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Summary 27 

 28 

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. We 29 

performed longitudinal single cell multi-omic immune profiling of ESKD patients with COVID-30 

19, sampled during two waves of the pandemic. Uniquely, for a subset of patients, we obtained 31 

samples before and during acute infection, allowing intra-individual comparison. Using single-32 

cell transcriptome, surface proteome and immunoreceptor sequencing of 580,040 high-quality 33 

cells, derived from 187 longitudinal samples from 61 patients, we demonstrate widespread 34 

changes following infection. We identified gene expression signatures of severity, with the 35 

majority of pathways differentiating mild from severe disease in B cells and monocytes. For 36 

example, gene expression of PLAC8, a receptor known to modulate SARS-CoV-2 entry to 37 

cells, was a marker of severity in CD14+ monocytes. Longitudinal profiling demonstrated 38 

distinct temporal molecular trajectories in severe versus mild disease, including type 1 and 39 

type 2 interferon signalling, MHC gene expression and, in B cells, a proliferative signature 40 

(KRAS and MYC). Evaluation of clonal T cell dynamics showed that the fastest expanding 41 

clones were significantly enriched in known SARS-CoV-2 specific sequences and shared 42 

across multiple patients. Our analyses revealed novel TCR clones likely reactive to SARS-43 

CoV-2. Finally, we identified a population of transcriptionally distinct monocytes that emerged 44 

in peripheral blood following glucocorticoid treatment. Overall, our data delineate the temporal 45 
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dynamics of the immune response in COVID-19 in a high-risk population and provide a 46 

valuable open-access resource. 47 

 48 

Introduction 49 

 50 

COVID-19, caused by the SARS-CoV-2 virus, displays marked clinical heterogeneity, varying 51 

from minimal symptoms to fatal disease. This variation in outcome is not random; severe or 52 

fatal COVID-19 disproportionately affects certain strata of the population. Demographic risk 53 

factors for severe COVID-19 include older age, male sex, and non-white ethnicity. Underlying 54 

medical conditions also impact the risk of severe COVID-19. End-stage kidney disease 55 

(ESKD) is one of the strongest risk factors for severe COVID-19, with a UK population-scale 56 

study estimating a hazard ratio for death of 3.691. While vaccines have been highly effective 57 

in reducing morbidity and mortality from SARS-CoV-2, novel viral variants of concern (VoC) 58 

continue to emerge and ESKD patients remain at elevated risk of hospitalisation and death. 59 

There is, therefore, a need for research and therapeutic efforts focusing on ESKD patients 60 

and other high-risk groups. 61 

 62 

A central feature of the pathophysiology of severe COVID-19 is an excessive host 63 

inflammatory response leading to tissue injury. Autopsies revealed an accumulation of 64 

activated immune cells but little or no active virus2. Severe disease is characterised by excess 65 

circulating monocytes, neutrophils and myeloid progenitors and elevated pro-inflammatory 66 

cytokines and chemokines, which contribute to endothelial damage and the formation of 67 

microthrombi. The importance of the host immune response is further underscored by the 68 

efficacy of therapies targeting inflammation. Glucocorticoids, which have pleiotropic effects on 69 

inflammatory pathways, and targeted inhibition of the IL6 signalling pathway, both reduce 70 

mortality in COVID-193,4,5.  Drugs targeting the JAK-STAT pathway also appear promising6. 71 

 72 

ESKD is defined as irreversible loss of renal function with a glomerular filtration rate <15 73 

mls/min/1.73m2 and is fatal without dialysis or transplantation. In addition to loss of glomerular 74 

filtration, ESKD is a systemic disease associated with profound changes in hormonal, 75 

cardiovascular and haematopoietic function7. Such disturbances of normal physiology are also 76 

associated with changes in immune function, and ESKD patients have both increased 77 

susceptibility to infection and impaired vaccination responses8.  Conversely, despite evidence 78 

of impaired specific adaptive immune responses, ESKD is also characterised by a chronic pro-79 

inflammatory state7. 80 

 81 

Thus, patients with ESKD may be at high risk of complications of SARS-CoV-2 due to their 82 

preponderance of cardiometabolic risk factors, as well as both impaired immunity and pro-83 

inflammatory state secondary to uraemia. An outstanding question is whether patients with 84 

ESKD mount a qualitatively different immune response to SARS-CoV-2 that drives their 85 

susceptibility to severe COVID-19. Furthermore, the need to attend medical facilities for 86 

regular haemodialysis, regardless of infection with SARS-CoV-2, provides a unique 87 

opportunity to evaluate the temporal dynamics of the host immune response through serial 88 

sample collection in both the inpatient and outpatient setting. 89 

 90 

Here, we longitudinally profile the evolving immune cellular landscape driven by COVID-19 91 

infection in ESKD patients, allowing us to produce single-cell resolution multi-omic temporal 92 

trajectories in the context of renal failure. Uniquely, we collected samples from the same set 93 
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of individuals before and during SARS-CoV-2 infection. Our data provide a rich resource for 94 

examining the complex longitudinal dynamics of COVID-19 infection in the context of an 95 

important and clinically vulnerable patient group. 96 

 97 

Results 98 

 99 

Longitudinal immune cell profiling in ESKD patients with COVID-19 100 

 101 

To investigate the dynamics of the immune cellular landscape in ESKD patients with COVID-102 

19, we performed longitudinal blood sampling and profiling of peripheral blood mononuclear 103 

cells (PBMC) in ESKD patients. Patients were recruited from a single centre in London, UK, 104 

during two distinct waves of COVID-19. The first cohort (‘2020 Cohort’) (n=22) were recruited 105 

in April-May 2020, during the initial phase of the pandemic and before the advent of 106 

vaccination. This cohort consisted of COVID-19 positive ESKD patients, including both 107 

inpatients and outpatients, with a spectrum of illness severity from mild to critical (Fig. 1A, 108 

Supp. Table 1).  Following COVID-19 diagnosis, serial blood sampling was performed over 109 

the course of the illness (Fig 1B). In addition, we recruited COVID-19 negative ESKD patients 110 

to provide an appropriate control group. This group was well-matched in terms of age, sex, 111 

and ethnicity (Supp. Table 1). 112 

 113 

The second cohort (‘2021 Cohort’) (n=16) consisted of ESKD patients with COVID-19, 114 

sampled between January-March 2021 (when the alpha variant was the predominant variant 115 

in the UK). These patients were recruited as part of the COVID-19 negative control group in 116 

the 2020 Cohort. Again, serial blood sampling was performed during the acute illness. Thus, 117 

for the 2021 Cohort we had matched samples from pre-infection and during acute COVID-19, 118 

enabling intra-individual analysis. In addition, for a subset of the 2021 Cohort we collected a 119 

convalescent sample approximately 2 months after infection (n=10). (Fig. 1A-B).  120 

 121 

To provide a comprehensive yet granular assessment of cellular and molecular changes, we 122 

used a single-cell multi-omic approach, performing Cellular Indexing of Transcriptomes and 123 

Epitopes by sequencing (CITE-seq) of PBMC samples with matched T cell receptor 124 

sequencing (TCR-seq) and B cell receptor sequencing (BCR-seq) (Fig. 1A, Supp. Table 2). 125 

To exclude low quality cells, we removed those with less than 200 genes, more than 10% 126 

mitochondrial reads and fewer than 1000 UMIs. We performed genotype-based 127 

demultiplexing of pooled samples (Methods) and removed cells with genotypes not fully 128 

resolvable. The full dataset consisted of 580,040 cells, representing 187 longitudinal samples 129 

from 61 patients (median of 3 samples per patient).  130 

 131 

For initial cell type annotation, we separated the data analyses into three broad categories of 132 

cell types: i) B cells, ii) T cells and innate lymphocytes, and iii) myeloid and non-immune 133 

hematopoietic cells (Fig. 1C).  Data were integrated per patient to account for technical 134 

artefacts (Methods). Using semi-automatic cell type annotations with CellTypist9, previously 135 

published COVID-19 reference atlases10,11, and canonical marker genes, we were able to 136 

identify 39 cell types (Fig. 1C, Supp. Fig. 1A-D). These comprised known subtypes of 137 

monocytes (classical CD14+ mono, non-classical CD16+ mono and intermediate CD14+ 138 

CD16+ mono) and dendritic cells (DCs), plus sub-populations displaying an interferon-139 

stimulated signature11 and complement expressing CD16+ monocytes that we have described 140 

previously (Fig. 1C, Supp. Fig. 1B)10. Within the B cell compartment, we leveraged the 141 
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availability of paired single-cell BCR-seq and CITE-seq data to detect 9 sub-populations. (Fig. 142 

1C, Supp. Fig. 1C). Similarly, using TCR-seq and CITE-seq data, we were able to recover 15 143 

clusters encompassing T cells, natural killer (NK) cells and innate-like lymphocytes (ILC) (Fig. 144 

1C, Supp. Fig. 1D).  145 

 146 

Altered cellular and transcriptomic profiles in ESKD patients with COVID-19 147 

 148 

To understand the changes in peripheral immune cellular proportions in COVID-19, we 149 

compared samples from COVID-19 positive ESKD patients to those from COVID-19 negative 150 

ESKD patients. We first compared samples during the first week of COVID-19 (week 1) to 151 

COVID-19 negative samples. Analysis using broad cell type annotations showed a significant 152 

decrease in the relative abundance of the total monocyte population in COVID-19 positive 153 

versus COVID-19 negative ESKD patients (Fig. 2A, Supp. Table 3). More granular cell-type 154 

categorisation revealed that samples taken during week 1 from COVID-19 positive patients 155 

had a significantly lower relative abundance of all monocyte subsets including classical (CD14 156 

mono), non-classical (CD16 mono) and intermediate CD14+CD16+ (Int. mono) monocytes 157 

