTL Catalogue database (https://www.ebi.ac.uk/eqtl/); 769 

Brain xQTL serve mQTL and haQTL catalogues 770 

(https://mostafavilab.stat.ubc.ca/xqtl/xQTL_updated_data/); 771 

GTEx v8 eQTL and sQTL catalogues (https://www.gtexportal.org/); 772 

GTEx v8 expression and splicing prediction models for eTWAS/sTWAS 773 

(https://predictdb.org/post/2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/#mashr-based-774 

models); 775 

MiGA eQTLs (https://doi.org/10.5281/zenodo.4118605); 776 

MiGA sQTLs (https://doi.org/10.5281/zenodo.4118403); 777 

MiGA meta-analysis (https://doi.org/10.5281/zenodo.4118676); and 778 

Wingo et al.86 pQTLs v2 (https://www.synapse.org/#!Synapse:syn23627957). 779 

 780 
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Legends 1056 

Figure 1: Genome-wide association study on common variants. A Manhattan plot of the 1057 

FTLD-TDP All patients versus controls association study. B Manhattan plot of the FTLD-TDP 1058 

A patients versus controls association study. C Manhattan plot of the FTLD-TDP B patients 1059 

versus controls association study. D Manhattan plot of the FTLD-TDP C patients versus 1060 

controls association study. The red-dotted line represents the genome-wide significance level 1061 

(p = 5x10-8).  1062 

Figure 2: Gene prioritization results for FTLD-TDP subgroups. A visual summary of 1063 

weighted evidence category scores for the prioritized genes within genome-wide significant 1064 

and subthreshold loci with candidate genes whose 1 Mb extended gene coordinates contain a 1065 

minimal GWAS P evidence of ≤5x10-6 in related FTLD subtype-specific GWAS summary 1066 

statistics. Using the gene prioritization strategy in these selected loci, we prioritized a total of 1067 

25 genes in 23 loci at two different confidence levels (10 tier 1 and 15 tier 2 prioritized genes). 1068 

The leftmost squares which are colored in red for FTLD-TDP A, in blue for FTLD-TDP B, and 1069 

in green for FTLD-TDP C specific analyses indicate the locus index numbers which contain 1070 

additional “_S” patterns for the subthreshold loci, whereas others indicate the genome-wide 1071 

significant loci. The types of evidence for each category are colored according to the six 1072 

different domains to which they belong. Weighted scores for each evidence category are 1073 

rescaled to a 0–100 scale based on the maximum score a candidate gene can obtain from a 1074 

category (see Supplementary Table 2). The darker colors represent higher scores in 1075 

categories, while tier 1 prioritized genes are displayed in dark green and tier 2 prioritized genes 1076 

are displayed in light green. Only tier 1 and tier 2 genes are shown for each locus, and all 1077 

candidate genes considered and scored can be found in Supplementary Table 3. MAFs (based 1078 

on gnomAD v4 non-Finnish European samples) and CADD (v1.7) PHRED scores for rare 1079 

and/or protein-altering rare variants are labeled in white within the respective squares. eQTL, 1080 
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expression QTL; sQTL, splicing QTL; mQTL, methylation QTL; pQTL, protein-expression 1081 

QTL; haQTL, histone acetylation QTL; coloc, colocalization; eTWAS, expression 1082 

transcriptome-wide association study; sTWAS, splicing transcriptome-wide association study; 1083 

PWAS, proteome-wide association study; Mon. Mac., monocytes and macrophages; LCL, 1084 

lymphoblastoid cell line; QTLCat, The eQTL Catalogue. 1085 

Figure 3: Top 5 Gene Ontology terms enriched in FTLD-TDP subgroups. Hierarchical GO 1086 

analysis of biological process terms considering genes in genetic loci prioritized for FTLD-1087 

TDP All, FTLD-TDP A, FTLD-TDP B and FTD-TDP C. 1088 

Figure 4: Enrichment of brain regions and cell types in FTLD subgroups. A Enrichment 1089 

of genes in multiple tissues, including 13 brain regions, and based on GTEX data in FTLD 1090 

subgroups, ADRD and ALS. Color represents the enrichment coefficient, and size indicates 1091 

two-sided −log10 (FDR adjusted Ps) of enrichment obtained by the linear regression model in 1092 

the MAGMA gene property analysis. B Central nervous system cell type enrichment analyses 1093 

in FTLD subgroups, ADRD and ALS. Color represents the enrichment coefficient, and size 1094 

indicates two-sided −log10 (FDR adjusted Ps) of enrichment obtained by the linear regression 1095 

model in the MAGMA gene property analysis. Excitatory neurons and glial cells are 1096 

highlighted in blue. Excitatory and inhibitory neurons from the PsychENCODE dataset were 1097 

labeled based on their transcriptional profile from 1 to 8. Asterisks denote brain regions or cell 1098 

types enriched with FDR P<0.05.  Cx, cortex; Ex*, Excitatory neuron, In*, inhibitory neurons; 1099 