(Fig. 2B-D, Supp. Table 3). Relative abundances of CD8+ memory T cells and CD4+ CTL 158 

and DC3 were reduced while those of naive B cells increased (Fig. 2E-H, Supp. Table 3). 159 

There were no significant changes in cell abundance between samples taken in the second 160 

week of COVID-19 compared to the first week.  161 

 162 

Next, to assess immune cell transcriptomic changes in COVID-19 in ESKD patients, we 163 

performed differential gene expression analysis within each cell type, comparing samples from 164 

COVID-19 positive and COVID-19 negative patients (Supp. Table 4). To identify the biological 165 

pathways implicated by these differentially expressed genes, we performed gene set 166 

enrichment analysis (Supp. Table 5).  We observed widespread transcriptomic changes 167 

between COVID-19 positive and negative samples across numerous cell types. In the 2020 168 

Cohort, the most consistent finding was an enrichment of interferon alpha and beta response 169 

pathways across a broad range of innate and adaptive immune cells (Fig. 2I, Supp. Table 5). 170 

 171 

B cells exhibited the greatest number of significantly enriched pathway terms, totalling 240 172 

pathways (Supp. Table 5). Many of these contain genes that are involved in the cell cycle and 173 

DNA repair, likely reflecting the strong B cell proliferative response involved in initiating 174 

adaptive immunity to SARS-CoV-2.  Similarly, expression of genes relating to protein 175 

translation and post-translational modification were up-regulated, likely relating to the 176 

generation of an antibody response. Many of the enriched pathways were also noted in B cell 177 

antibody-secreting cells (B-ASC). Examining other cell types, we identified 19 enriched 178 

pathways in monocytes, 17 in NK cells, 15 in dendritic cells, 8 in CD4+ T cells, 7 in CD8+ T 179 

cells (Fig. 2I, Supp. Table 5). 180 

 181 

Some pathways were significantly enriched between COVID-19 positive and COVID-19- 182 

negative ESKD samples across multiple cell types. For example, we observed a significant 183 

negative enrichment of the “Orexin Receptor Pathway'' across multiple innate immune cell 184 

types, including monocytes (adjusted P 2.36x10-5), dendritic cells (adjusted P 2.01x10-8), and 185 

NK cells (adjusted P 0.014) (Supp. Table 5). The leading-edge subset of genes that 186 

contributed to this term included SGK1, GADD45B, MAFF, PDP1, ICAM1, TENT5A, HIF1A, 187 

TNF, ID3, CDKN1A, FOSB, HBEGF, NR4A3, VEGFA, BHLHE40, CXXC5, NOCT, IL1B, 188 

CXCL2 and HSPA5 (Fig. 2J), many of which are cellular stress response genes. Analysis of 189 
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monocyte subsets using more fine-grained annotation, revealed enrichment of the pathway 190 

specifically in classical CD14 monocytes, and not in intermediate and non-classical CD16 191 

monocytes, suggesting the former was the source of the signal in monocytes. In the smaller 192 

2021 Cohort, where we had paired pre-infection and infection samples from the same 193 

individuals, we replicated the findings of significant enrichment of the “Orexin Receptor 194 

Pathway'' in CD14+ CD16- monocytes and NK cells, but not in dendritic cells (Supp. Table 195 

5). 196 

 197 

Overall, our findings comparing COVID-19 positive and negative samples from ESKD patients 198 

are broadly similar to those described previously in other more general patient populations. 199 

 200 

Immune cell transcriptomic correlates of COVID-19 severity in ESKD patients 201 

 202 

We next assessed molecular and cellular changes associated with COVID-19 severity at the 203 

time of blood sampling, categorised as mild, moderate, severe, or critical (Methods). Analysis 204 

of cell type numbers comparing samples taken from patients at the time of severe or critical 205 

disease (hereafter ‘severe/critical’, n=56) to those taken at the time of mild or moderate 206 

disease (hereafter ‘mild/moderate’, n=84) revealed that the relative abundance of dividing B-207 

ASC cells was increased in the severe/critical group (Fig. 3A, Supp. Table 6). 208 

 209 

We then performed differential gene expression within each cell type, again comparing 210 

samples taken at the time of severe/critical COVID-19 to mild/moderate COVID-19 (Supp. 211 

Table 7). Taking genes significantly associated with disease severity, we identified the 212 

corresponding biological pathways through enrichment analysis (Fig. 3B, Supp. Table 8). 213 

Where significant enrichment of pathways was identified within a cell type, we then used a 214 

more granular cell type annotation to delineate the source of the signal. We identified 86 215 

pathways that differentiated mild/moderate from severe/critical disease. The majority of these 216 

were in the B cell (35) or monocyte (29) compartment. 11 pathways were associated with 217 

severity in NK cells and 5 in gamma delta cells with only 2 enriched pathways in CD4+ helper 218 

T cells with none in CD8+ T cells. Similarly, at the single gene level, 205 genes distinguished 219 

mild/moderate from severe/critical disease. 125 of these were in all monocytes or 220 

CD14+CD16- classical monocytes and 21 were in B cell subsets (Supp. Table 8).  221 

 222 

In B cells, “Antibody secreting cells” and “Antibody secreting cells that produce IgA”, numerous 223 

pathways relating to cell division were enriched in severe/critical disease. This is likely to 224 

represent increased activation of the adaptive immune response in severe/critical disease and 225 

the initiation of a response to drive neutralising antibody production. In dividing antibody 226 

secreted cells (B_ASC_dividing) and switched memory B cells, increased interferon signalling 227 

pathways also distinguished severe/critical from mild/moderate disease (Supp. Table 8). 228 

 229 

In monocytes, differential gene expression analysis between mild/moderate and severe/critical 230 

samples revealed significant enrichment of numerous pathways, including the KEGG 231 

“Asthma” and “Graft Versus Host Disease”, “Leishmania Infection” and “Allograft Rejection” 232 

pathway terms (Supp. Table 8). Many genes in these pathways were downregulated in 233 

severe/critical relative to mild/moderate disease and their high enrichment scores are driven, 234 

in part, by the high representation of HLA genes in the pathways. This is likely to reflect the 235 

downregulation of MHC molecules on antigen presenting cells in severe COVID-19 that has 236 

been previously reported. We observed down-regulation of HLA-DPB1, HLA-DPA1, HLA-237 
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DRB1, HLA-DRA and HLA-DQA1 in all monocytes (Fig. 3C). This was accompanied by down-238 

regulation of CD163 as noted in other studies. We also noted up-regulation of genes 239 

previously associated with severity such as S100A8, S100A9, S100A12 and MCEMP1 (Fig. 240 

3C)12. In all monocyte subsets, the most differentially expressed gene between mild/moderate 241 

and severe/critical samples was TNF, encoding TNF-α (p-value 6.4 x10-116) (Supp. Table 7). 242 

Unexpectedly, given its pro-inflammatory effects, TNF gene expression was lower in 243 

severe/critical disease. We hypothesised that this might be as a result of negative feedback 244 

from elevated TNF-ɑ at the protein level. We therefore compared monocyte TNF gene 245 

expression levels to protein levels of plasma TNF-ɑ measured using Olink immunoassays in 246 

the same set of samples. This revealed higher plasma TNF-ɑ protein in samples taken at the 247 

time of severe/critical disease. Correlation analysis between plasma TNF-ɑ protein monocyte 248 

TNF gene expression revealed a weak negative correlation (Pearson r -0.15), demonstrating 249 

an uncoupling of plasma protein and gene expression levels (Fig. 3D). 250 

 251 

Given the importance of monocytes in the host immune contribution to COVID-19 severity13, 252 

we performed a deeper analysis of specific subsets. In classical CD14+ monocytes, there was 253 

enrichment for the Reactome “MHC Class II Antigen Presentation”, KEGG “Type I Diabetes 254 

Mellitus” and “Graft Versus Host Disease” and Reactome “Interferon Gamma Signalling” in 255 

severe disease (Supp. Table 8).  Many of these pathway terms were driven by genes 256 

encoding MHC class II molecules (Supp. Fig. 2A-F). Within CD14+ monocytes, there was 257 

also enrichment of the matrisome-associated pathway, including increased amphiregulin 258 

(AREG) gene expression (Fig. 3E, Supp. Table 8). We and others have previously reported 259 

AREG protein up-regulation in plasma in severe disease14,15. The present study suggests that 260 

CD14+ monocytes may contribute to this.  The Reactome “Neutrophil Degranulation” module 261 

was also enriched in CD14+ monocytes in severe disease (Supp. Table 8). PLAC8 is a 262 

leading-edge gene in this pathway. In our dataset, it is significantly more highly expressed in 263 

severe disease (Fig. 3E, Supp. Table 7). PLAC8 over-expression makes cells, including 264 

immune cells, permissive for SARS-CoV-2 infection, and thus high expression of this molecule 265 

in patients with severe/critical disease may predispose them to worse outcomes16.  266 

 

We also observed significant transcriptomic differences in NK cells between mild/moderate 267 

and severe/critical COVID-19. This included differential expression of genes relating to both 268 

TLR4 and TLR9 signalling pathways as well as those in the ‘Oncostatin M Pathway’ (Supp. 269 

Tables 7-8). We previously reported upregulation of plasma protein levels of Oncostatin M in 270 

severe COVID-1914. This cytokine is known to regulate IL-6 and GM-CSF production, which 271 

have been previously implicated as drivers of severe COVID-1917. In dendritic cells, the sole 272 

pathway significantly associated with severity was the ‘Orexin Receptor Pathway’ which 273 

displayed a negative enrichment score in severe disease (Supp. Table 8). This pathway was 274 

not significantly associated with severity in any other cell type, in contrast to the COVID-19 275 

positive versus COVID-19 negative ESKD patient analysis, where we observed significant 276 

enrichment of this patient across multiple cell types.  277 

 278 

In summary, mild/moderate and severe/critical disease were distinguished by transcriptional 279 

changes in numerous cell subsets. These were dominated by signals from B cell and 280 

monocyte subsets with a minor contribution from NK cells. By contrast, transcriptional changes 281 

in conventional alpha beta T cells were less able to distinguish mild/moderate and 282 

severe/critical disease. 283 
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 284 

Temporal gene expression trajectories vary according to disease severity    285 

 286 

The host response to infection is a dynamic process involving both the innate and adaptive 287 

immune systems. To understand these temporal dynamics in COVID-19, we performed 288 

longitudinal analysis of our multi-omic data. Cell type composition analysis revealed that most 289 

cell subtypes displaying an interferon-stimulated gene expression signature were significantly 290 

increased within the first week following symptom onset, and then gradually reduced over time 291 

(Fig. 4A). We observed significant increases in the relative abundance of some cell types 292 

persisting into weeks 2 and 3 following symptom onset (switched memory B cells, CD14  and 293 

CD16 monocytes, DC3, NK and CD8+ CTLs). I B cells, NK cells, CD4+ helper T cells, I CD8+ 294 

T cells, cytotoxic CD8+ T cells and Tregs were enriched in recovery samples. More generally, 295 

there was an increase in the relative abundance of adaptive immune cells over the course of 296 

the infection. As expected from a viral airway infection, compositions of antibody secreting B 297 

cells, predominantly of class-switched (IgG and IgA) antibody isotypes, were increased 298 

already in the first week after onset of disease, persisting for up to three weeks. Relative 299 

numbers of most CD4+ and CD8+ T cell subsets gradually decreased over time, with the 300 

exception of cycling CD4+ T cells (Fig. 4A). 301 

 302 

We next assessed the temporal patterns of gene expression changes during COVID-19 in 303 

ESKD patients and how these vary according to overall clinical course (defined by peak illness 304 

severity, binarised as mild/moderate or severe/critical). To achieve this, we performed 305 

longitudinal modelling using a linear mixed model with a time x peak severity interaction term. 306 

To reduce dimensionality, we analysed genes grouped together as modules according to 307 

pathway terms, using the Hallmark, Reactome and KEGG databases. A pathway with a 308 

significant time x severity interaction indicates that the pathway has a different temporal profile 309 

in mild/moderate versus severe/critical COVID-19. Our analysis revealed 183 pathways with 310 

significant (FDR <0.05) time x severity interactions (Supp. Table 9). Notably, the majority of 311 

the significant time x severity interactions were in B cells, accounting for 143 of the 183 312 

significant pathways. Pathways in B cells and monocytes dominate those showing the 20 most 313 

significant time x severity interactions. The two pathways showing the most significant time x 314 

severity interaction were the interferon alpha and interferon gamma response in non-class 315 

switched memory B cells. Significant time x severity interactions for these pathways are also 316 

seen in B cells, class switched B memory cells, cytotoxic CD4+ T cells, NK cells, NK2 cells 317 

and NKT cells (Supp. Table 9). These results reflected quantitative differences in the temporal 318 

gradient of the interferon pathway response, with more severe COVID-19 disease showing 319 

higher interferon pathway response early in disease and a steeper decline over time (Fig. 4B).  320 

 321 

In both CD14+ monocytes and B cells we found significant time x severity interactions for 322 

“allograft rejection” pathways’, and in CD14 monocytes for “graft versus host disease”, 323 

“asthma”, “type 1 diabetes” and “systemic lupus erythematosus”. Examination of the genes 324 

that make up these pathways revealed that these signals were largely driven by distinct 325 

temporal patterns of HLA expression in patients. In patients with a severe/critical clinical 326 

course, we observed steep downregulation of HLA class II gene expression over time, 327 

compared to either a relatively flat or mild upregulation in patients with a more benign course. 328 

HLA class I gene expression was higher in early disease in patients with severe/critical 329 

disease than in mild disease but fell further in late disease (Fig. 4C and Supp. Fig. 3A). 330 

Among other pathways that showed significant time x severity interactions, we noted the 331 
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“KRAS signalling up” and “MYC targets” in B cells only, likely reflecting time dependent 332 

changes in their proliferation during infection that vary according to severity (Supp. Table 9). 333 

 334 

These results illuminate how modelling the temporal component provides additional insights 335 

by identifying time-dependent severity associations with gene expression that are not apparent 336 

in single time-point cross-sectional analyses. Thus, transcriptomic changes are dependent 337 

both on time and severity, and the interplay of two, underscoring the importance of serial 338 

sampling in gaining a complete picture of the host immune response in COVID-19. 339 

 340 

Longitudinal TCR dynamics 341 

 342 

Given the central role of T cells in antiviral adaptive immunity, we next evaluated clonal T cell 343 

dynamics of SARS-CoV-2 infection. The longitudinal nature of our study and single-cell 344 

resolution enabled us to be specific in determining paired-chain clones that expanded over 345 

the course of COVID-19. A total of 3,137 unique TCR clones that appeared in two or more 346 

serial samples from the same patient were used to quantify clonal expansion. To increase the 347 

probability of identifying TCR clones specific to SARS-CoV-2, we focused on clones that were 348 

not present in pre-infection samples, thereby limiting the presence of cross-reactive or 349 

bystander T cells. We found that 42% of clones sampled longitudinally had increased clonal 350 

frequency following day 10 after a positive swab, and that 23% showed a marked expansion 351 

where they increased after day 2 of the positive swab, and further after day 10 (Fig. 4D, Supp. 352 

Fig. 3B-C, Methods). To investigate whether these clonal expansions were directed against 353 

SARS-CoV-2, we cross-referenced SARS-CoV-2 specific TCR sequences from the VDJDB  354 

database18 and measured the overlap with clones identified in more than one serial sample 355 

within an individual. Clones expanding after day 10 were significantly enriched in SARS-CoV-356 

2 specific TCR alpha chains (p=0.0014, two-sided Mann-Whitney test, Fig. 4E) compared to 357 

their non-expanding counterparts, while those fulfilling the stricter dual criteria above had an 358 

almost two-fold increase in antigen-specific TCRs (p=0.006137, Fig. 4F). We next tested the 359 

relationship between magnitude of expansion of the longitudinally identified clones and SARS-360 

CoV-2 specificity. The fastest expanding clones had the highest proportion of SARS-CoV-2 361 

specific TCR alpha chains (Fig. 4G), indicating that we are capturing the adaptive immune 362 

response to COVID-19. This SARS-CoV-2 specificity estimate is likely a lower bound to the 363 

true number, as experimental data from the database is based on assays with many fewer 364 

SARS-CoV-2 peptides than the number of naturally occurring viral antigens. Thus, of the 365 

expanding sequences that we recovered that do not match the database, many more are likely 366 

to be virus specific. 367 

 368 

Further leveraging our single cell data, we looked for patterns in the TCRs of expanding clones 369 

that might be shared across donors. We applied the tool Cell2TCR19 to our expanded clones 370 

(excluding MAIT cells, Methods) and found 99 public TCR motifs, where a public TCR motif 371 

denotes a group of clonotypes with sufficient sequence similarity to likely recognise the same 372 

epitope that was found in two or more patients. Moreover, six TCR motifs were shared 373 

between three donors and three motifs between four donors, a scenario which is highly 374 

unlikely for randomly sampled TCR clones and provides evidence of strong selective pressure 375 

on the adaptive immune response to a common pathogen (Fig. 4H). As we had recruited 376 

patients during two distinct phases of the pandemic, we hypothesised that certain TCR motifs 377 

might be specific to a particular viral strain and exhibit sharing only across donors from the 378 

same cohort (e.g. sampled in 2020 or 2021, respectively). Of the 99 public TCR motifs, 64% 379 
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had donors from a single cohort, including two motifs of Fig. 4I with four donors each. 380 

Furthermore, 18% of public motifs contained at least one SARS-CoV-2 specific TCR 381 

sequence, underscoring the sensitivity of this approach to analyse the antigen-specific 382 

response. Our findings are in strong agreement with evidence from a recent SARS-CoV-2 383 

Human Challenge Study19, involving deliberate infection of healthy individuals with SARS-384 

CoV-2, which had shown that the antigen-specific response included convergent paired-chain 385 

immune receptor motifs. We thus replicate the challenge study results in the context of natural 386 

infection and in a larger cohort comprising a clinically relevant vulnerable group consisting of 387 

older individuals with underlying comorbidities, which included cases of severe/critical COVID-388 

19. 389 

 390 

As our data was longitudinal, we next investigated the presence of time-restricted, activated 391 

T cell types characterised in the context of COVID-19 by Lindeboom et al19. Activated T cell 392 

states were found to be indicative of de novo T cell activation and harbouring SARS-CoV-2 393 

specific TCR sequences. Application of the automated cell state annotation tool Celltypist9 394 

revealed 1,927 activated T cells, spanning the CD4+, CD8+, regulatory and MAIT cell 395 

compartments and found among 58 ESKD COVID-19 patients (Supp. Fig. 3D). When 396 

normalising the counts by cell type and sample numbers and aggregating across time points, 397 

we observed a striking lack of activated T cells in pre-pandemic as well as convalescent 398 