Oligo, oligodendrocytes; OPCs, oligodendrocyte progenitor cells; Astro, astrocytes; Endo, 1100 

endothelial cells; Per, pericytes. 1101 

Figure 5: Locus zoom plots for UNC13A and TNIP1 loci. A Genetic colocalization between 1102 

the UNC13A locus in FTLD-TDP (meta-analysis) and ALS signal. B Genetic colocalization 1103 

between the TNIP1 locus in FTLD-TDP (meta-analysis) and ALS. C Genetic colocalization 1104 
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between the TNIP1 locus in FTLD-TDP (meta-analysis) and ADRD. For A, B and C, 1105 

chromosome position is located on the x axis and -log10(P) is represented on the y axis. Each 1106 

dot represents a SNV tested in the dataset for its association with disease status.  Purple 1107 

diamonds are the index SNVs reported. Linkage disequilibrium with index SNV is indicated 1108 

by r2.  1109 

Figure 6: Rare loss of function and predicted pathogenic variants in proteins associated 1110 

with FTLD. Schematic representation of VIPR1, L3MBTL1 and RBPL protein structure 1111 

(source Uniprot) showing a map of nonsense, splicing, frameshift and missense with a REVEL 1112 

score>0.75 rare variants in patients and controls. Variants identified in patients are colored in 1113 

orange, variants identified in controls are colored in blue. n=number of carriers. 1114 

 1115 

Figure 7: Schematic representation of findings from the International FTLD-TDP WGS 1116 

phase II. Genome-wide significant single variant loci, exome-wide significant genes, enriched 1117 

gene ontology pathways and tissues- and cell-types enriched for genome-wide significant risk 1118 

loci are shown for each FTLD-TDP pathological subtype in rings moving from the center 1119 

(genome-wide significant single variant loci in FTLD-TDP All) to the outer rings. Orange 1120 

background shades correspond to FTLD-TDP A findings, green background shades to FTLD-1121 

TDP B findings and blue background shades to FTLD-TDP C findings. Gene names in green 1122 

font were exome-wide significant using a gene-based approach with common variants while 1123 

gene names in red font were exome-wide significant using a gene-based approach with rare 1124 

variants. In addition to unique associations, some overlap between FTLD-TDP A and B exist 1125 

(TBK1, lysosomal function and inflammatory response), whereas FTLD-TDP C showed 1126 

unique and non-overlapping genetic profile. 1127 
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Table 1: Demographics after quality control.  
 

FTLD-TDP A FTLD-TDP B FTLD-TDP C FTLD-TDP Ua Control 

Number 
(% Female) 

193 
(42.49) 

288 
(38.89) 

467 
(48.61) 

37 
(40.54) 

3,153  
(56.71) 

Age at onset or age at collection (Standard Deviation, years) 68.00 (10.52) 62.00 (10.76) 60.50 (8.05) 60.50 (8.74) 64.08 (14.31) 

Age at death (Standard Deviation, years) 78.00 (11.72) 67.00 (10.90) 72.00 (7.32) 67.84 (9.41) 82.00 (8.41) 

Disease duration (Standard Deviation, years) 7.30 (4.65) 4.00 (3.61) 11.00 (7.46) 6.50 (5.20) NA 
aFTLD-TDP U = FTLD-TDP unclassifiable 
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Table 2: Top variants associated with disease status  

ars number, according to dbSNP build 153. 

bNearest protein-coding gene according to GENCODE release 33.  

cGRCh38 assembly. 

dApproximate OR calculated with respect to the alternative allele. 

 

 

 

  

GROUP rsIDa REF/ALT LOCUS NAMEb GENOMIC POSITIONc ODDS RATIO (95% CI)d P MAF PATIENTS/CONTROLS NEW LOCUS 

FTLD-TDP All rs8111424 A/G UNC13A 19:17640336 1.37 (1.24-1.54) 1.17X10-8 0.376/0.141  

FTLD-TDP A rs5848 C/T GRN 17:44352876 1.89 (1.52-2.34) 5.57X10-9 0.442/0.292 New 

FTLD-TDP A rs138698596 T/A TINAG 6:54591659 5.22 (2.91-9.36) 3.01X10-8 0.045/0.009 New 

FTLD-TDP A rs138959102 C/T MZT1 13:72499532 8.41 (3.95-17.88) 3.22X10-8 0.029/0.004 New 

FTLD-TDP A rs886815 G/A FARP2 2:241457011 9.55 (4.26-21.41) 4.26X10-8 0.026/0.003 New 

FTLD-TDP B rs76742217 G/A RCL1 9:4821273 9.31 (4.30-20.18) 1.55X10-8 0.023/0.003 New 

FTLD-TDP B rs12973192 G/C UNC13A 19:17642430 1.74 (1.46-2.08) 8.52X10-10 0.484/0.346 
 

FTLD-TDP B rs527749954 C/T PDS5B 13:32620689 7.66 (3.71-15.84) 3.89X10-8 0.025/0.003 New 

FTLD-TDP B rs871269 C/T TNIP1 5:151052827 0.55 (0.44-0.68) 4.72X10-8 0.206/0.322 New 

FTLD-TDP C rs576561313 C/T C19orf52 19:10945440 13.11 (5.33-32.23) 2.03X10-8 0.014/0.001 New 
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Table 3: Genes harboring rare variants associated with FTLD-TDP 

GROUP GENE NAME NUMBER OF PATIENTS MAFa IN PATIENTS NUMBER OF CONTROLS MAFa IN CONTROLS P 

FTLD-TDP A TBK1 3 7.77X10-03 0 0 1.27X10-11 
FTLD-TDP B TBK1 5 8.68X10-03 0 0 3.17X10-12 
FTLD-TDP B VIPR1 3 5.21X10-03 1 1.59X10-04 4.65X10-7 
FTLD-TDP C RBPJL 5 5.35X10-03 3 4.76X10-04 6.39X10-7 
FTLD-TDP C L3MBTL1 8 8.57X10-03 3 4.76X10-04 2.38X10-7 

aMAF = minor allele frequency 
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