COVID-19 samples (Fig. 4H). While MAIT cells and regulatory T cells showed a relative 399 

enrichment during the first week after positive PCR test, most activated CD4+ and CD8+ 400 

appeared only after 10 days. All activated T cell types remained detectable three weeks after 401 

positive PCR test but had mostly disappeared again by the time convalescent samples were 402 

taken, highlighting the transient nature of these cell states. Activated T cells were further over-403 

represented among the most expanded clones (Fig. 4J). This is in line with results from the 404 

clinical trial in Lindeboom et al, where activated MAIT cells could be detected as early as 3 405 

days after exposure to the virus, and circulating activated T cell abundance peaked 10-14 406 

days after exposure to the virus, with return to baseline after 28 days19. 407 

 408 

Corticosteroids induce dexamethasone-related monocytes in COVID-19 409 

 410 

By the time of the 2021 COVID-19 wave in the UK, glucocorticoid administration with 411 

dexamethasone had become standard clinical practice following randomised clinical trials 412 

demonstrating that it reduced mortality in patients with COVID-19 requiring supplemental 413 

oxygen3. Corticosteroids are known for their broad immunosuppressive effects through 414 

several different mechanisms, including inhibiting the release of proinflammatory cytokines20. 415 

In vitro experiments have suggested that monocytes and macrophages treated with 416 

glucocorticoids can exhibit both anti-inflammatory and inflammation-resolving properties21. 417 

The effect of corticosteroids on human immune responses at single cell level in vivo has not 418 

been studied. Of the 16 patients in the 2021 Cohort, 7 received steroid treatment (Supp. Table 419 

1). Patients receiving steroids all had a peak illness severity of severe or critical.  This provided 420 

us with an opportunity to investigate the effects of steroids at the single cell transcriptomic 421 

level over the course of their treatment.  422 

 423 

Whilst exploring the innate immune response, we isolated the monocyte compartment from 424 

the rest of the data and sub-clustered these cells. We identified the emergence of a subset of 425 

monocytes that were only seen in COVID-19 positive, severe/critical cases but not in patients 426 

with mild/moderate disease (Fig. 5A-B). These cells were clearly demarcated on UMAP plots 427 
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as a distinct population. Differential gene expression analysis between all subsets of 428 

monocytes showed this population had transcriptional similarities with monocytes treated ex 429 

vivo with dexamethasone22 (Fig. 5C). Compared to classical CD14 monocytes and IFN 430 

stimulated CD14 monocytes, the dexamethasone-related monocytes (Dex. mono) had lower 431 

expression of markers of inflammation such as JUN and CXCL8 as well as lower expression 432 

of antigen presenting markers HLA-DRA and HLA-DRB5. Conversely, they showed higher 433 

expression of genes relating to anti-inflammatory actions (CD163 and ADAMTS2), anti-434 

oxidation (SLC1A3 and SESN1), migration (FPR1 and MTSS1) and phagocytosis (MFGE8 435 

and MRC1) (Fig. 5C). Notably, these cells were only present in patients recruited in the 2021 436 

Cohort, suggesting they were a direct effect of glucocorticoid treatment and not a 437 

consequence of severe COVID-19 itself (Fig. 5A).  438 

  439 

We formally tested the effect of glucocorticoids on differential cell abundance across the 440 

monocyte clusters using MiloR, accounting for time from infection23. We noted that both CD14 441 

monocytes and the dex. monos were significantly enriched after glucocorticoid treatment, and 442 

the IFN-stimulated CD16 monocytes, C1 CD16 monocytes and IFN-stimulated CD14 443 

monocytes were significantly enriched before treatment (Fig. 5D).  Using the longitudinal data 444 

from only the individuals who were given glucocorticoid treatment, we evaluated the 445 

percentage of different monocyte subsets prior to and in the days after treatment. We found 446 

that, after glucocorticoid administration, there was a trend towards an increased relative 447 

abundance of the dex. monos and CD14 monocytes, whilst there was a decrease in both IFN-448 

stimulated monocyte populations (Fig. 5E). No trends were observed in other cell types 449 

(Supp. Fig.  4 and 5). These results suggest that, along with promoting the emergence of the 450 

dex. monos, glucocorticoids could facilitate a reduction of the abundance of interferon-451 

stimulated monocytes in severe COVID-19 infection. 452 

 453 

The dex. monos displayed high RNA and protein expression of CD163 (Fig. 5C and 5F) a 454 

scavenger receptor that is frequently used to mark ‘alternatively activated’ or ‘M2’-like 455 

macrophages24. These macrophages possess regulatory functions which can suppress 456 

immune responses and reduce inflammation25. Macrophages treated with glucocorticoids 457 

have been shown to drive the polarisation of macrophages towards an ‘alternatively 458 

activated’/M2-like phenotype26. These findings prompted us to further assess transcriptional 459 

programs of the dex. monos. We performed pathway enrichment analysis on all monocytes 460 

based on 15 different macrophage stimulation signatures27. The dex. monos were more 461 

associated with transcriptomic patterns associated with stimulation with IL-13, IL-4, ultra-pure 462 

LPS+immune complex, glucocorticoid stimulation, supporting their similarity to M2-like 463 

macrophages (Fig. 5G).  The temporal emergence of the dex. monos and their presence only 464 

in the 2021 Cohort strongly suggest that the changes we observed were driven by 465 

dexamethasone treatment rather than disease severity. 466 

 467 

Discussion 468 

 469 

Here, we performed CITE-seq and immunoreceptor profiling in ESKD patients with COVID-19 470 

to longitudinally profile the circulating immune cell changes associated with COVID-19 in two 471 

temporally distinct cohorts. A unique aspect of our study was the 2021 cohort, where we 472 

obtained longitudinal PBMC samples from patients with COVID-19 who were originally 473 

sampled as COVID-19 negative controls during 2020 but subsequently became infected 474 

during 2021. As a result, we were able to perform intra-individual analysis of the host immune 475 
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cell PBMC transcriptome comparing pre-infection with acute infection, thus minimising the 476 

impact of confounding factors. Another strength of our study was the inclusion of patients of 477 

diverse ancestries.  478 

 479 

Using a multi-omic approach, we identified COVID-19-associated changes in the cellular 480 

composition of PBMC in ESKD patients including increased relative abundance of naive B 481 

cells and a decreased relative abundance of total monocytes, CD8+ memory and CD4+ CTL 482 

T cells. This decrease in the relative numbers of circulating monocytes following infection was 483 

also observed in a recent experimental medicine challenge study, involving deliberate infection 484 

of healthy individuals with SARS-CoV-219. COVID-19 was associated with widespread 485 

transcriptomic changes in a wide variety of cell types. Many of these reflect the activation of 486 

inflammatory pathways, including the type 1 interferon pathway and cellular activation and 487 

proliferation. Overall, the COVID-19-associated changes in ESKD patients were similar to 488 

those reported in other studies, but we did identify some changes that, to our knowledge, have 489 

not been previously reported. For example, gene expression pathway analysis highlighted 490 

significant negative enrichment of the “Orexin Receptor Pathway'' in COVID-19 positive ESKD 491 

patients versus uninfected ESKD patients across several innate immune cell types. Many of 492 

the leading-edge genes contributing to the “Orexin receptor pathway” term are also involved 493 

in other pathways, which makes interpretation of this finding more challenging. Orexin receptor 494 

signalling is well-characterised in neurological diseases such as narcolepsy, but there is also 495 

evidence that Orexins can have immunological effects that may be relevant in the context of 496 

COVID-1928,29.  497 

 498 

We also identified numerous pathways associated with COVID-19 severity in ESKD, 499 

particularly in monocytes and B cells. Notably, we found many more pathways associated with 500 

severity in B cells than in T cells. In addition, severe COVID-19 was associated with a higher 501 

relative abundance of antibody-secreting B cells and with higher expression of genes involved 502 

in cell division. In CD14+CD16- monocytes, we observed elevated PLAC8 expression in 503 

severe COVID-19. High PLAC8 expression makes lung cells more permissive for SARS-CoV-504 

2 infection in vitro16. In line with this, a genome-wide CRISPR knockout screen identified 505 

PLAC8 as an essential factor for infection with a different coronavirus, swine acute diarrhoea 506 

syndrome coronavirus (SADS-CoV)30. While SARS-CoV-2 predominantly infects epithelial 507 

cells, it has also been detected in macrophages and T cells31. Together with this work on the 508 

cell biology of PLAC8 in viral infection, our observation that expression changes with disease 509 

severity in monocytes raises the possibility that modulating PLAC8 expression may provide a 510 

therapeutic opportunity to prevent infection of both epithelial and immune cells. 511 

 512 

Multi-omic measurements allowed us to identify instances of negative correlation between 513 

immune cell gene expression and levels of the corresponding plasma protein. For example, in 514 

severe COVID-19 the most down-regulated gene in monocytes was TNF (encoding TNF-515 

alpha), yet conversely, TNF-alpha was significantly upregulated in the plasma from the same 516 

blood draw. Potential explanations for this uncoupling include negative feedback, or that other 517 

cell types could be contributing to circulating TNF-alpha pool (e.g. endothelial cells, tissue 518 

macrophages). This observation underlines the complementary value of combining multi-omic 519 

data, since plasma proteins reflect protein production by a wide variety of tissues other than 520 

blood cells32. Since our data are observational, we cannot determine if elevated circulating 521 

TNF-alpha is a cause or a consequence of severe COVID-19. Nevertheless, since TNF-alpha 522 

blocking drugs are in routine clinical use in inflammatory diseases such as rheumatoid arthritis, 523 
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our results suggest there may be value in evaluating the repurposing of these medications for 524 

COVID-1933. 525 

 526 

Longitudinal analysis of changes in cell type abundance showed a peak in cells showing an 527 

interferon-activated gene signature in the first week of illness followed by a waning, again 528 

consistent with that seen in other work19. Gene expression pathways which displayed distinct 529 

temporal profiles according to clinical severity were predominantly found in B cells and 530 

monocytes.  531 

 532 

Longitudinal analysis also revealed the time-restricted appearance and expansion of T cells 533 

with likely SARS-CoV-2 specificity. Leveraging the large number of longitudinal samples, we 534 

identified the emergence of public T cell clones with a restricted TCR repertoire that are shared 535 

across patients. Cross-referencing the TCRs with SARS-CoV-2 specific databases, we found 536 

most matches among T cells that strongly expand in the days following a positive PCR test, 537 

and a significant enrichment of matches compared to pre-pandemic samples. Our results 538 

support the hypothesis that both TCR chains together determine antigen specificity, which we 539 

were able to capture jointly using single-cell sequencing, as expanding clones could further 540 

be grouped into shared TCR motifs with high sequence similarity in both chains. In addition, a 541 

recently activated T cell phenotype is overrepresented in that same population. We expand 542 

on existing knowledge from the first human COVID-19 challenge study by analysing a larger 543 

patient cohort, which included cases of severe disease, as well as replicating several key 544 

findings in the context of natural infection. In addition, we identified longitudinal expansion of 545 

some clones that are not recorded as SARS-Cov2-specific in the VDJDB database. These 546 

could potentially be previously undescribed SARS-CoV2-specific T cells, given that we 547 

analysed a large number of longitudinal samples that included patients with severe/critical 548 

disease and also diverse ancestry. An alternative explanation is that the expansion of some 549 

TCR clones was driven by bystander activation secondary to the inflammatory milieu. Thus, 550 

our study generates hypotheses for further functional work. 551 

 552 

An important finding of this study was the identification of a distinct population of monocytes 553 

that emerged after glucocorticoid therapy. These were not observed in any patients in the 554 

2020 Cohort, before the introduction of glucocorticoid therapy as standard of care, and their 555 

emergence in the 2021 Cohort occurred rapidly after glucocorticoid administration. These 556 

findings could have implications beyond COVID-19. Corticosteroids are frequently used to 557 

suppress inflammation and they have pleiotropic effects on immunity that are not fully 558 

understood despite their long-standing clinical use. Therefore, being able to probe the effects 559 

of steroid treatment in humans using single cell resolution multi-omic technologies provides 560 

potential insights into their mode of action. This may facilitate rational drug design of 561 

compounds that target these pathways without steroid side effects. Here, we demonstrated 562 

that glucocorticoids could promote the emergence of a transcriptionally distinct subpopulation 563 

of monocytes. An outstanding question remains the functional properties of these steroid-564 

induced cells such as their ability to traffic to tissues and modulate inflammatory responses.  565 

            566 

ESKD patients have increased susceptibility to sepsis and impaired vaccination response (for 567 

example, hepatitis B vaccination)8,34. Reports on neutralising activity against the delta variant 568 

following SARS-Cov-2 vaccination showed an impaired response of haemodialysis patients 569 

compared with healthy controls in response to the AZD1222 vaccine35 and an impaired 570 

neutralising response to the omicron variant with heterologous boost regimes consisting of 571 
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two doses of the AZD1222 followed by the mRNA vaccine BNT162b236. Vaccination strategies 572 

have been very successful in reducing morbidity and mortality, but widespread transmission 573 

of SARS-CoV-2 continues. As new variants emerge, certain patient groups, such as those 574 

with ESKD will have a higher risk of both contracting infection and of experiencing a severe 575 

disease course, underscoring the importance of studying such patient groups.  576 

 577 

Our study has some limitations. Our data are observational and thus cannot delineate whether 578 

changes in cell populations or gene expression are pathogenic drivers or downstream 579 

consequences of the systemic inflammatory response. Observational data are also vulnerable 580 

to the effects of confounding factors. Our use of paired pre-infection and infection samples in 581 

the analysis of the Wave 2 partially mitigates this, but unknowable confounders such as viral 582 

exposure at the time of infection may nevertheless impact the magnitude of the host immune 583 

response. In addition, we studied peripheral blood immune cells due to accessibility, but these 584 

may not always reflect those at the site of tissue inflammation. We did not have a comparator 585 

group of ESKD patients with another infection, so we cannot determine whether the changes 586 

we observed are specific to COVID-19. Finally, this was a single centre study.  587 

 588 

In summary, we characterised the longitudinal host immune response in COVID-19 in a 589 

clinically vulnerable group through multi-omic technologies. These data illuminate the 590 

temporal dynamics of the response to infection, and how these diverge in mild versus severe 591 

disease. Our results reveal the impact of glucocorticoid therapy, with the emergence of a 592 

specific monocyte subpopulation following treatment. The data here will provide a valuable 593 

resource for the research community. 594 
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 630 

Figure Legends 631 

 632 

Fig. 1: Study Overview. 633 

A) Schematic of the study design showing the recruitment of both cohorts and how their 634 

samples were processed in the laboratory then analysed. Neg. control = COVID-19 negative 635 

ESKD patient. Figure created using Biorender.com. B) Timing of blood sampling in relation to 636 

illness onset. Colours indicate the COVID-19 severity over time. ‘X’ with an adjacent arrow 637 

indicates death during the hospital admission occurring at >30 days. C) UMAP showing the 638 

detailed annotations of B cells, myeloid and progenitors and T cells, respectively. ASDC = Axl 639 

Siglec dendritic cell, MAIT = mucosal-associated invariant T cell, ASC = antibody secreting 640 

cell, sw. mem. = switched memory, CTL = cytotoxic T lymphocyte, T g/d = gamma delta T cell, 641 

EMRA = terminally differentiated effector memory T cell, ILC = innate lymphoid cell, mono = 642 

monocyte, int. = intermediate. 643 

 644 

Fig. 2: Cell type abundance and DEG/pathway analysis for positive cases versus 645 

negative controls. 646 

A-H) Bar charts displaying relative numbers of cells that significantly changed in abundance 647 

in week 1 of COVID-19 infection compared to a control group of COVID-19 negative ESKD 648 

patients. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. I) Heatmap of gene expression pathways 649 

significantly (FDR <0.05) associated with COVID-19 positivity. Cell labels above plot denote 650 

broad cell annotations and labels below denote more granular cell annotations. R = reactome, 651 

WP = wiki pathways, K = KEGG, NABA = Alexandra Naba and PID = pathway interaction 652 

database. J) Dot plot displaying the expression of the leading-edge subset of genes that 653 

contributed to the term “Orexin Receptor Pathway'' for COVID positive and negative patients. 654 

Mono = monocytes. 655 

 656 

Fig. 3: Cell type abundance and DEG/pathway analysis for severity of positive cases. 657 

A) Bar chart displaying the relative abundance of dividing antibody secreting B cells for mild 658 

and moderate patients compared to severe and critical patients. P = 0.017 B) Heatmap of 659 

pathways significantly (FDR <0.05) associated with COVID-19 severity. Cell labels above plot 660 

denote broad cell annotations and labels below denote more granular cell annotations. R = 661 

reactome, WP = wiki pathways, K = KEGG and PID = pathway interaction database. C) Dot 662 

plot displaying the expression of differentially expressed genes relating to severity in all 663 

monocyte populations. D) Left: Boxplots of TNF RNA counts in monocytes from the scRNA-664 

seq dataset and normalised plasma TNF-ɑ protein abundance measured with Olink 665 

immunoassays (n=57 samples from 21 individuals with both RNA and plasma protein levels 666 

measured). Right: correlation between TNF gene expression and TNF-ɑ plasma protein levels. 667 
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(Pearson r -0.15) E) Left: dot plot displaying gene expression of AREG in CD14+ monocytes 668 

stratified according to COVID-19 severity at the time of sampling. Right: dot plot displaying 669 

gene expression of PLAC8 in CD14+, CD16+ and intermediate monocytes split, again 670 

stratified according to COVID-19 severity. 671 

 672 

Fig. 4: Longitudinal gene expression and TCR trajectories 673 

A) Dot plots displaying the significant cell type abundance changes across COVID-19 infection 674 

compared to pre-infection samples for cells that have an interferon and non-interferon 675 

stimulated counterpart. Time since onset of disease is either time since display of first 676 

symptom or positive test (whichever is earliest). B) Estimated marginal mean of the effect of 677 

time from infection by severity group for the expression of IFN alpha and IFN gamma pathway 678 

genes for cell types with significant time x severity interaction. Time since onset of disease is 679 

either time since display of first symptom or positive test (whichever is earliest). C) Heatmap 680 

displaying 10 genes from multiple pathways (Allograft rejection, Asthma, Graft versus host 681 

disease, Type 1 diabetes, and Systemic Lupus Erythematosus) that had a significantly 682 

different temporal profile in mild vs severe disease (linear mixed model, FDR < 0.05) in CD14 683 

monocytes. Colour indicates LMM estimated marginal means over time, stratified by patient 684 

group (n = 130 samples from 37 individuals). Genes are clustered based on the temporal 685 

profile of the discordance between mild/moderate and severe/critical disease. Time since 686 

onset of disease is either time since display of first symptom or positive test (whichever is 687 

earliest). D) Absolute numbers of clones considered for longitudinal analysis and expanded 688 

clone counts. E) Proportion of SARS-CoV-2 specific clones among all clones, stratified by 689 

whether the clone expanded after day 10 following positive PCR test. Specificity was 690 

determined as a perfect match with a TCR alpha chain from the SARS-CoV-2 database 691 

VDJDB. Significance with two-sided Mann-Whitney test: p=0.0014. F) As for (C) but stratifying 692 

by whether a clone was expanded after day 2 and further after day 10. G) SARS-CoV-2 693 

specific clone proportion among fastest increasing clones. Clones were sorted by decreasing 694 

expansion magnitude pre/post day 10 following positive PCR test (Methods). Baseline of 695 

matches with database from pre-pandemic samples shown in dashed line. Specificity was 696 

determined as a perfect match with a TCR alpha chain from the SARS-CoV-2 database 697 

VDJDB. H) Sequence logos of 3 most shared paired-chain TCR motifs, with number of 698 

individuals and number of unique clones sharing the motif mentioned. Letter height indicates 699 

frequency of AA at that position across T cells pertaining to the motif. AAs are coloured by 700 

side chain chemistry: Acidic (red), basic (blue), hydrophobic (black), neutral (purple), polar 701 

(green). AA: amino acid. I) Distribution of predicted activated T cells across days since positive 702 

swab result. T cell counts were normalized by number of cells and samples, cell states were 703 

predicted using Celltypist (Methods). J) Activated T cell state proportion among fastest 704 

increasing clones. Clones were sorted by decreasing expansion magnitude pre/post day 10 705 

following positive PCR test (Methods). Baseline proportion of activated T cells from pre-706 

pandemic samples shown in dashed line.  707 

 708 

Fig. 5: Dexamethasone treatment promotes steroid associated monocytes 709 

A) UMAPs displaying all subsets of monocytes; coloured by subset (top), patient cohort 710 

(bottom left), COVID-19 status (bottom middle) and severity (bottom right). B) Bar charts 711 

displaying proportions of all monocytes grouped by mild/moderate and severe/critical severity. 712 

C) Dot plots displaying gene expression (left) and protein expression (right) in CD14 713 

monocytes, IFN-stimulated CD14 monocytes and the dexamethasone associated monocytes 714 

(Dex. mono). D) Beeswarm plot displaying the differential abundance of monocyte subsets for 715 
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samples from patients that were administered steroids, before and after treatment. E) Line 716 

charts displaying the percentage of monocyte subsets across the days before and after 717 

administration of steroids. Line colours represent different patients. F) Dot plot displaying the 718 

expression of monocyte marker genes in all monocyte subsets. G) Heat map displaying gene 719 

module scores for CD14 monocytes, IFN-stimulated CD14 monocytes and the 720 

dexamethasone associated monocytes (Dex. mono). 721 

 722 

Supplementary Figure 1: Cell demultiplexing and annotation 723 

A. Heat map showing the overlap of manual versus predicted cell annotations. B. Dot plots 724 

displaying gene (top) and protein (bottom) expression of markers for myeloid and 725 

haematopoietic cells. C. Dot plots displaying gene (top) and protein (bottom) expression of 726 

markers for B cells. D. Dot plots displaying gene (top) and protein (bottom) expression of 727 

markers for T and innate lymphoid cells. 728 

 729 

Supplementary Figure 2: Expression of genes contributing to pathways in CD14 730 

monocytes and B cells 731 

A. Dot plot displaying the expression of genes that contribute to the Kegg ‘Systemic Lupus 732 

Erythematosus” pathway in CD14 monocytes. B. Dot plot displaying the expression of genes 733 

that contribute to the Kegg ‘Type 1 Diabetes Mellitus” pathway in CD14 monocytes. C. Dot 734 

plot displaying the expression of genes that contribute to the Kegg ‘Asthma” pathway in CD14 735 

monocytes. D. Dot plot displaying the expression of genes that contribute to the Kegg ‘Graft 736 

Versus Host Disease” pathway in CD14 monocytes. E. Dot plot displaying the expression of 737 

genes that contribute to the Kegg ‘Allograft rejection” pathway in CD14 monocytes. F. Dot plot 738 

displaying the expression of genes that contribute to the Kegg ‘Allograft rejection” pathway in 739 

B cells. 740 

 741 

Supplementary Figure 3: Longitudinal analysis 742 

A. Clonal frequency dynamics for all clones expanded after day 2 post positive PCR result, as 743 

well as a trendline. B. Clonal frequency dynamics for all clones expanded after day 2 post 744 

positive PCR result and further expanded after day 10, as well as a trendline. C. Number of 745 

activated T cells according to Celltypist predictions, split by T cell type. 746 

 747 

Supplementary Figure 4: Trend of cell proportions during steroid treatment 748 

Line charts displaying the percentage of cell subsets across the days before and after 749 

administration of steroids. Line colours represent different patients. 750 

 751 

Supplementary Figure 5: Trend of cell proportions during steroid treatment 752 

Line charts displaying the percentage of cell subsets across the days before and after 753 

administration of steroids. Line colours represent different patients.  754 

 755 

Supplementary Figure 6: Estimated ancestry calculated using genotype compared to 756 

self-reported by patient. 757 

A. PCA plot of genetically estimated ancestry of each patient calculated using genotypes. B. 758 

PCA plot of the ancestry reported by the patients themselves.  759 

 760 

Supplementary Table 1: Metadata from individuals sampled. 761 

 762 

Supplementary Table 2: List of antibodies included in the Total-seq panel. 763 
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 764 

Supplementary Table 3: Statistical tests from cell abundance analysis of cases versus 765 

controls. 766 

 767 

Supplementary Table 4: Differentially expressed genes for each cell type for cases versus 768 

controls. 769 

 770 

Supplementary Table 5: Gene set enrichment pathway analysis for each cell type based on 771 

DEGs from Supp. Table 4. 772 

 773 

Supplementary Table 6: Statistical tests from cell abundance analysis of severity. 774 

 775 

Supplementary Table 7: Differentially expressed genes for each cell type for severity. 776 

 777 

Supplementary Table 8: Gene set enrichment pathway analysis for each cell type based on 778 

DEGs from Supp. Table 7. 779 

 780 

Supplementary Table 9: Gene set enrichment pathway analysis of time x severity 781 

interactions. 782 

 783 

Materials and Methods 784 

 785 

Ethical approval 786 

 787 

All participants (patients and controls) were recruited from the Imperial College Healthcare 788 

NHS Trust Renal and Transplant Centre and its satellite dialysis units, London, United 789 

Kingdom, and provided written informed consent prior to participation. Study ethics were 790 

reviewed by the UK National Health Service (NHS) Health Research Authority (HRA) and 791 

Health and Care Research Wales (HCRW) Research Ethics Committee (reference 792 

20/WA/0123: The impact of COVID-19 on patients with renal disease and immunosuppressed 793 

patients). Ethical approval was given. 794 

 795 

Patient cohorts 796 

 797 

We recruited two cohorts of ESKD patients with COVID-19. All patients were on haemodialysis 798 

prior to acquiring COVID-19. The first cohort (‘2020/Wave 1’) were recruited during the initial 799 

phase of the COVID-19 pandemic (April-May 2020). We collected 61 serial blood samples 800 

during acute infection for 21 patients with COVID-19. Three samples were collected for 19 of 801 

these patients; two samples were collected for the other two individuals. We also 802 

contemporaneously recruited 37 non-infected ESKD patients on haemodialysis to provide a 803 

control group. 804 

 805 

The second cohort (‘2021/Wave 2’) were recruited during the resurgence of cases in January-806 

March 2021. This cohort, which consisted of 16 ESKD patients with COVID-19, had all been 807 

recruited as part of the COVID-19 negative control group during the 2020 wave, and so a pre-808 

infection sample collected in April/May 2020 (8-9 months preceding infection) was also 809 

available for 13 patients. For these patients, samples were systematically acquired at regular 810 

intervals (median 5 samples per patient, collected every 2-3 days over the course of the acute 811 
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infection). Additionally, for 10 of these 16 patients, we acquired convalescent samples 812 

approximately 2 months following the acute COVID-19 episode. 3 individuals in this cohort 813 

had received one dose of the COVID-19 vaccine, however their first blood sample was taken 814 

within an average of 5 days so there was an unlikely chance this had an effect on their immune 815 

response to the infection.  816 

 817 

Clinical severity scores 818 

 819 

Severity scoring was performed based on WHO classifications (WHO clinical management of 820 

COVID-19: Interim guidance 27 May 2020) adapted for clinical data available from electronic 821 

medical records. ‘Mild’ was defined as COVID-19 symptoms but no evidence of pneumonia 822 

and no hypoxia. ‘Moderate’ was defined as symptoms of pneumonia or hypoxia with oxygen 823 

saturation (SaO2) greater than 92% on air, or an oxygen requirement no greater than 4 L/min. 824 

‘Severe’ was defined as SaO2 less than 92% on air, or respiratory rate more than 30 per 825 

minute, or oxygen requirement more than 4 L/min. ‘Critical’ was defined as organ dysfunction 826 

or shock or need for high dependency or intensive care support (i.e. the need for non-invasive 827 

ventilation or intubation). Severity scores were charted throughout a patient’s illness. We 828 

defined the overall severity/clinical course for each patient as the peak severity score that 829 

occurred during the patient’s illness. 830 

PBMC isolation protocol 831 

Peripheral blood mononuclear cells (PBMCs) were obtained by density gradient centrifugation 832 

using Lymphoprep (STEMCELL Technologies, Canada). Approximately 20 ml of blood were 833 

diluted 1× with phosphate buffered saline (PBS) with addition of 2% fetal bovine serum (FBS) 834 

and layered on top of 15 ml of Lymphoprep solution. The samples were then centrifuged at 835 

800 g for 20 min at room temperature without break. PBMCs were collected from the interface 836 

and washed twice with PBS/2%FBS. PBMCs were cryopreserved in 1 ml freezing medium 837 

(FBS 10% DMSO) and stored in liquid nitrogen. 838 

PBMC processing and CITEseq 839 

 840 

Samples collected during 2020 wave 841 

Frozen PBMCs were thawed by adding a small volume of ice-cold PBS to PBMC samples and 842 

transferred to a falcon tube containing 35 mL of ice-cold PBS. Samples were then centrifuged 843 

and counted. Dead cells were removed using the EasySep Dead Cell Removal kit (Stem Cell 844 

Technologies) according to the manufacturer’s protocol. Cells were then counted again and 845 

40,000 cells from each sample were pooled together in batches of seven with the aim for each 846 

pool to contain ~300,000 cells, ensuring each pool had a different combination of genotypes 847 

for simple demultiplexing. Pooled cells were then stained with Fc Receptor Blocking Solution 848 

(Biolegend) and then with TotalSeq™-C Human Universal Cocktail V1.0 (Biolegend) 849 

according to the manufacturer. Cells were then washed once with PBS and then counted. 850 

Each pool was loaded across two channels of a Chromium Chip (10x Genomics), using Single 851 

Cell 5’ V2 kits, to achieve a recovery of 10,000 cells per sample. 852 

 853 

Samples collected during 2021 wave 854 

Frozen PBMCs were thawed at 37°C until a small ice crystal remained. Samples were then 855 

transferred to another tube and ten times the volume of pre-warmed RF-10 media (RPMI 856 
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(Sigma) supplemented with 10% (v/v) fetal calf serum (Life technologies), 100U/ml Penicillin 857 

(Sigma), 100 µg/ml Streptomycin (Sigma) and 1% (v/v) L-Glutamine) was added dropwise. 858 

Cells were then centrifuged and counted. Dead cells were removed using the EasySep Dead 859 

Cell Removal kit (Stem Cell Technologies) according to the manufacturer’s protocol. Cells 860 

were then counted again and 250,000 cells from each sample were pooled together in batches 861 

of four using a leave-one-out strategy for simple demultiplexing. Pooled cells were then 862 

stained with Fc Receptor Blocking Solution (Biolegend) and then with TotalSeq™-C Human 863 

Universal Cocktail V1.0 (Biolegend) according to the manufacturer. Cells were then washed 864 

three times with Flow Buffer (Dulbecco’s phosphate buffered saline (PBS)(Sigma) 865 

supplemented with 2% (v/v) FCS and 2mM EDTA (Sigma)) and then counted.  Each pool was 866 

loaded across two channels of a Chromium Chip (10x Genomics), using Single Cell 5’ V2 kits, 867 

to achieve a recovery of 10,000 cells per sample. 868 

 869 

Library Preparation and Sequencing 870 

 871 

Gene expression, cell surface protein, TCR and BCR libraries were generated according to 872 

the manufacturer’s protocols. All libraries were sequenced using a NovaSeq 6000 to achieve 873 

a minimum of 20,000 reads per cell for gene expression libraries and 5,000 reads for cell 874 

surface protein, TCR and BCR libraries.  875 

 876 

Bioinformatics Pre-processing 877 

 878 

We jointly aligned the antibody-derived tags (ADT) and gene expression libraries from CITE-879 

seq experiments using CellRanger 4.0, using the reference 10X Genomics provided with the 880 

release of CellRanger 3.0, and the ADT barcode reference provided by the supplier. Single 881 

cell TCR and BCR sequencing data was aligned using CellRanger 4.0 using the GRCh38 VDJ 882 

reference provided by 10X Genomics. We used Seurat V4.1.0 37 to import gene expression 883 

and ADT counts. Low quality cells were excluded by removing droplets with either fewer than 884 

1000 RNA UMIs, or fewer than 200 RNA features detected, or with more than 10% of their 885 

RNA UMIs mapping to mitochondrial genes. SoupX 38 was used to remove signals from 886 

ambient RNA and background antibody staining. SoupX parameters ‘soupQuantile’ and 887 

‘tfidfMin’ were set to 0.25 and 0.2, respectively, and lowered by decrements of 0.05 until the 888 

contamination fraction was calculated using the ‘autoEstCont’ function. Corrected gene 889 

expression and ADT counts were then scaled to 10000 UMIs per cell and log1p transformed.  890 

 891 

Sample demultiplexing 892 

We used souporcell v2.0 39 to perform genotype-based demultiplexing of pooled PBMC 893 

libraries to assign donor identifiers to each single cell transcriptome. To ensure high 894 

reproducibility of the genotype-decomposition, we merged the sequencing data from each set 895 

of replicates of the same donor pool prior to souporcell analysis. We used pysam v0.17.0 to 896 

amend cell barcodes with original library identifiers and to merge bam files. Using the merged 897 

bam files, we ran souporcell using the provided set of common variants, with remapping 898 

disabled and with the appropriate number of expected genotypes. To assign a donor identifier 899 

to each souporcell genotype cluster we leveraged the pooling strategy of donors per library 900 

which was designed in such a way that every donor was present in a unique combination of 901 

pools. We used the cardelino R package 40 to import genotypes and perform pairwise 902 

comparisons of all identified souporcell genotype clusters, to identify highly similar genotype 903 

clusters in different pools that likely originated from the same donor, which was then given a 904 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 24, 2024. ; https://doi.org/10.1101/2024.06.20.24309228doi: medRxiv preprint 

https://paperpile.com/c/UcCGP6/YJyg
https://paperpile.com/c/UcCGP6/s0Yy
https://paperpile.com/c/UcCGP6/cC13
https://paperpile.com/c/UcCGP6/m77A
https://doi.org/10.1101/2024.06.20.24309228
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

donor label based on the combination of pools in which the genotype was detected. Genotypes 905 

that were not resolvable due to missing or low-quality data, were excluded from downstream 906 

analyses.  907 

 908 

We detected a total of 1337786 cells with at least 200 genes quantified. We next applied 909 

stringent filtering on cell quality to remove cells with more than 10% mitochondrial reads and 910 

cells with less than 1000 UMIs quantified. In addition, we only kept cells with a genotype / 911 

patient id assignment using souporcell, and that did not cluster in doublet enriched leiden 912 

clusters during the manual annotation process. This resulted in a dataset of 588389 high-913 

quality cells from 63 patients and 198 samples that were used for the reported analyses. 914 

 915 

Single-cell Quality Control - Myeloid and non-immune haematopoietic cell 916 

compartment: 917 

Annotation of myeloid and progenitor compartment was performed using scanpy 41 (v1.8.2). 918 

The dataset was initially normalized, and log transformed, and then filtered for highly variable 919 

genes (scanpy.pp.highly_variable_genes; min_mean=0.0125, max_mean=3, min_disp=0.5) 920 

and scaled (scanpy.pp.scale, max_value=10). Dimensionality reduction was performed using 921 

principal component analysis (PCA; scanpy.tl.pca), and integration was done using harmony 922 
42 (harmonypy, v0.0.6). Clustering was performed using the Leiden 43 algorithm (leidenalg, 923 

v0.8.9). The marker genes for each cluster were examined using the function 924 

‘scanpy.tl.rank_genes_groups’ and each cluster was manually annotated. 925 

 926 

Single-cell Quality Control - T and NK cell compartment: 927 

The T and NK cell compartment quality control and annotation was performed using the Seurat 928 

(v4.1.1) workflow 37. The expression data was normalized, and log transformed (normalized 929 

to 10,000 counts per cell), 2000 highly variable genes were selected (FindVariableFeatures 930 

function, selection.method = ‘vst’), from which TCR and V(D)J genes were excluded. Prior to 931 

scaling the gene expression data, unwanted sources of variation in the form of total read count 932 

and percentage of mitochondrial genes were regressed out (using ScaleData function, 933 

vars.to.regress argument). Integration of sequencing samples (‘orig.ident’) using harmony 42 934 

(v1.0) was carried out on the first 30 principal components of the expression data. K-nearest 935 

neighbors (KNN) and shared nearest neighbors (SNN) graphs were calculated from the 936 

harmony adjusted PCs (FindNeighbours function). Finally, cells were clustered using the 937 

Leiden algorithm (FindClusters function, method=’igraph’, algorithm=4, requiring ‘leidenalg’ 938 

python package) and visualized via non-linear dimension reduction UMAP. Clusters were 939 

manually annotated using canonical marker genes through an iterative process of re-940 

clustering, annotation, identification of potential doublets (presence of distinct cell type marker 941 

genes) and re-clustering. CITE-seq marker proteins CD45RA and CD45RO were used in the 942 

annotation of T EMRA and other memory T cells respectively. All other markers used for 943 

annotations were based on mRNA expression data. 944 

 945 

Single-cell Quality Control - B cell compartment: 946 

The B cell compartment was integrated using scVI (v.0.19.0) 44 with sequencing samples 947 

(‘orig.ident’) as the batch key and raw count data as input. Samples from two individuals were 948 

observed to not integrate well and they were subsequently identified to be samples from 949 

patients with benign chronic lymphocytic leukaemia and were removed from all downstream 950 

analyses (Table S1). Percentage mitochondrial content and total counts were provided as 951 

continuous variables to the scVI model. Feature selection prior to setting up the scVI model 952 
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was performed as per standard procedures in scanpy.pp.highly_variable_genes with 953 

min_mean=0.0125, max_mean=3, min_disp=0.5, using the log transformed normalized 954 

expression data (normalized to 10,000 counts per cell). BCR V(D)J genes were also removed 955 

from the highly variable features. Expression of canonical B cell and ASC marker genes and 956 

non-B cell markers were then assessed to manually determine potential multiplets, over 957 

iterative rounds of sub-clustering. The annotations were also assessed against a publicly 958 

available bulk RNAseq gene set of major PBMC cell types 45. In addition, the single-cell scores 959 

computed after enrichment of the bulk RNA-seq signatures were fitted into a two-component 960 

Gaussian mixture model (max iter=1000, covariance_type='full') which distinguished ASCs 961 

from non-ASC B cell clusters. Subsequent sub-clustering and annotations were performed on 962 

the ASCs and non-ASCs separately. To annotate the non-ASC cell clusters, mRNA and 963 

surface molecule expression for select targets (CITE-seq; CD11C and CD27), along with the 964 

Monaco et al. 45 peripheral blood B cell signatures. Isotype usage was checked using the 965 

single-cell and BCR-seq information and used to manually update the cell type annotations, 966 

ensuring that naive B cells, non-switched memory B cells and IgM ASCs are only associated 967 

with IgM and/or IgD while switched memory B cells and IgA/IgG ASCs are only associated 968 

with IgG/IgA isotypes. Other antibody isotype expressing ASCs (IgD/IgE) are labelled as 969 

‘B_ASC_others’. 970 

Integration of Olink Plasma Proteomics 971 

 972 

A subset of Wave 1/2020 Cohort (45 individuals, 85 samples) had plasma proteomics 973 

measures from 5 Olink Proteomics Target 96 panels: ‘cardiometabolic’, ‘cardiovascular 2’, 974 

‘cardiovascular 3’, ‘inflammation’ and ‘immune response’. The Olink proteomics data for these 975 

samples has previously been described14.  976 

 977 

Longitudinal analysis 978 

 979 

We defined time from infection as the time from first symptoms, or time from first positive nasal 980 

swab if the latter preceded symptoms (since some cases of COVID-19 were identified by 981 

screening procedures in place for patients attending haemodialysis). 982 

 983 

For longitudinal analysis of enrichment of MSigDB (v7.5) Hallmark, KEGG and Reactome 984 

genesets 46, the single-cell data was separated to each cell type and the raw count data was 985 

aggregated by sample using ‘scuttle::aggregrateAcrossCells’ (v1.9.0). Only samples with 986 

more than 10 cells were used for downstream analysis. The pseudo-bulked data was then log 987 

transformed and normalized using ‘scuttle::logNormCounts’ and converted to a module score 988 

using ‘Seurat::AddModuleScore’. The module scores were then tested for differential 989 

enrichment over time according to severity strata, using a general linear mixed-effect model 990 

with ‘lme4:lmer’ using the following formula: 991 

𝑔𝑒𝑛𝑒𝑠𝑒𝑡 ~ 𝑠𝑒𝑥 +  𝑎𝑔𝑒_𝑠𝑐𝑎𝑙𝑒𝑑 + (1|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑖𝑑)  +  𝑐𝑒𝑛𝑡𝑟𝑒 +   992 

𝑃𝐶1𝑛𝑜𝑛𝑎𝑓𝑟𝑖𝑐𝑎𝑛𝑉𝑠𝐴𝑓𝑟𝑖𝑐𝑎𝑛  +  𝑃𝐶2𝑎𝑠𝑖𝑎𝑛𝑉𝑠𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛  + 993 

𝑠𝑝𝑙𝑖𝑛𝑒𝑠: : 𝑏𝑠(𝑡𝑖𝑚𝑒_𝑓𝑟𝑜𝑚_𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛, 𝑑𝑒𝑔𝑟𝑒𝑒 =  2)  ∗  𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 994 

 995 

“Grouped severity” represents overall clinical course, defined by peak illness severity, 996 

binarised into either severe/critical or mild/moderate. The estimated marginal means for the 997 

first 21 days from infection for the relevant genesets were computed using 998 

‘emmeans::emmeans’ with ‘time_from_infection’ by ‘grouped_severity’. 999 
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 1000 

All P values were adjusted using the Benjamini-Hochberg procedure 47.  1001 

 1002 

Cell type composition analysis - linear mixed effect model 1003 

 1004 

The cell type abundances per sample were modelled using a generalised linear mixed model 1005 

using a poisson outcome as described in Yoshida et al 11. We fitted log2 transformed age, and 1006 

random effect terms on biological sex and inferred ethnicity, to account for collinearity with 1007 

features of interest. We also fitted a random effect term on the donor identifier to account for 1008 

donor-to-donor variation but captured the paired effects between longitudinal samples from 1009 

the same donor. To perform longitudinal analyses, we modelled weeks since onset of disease 1010 

(onset of symptoms or positive test, whichever came first) as categorical features, and scaled 1011 

the conditional distribution of fold change estimates to the pre-infection samples that were 1012 

available, and the pre-infection standard deviation was multiplied by the standard deviation of 1013 

each other timepoint factor level to account for the increased variance that is introduced by 1014 

scaling. 1015 

 1016 

Genetic principal component analysis  1017 

 1018 

To overcome missing self-reported ethnicity data for some donors, we used PCA on 1019 

genotyping data to quantify and infer genetic ancestry. We took the souporcell cluster 1020 

genotypes of all donors and converted them into a numerical matrix to perform PCA on using 1021 

FactoMineR V2.4 48. We then mapped self-reported ethnicity onto the genetic PCA results. 1022 

This revealed that principal component 1 separated individuals with self-reported ethnicities 1023 

indicating African ancestry from individuals with other ethnicities, while principal component 2 1024 

separated individuals of self-reported Asian ancestry from those with self-reported European 1025 

ancestry. To adjust for the potential confounding effects of ethnicity (since ethnicity is 1026 

associated with higher risk of severe and fatal COVID-19), we included these 2 principal 1027 

components (continuous variables) as covariates in all linear mixed models (Table 1, Supp. 1028 

Fig. 6). 1029 

 1030 

Differential abundance testing - steroid treatment  1031 

 1032 

To examine the effect of steroid treatment on the cell abundance, MiloR package (v.0.99.0) 23 1033 

was used. The monocyte population was sub-setted to include only the samples from COVID-1034 

19 positive patients who received the steroid treatment during ‘Wave 2’ of COVID-19. A KNN 1035 

graph was constructed using the function ‘buildGraph’ (k=30, d=30) and the cells were 1036 

assigned to the neighbourhoods on the KNN graph using the function ‘makeNhoods’ 1037 

(prop=0.1, k=30, d=30). The number of cells belonging to each sample in each neighbourhood 1038 

was counted using the function ‘countCells’. We included ‘time_from_infection’ in the design 1039 

to account for the length of disease. SpatialFDR < 0.1 was used as a cut off point for significant 1040 

enrichment/depletion. 1041 

 1042 

BCR and TCR data processing 1043 

 1044 

Single-cell BCR and TCR data were initially processed with cellranger-vdj (v.6.0.0). Single cell 1045 

TCR data was then converted into a cell by TCR format using scirpy v1.10.1 49. BCR contigs 1046 

contained in all_contigs.fasta and all_contig_annotations.csv were then processed further 1047 
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using dandelion50 singularity container (v.0.2.4) (https://www.github.com/zktuong/dandelion). 1048 

BCRs were then matched to cell barcodes with dandelion. 1049 

 1050 

TCR analysis 1051 

After quality control, we recovered 197,330 T cells with fully resolved T cell receptors from 61 1052 

donors and across 187 samples. We identified 127,670 unique TCR clones, defined by a 1053 

unique combination of CDR3a, TRAV, TRAJ, CDR3B, TRBV, TRBJ and donor, at the amino 1054 

acid level. Of these, 93,960 came from COVID-19 positive ESKD patients and thus could be 1055 

analysed longitudinally over the course of infection. A total of 3,727 clones (4%) were captured 1056 

at two or more time points during infection. We further excluded all clones present in pre-1057 

pandemic samples for analysis related to COVID-19, as these could not have expanded in 1058 

response to SARS-CoV-2, and finally obtained 3,137 clones (3.3%) for longitudinal analysis. 1059 

Clonal frequency within a sample was calculated as total number of clone copies per sample 1060 

over the total number of T cells within the sample. To determine expansion, only clones that 1061 

were sampled at two time points or more within the 0 to 30 days after a positive PCR nasal 1062 

swab, and that were absent in the pre-COVID-19 samples, were used. An expansion was 1063 

noted if the highest clone frequency measured before a specific day since positive swab 1064 

(cutoff) was lower than the lowest frequency measured after that day. If the clone was not 1065 

sampled either before or after the cutoff, the respective frequency was set to 0. The cutoff at 1066 

day 10 was selected as being in agreement with timing of an adaptive immune response. For 1067 

the more stringent definition of expansion as determined by a dual cutoff, the clone frequency 1068 

had to show an increase at the first cutoff and a further increase at the second cutoff. This 1069 

allowed the capture of a steeper increase of clonal frequency over time, at the cost of 1070 

considering fewer total clones. 1071 

 1072 

SARS-CoV-2 specific TCR-epitope pairs were queried from VDJDB. Samples from before the 1073 

pandemic were used to establish a baseline of matches with the database. While a single-1074 

chain match with the database only indicates a putatively binding TCR, quantifying significant 1075 

differences in these numbers across T cell populations gives insight into antigen-specificity. 1076 

Matches with the database were quantified for expanding and non-expanding clones using 1077 

bar charts, where the error bars show variation across individual COVID-19 patients, and 1078 

significance was determined with a two-sided Mann-Whitney test. To determine which clones 1079 

were expanding the most, expansion was determined as the mean clonal frequency after the 1080 

cutoff day divided by the mean clonal frequency before and sorted in descending order. 1081 

 1082 

Activated T cells were identified by applying the automatic cell type classifier Celltypist (1.2.0, 1083 

model = COVID19_HumanChallenge_Blood) and sub-setting to activated T cells. 1084 

 1085 

Cell2TCR (0.1) was used on the clones that showed expansion according to the above 1086 

definition using days 2 and 10 as dual cutoffs, and to generate TCR motifs, while excluding 1087 

TCR sequences of MAI T cells. 1088 

 1089 

TCR analyses were carried out in Python (3.10.2) using pandas (1.4.2), numpy (1.21.6) and 1090 

scanpy (1.9.1), and visualised with matplotlib (3.5.2) and seaborn (0.11.2), in particular 1091 

seaborn’s lineplot to show clonal frequency evolution. Statistical tests were carried out using 1092 

the scipy.stats module (1.8.1) and plotted with statannotations (0.5.0). The regression line and 1093 

R2 value were determined with the seaborn’s regplot function. 1094 

 1095 
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