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Abstract 

Background: Early detection of atrial fibrillation (AFib) is crucial for altering its natural 

progression and complication profile. Traditional demographic and lifestyle factors often fail as 

predictors of AFib, particularly in studies with small samples. This study investigated pre-

operative, circulating microRNAs (miRNAs) as potential biomarkers for post-operative AFib 

(POAF) in patients undergoing coronary artery bypass grafting (CABG). 

Methods: We used an array polymerase chain reaction method to detect pre-operative, 

circulating miRNAs in seven patients who subsequently developed POAF after CABG (cases) 

and eight patients who did not develop POAF after CABG (controls). The top 10 miRNAs from 

84 candidates were selected and assessed for their performance in predicting POAF using 

machine learning models, including Random Forest, K-Nearest Neighbors (KNN), XGBoost, 

and Support Vector Machine (SVM).  

Results: The Random Forest and XGBoost models showed superior predictive performance, 

with test sensitivities of 0.76 and 0.83, respectively. Differential expression analysis revealed 

four upregulated miRNAs—hsa-miR-96-5p, hsa-miR-184, hsa-miR-17-3p, and hsa-miR-200-

3p—that overlapped with the AFib-miRNA signature. The AFib-miRNA signature was 

significantly associated with various cardiovascular diseases, including acute myocardial 

infarction, hypertrophic cardiomyopathy, and heart failure. Biological pathway analysis indicated 

these miRNAs target key signaling pathways involved in cardiovascular pathology, such as the 

MAPK, PI3K-Akt, and TGF-beta signaling pathways. 

Conclusion: The identified miRNAs demonstrate significant potential as predictive biomarkers 

for AFib post-CABG, implicating critical cardiovascular pathways and highlighting their role in 

AFib development and progression. These findings suggest that miRNA signatures could 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.21.24309328doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309328
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

enhance predictive accuracy for AFib, offering a novel, noninvasive approach to early detection 

and personalized management of this condition. 

 

 

Keywords: Atrial fibrillation, microRNAs, coronary artery bypass grafting, biomarkers, machine 
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Introduction 

Post-operative atrial fibrillation (POAF) represents a prevalent complication following coronary 

surgery, bearing a twofold increase in cardiovascular mortality and morbidity compared to 

individuals maintaining normal sinus rhythm [1]. POAF manifests in paroxysmal, persistent, or 

permanent forms, with onset frequently occurring within the initial 5 days, peaking at 48 to 72 

hours post-surgery [2]. Incidence rates, estimated to be between 10 to 50%, underscore its 

clinical significance [3, 4]. Importantly, POAF is linked to severe adverse outcomes, including 

an elevated risk of venous thromboembolism (VTE) and stroke due to hemodynamic instability, 

impaired ventricular filling, and compromised cardiac output. Moreover, POAF may contribute 

to long-term cardiac pathology, exacerbating heart failure and culminating in renal decline, 

increased mortality, and augmented healthcare costs associated with extended hospital stays and 

emergent adverse events [3]. 

In the context of coronary artery bypass grafting (CABG), POAF is not exclusive to the 

choice of on- or off-pump approaches and is hypothesized to result from reperfusion injury in 

susceptible individuals with predisposing risk profiles. Risk indices have been devised to stratify 

patients based on their individual risk profiles [3]. The intricate array of underlying factors 

contributing to POAF includes pre-existing cardiac and vascular pathologies, inflammatory and 

oxidative stress, genetic predisposition, and intra/post-operative factors triggering compensatory 

cardiac remodeling [2]. Vulnerable populations, such as those with congestive heart failure, 

mitral valve pathology, advanced age, or atrial interstitial fibrosis, are particularly prone to 

POAF development [5]. Patients with coronary heart disease, hypertension, and ventricular 

hypertrophy are at risk for permanent atrial fibrillation (AFib) [6]. 
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Despite extensive research, the mechanisms leading to POAF remain inadequately 

understood. Animal models, in vitro studies, and clinical trials indicate oxidative injury, 

inflammatory processes, altered myofibrillar energetics, neurohormonal activation, and volume 

overload as potential contributing factors [7-9]. Additionally, autoantibodies targeting M2 

muscarinic receptors, myosin, or heat shock proteins, and chronic infections like chlamydial and 

Helicobacter pylori have been proposed as contributors, although causality remains to be 

established [10, 11]. The relationship between AFib development independent of surgical 

exposure and the mechanisms involved in POAF remains unclear. Despite the development of 

risk indices based on clinical parameters, predictive biomarkers remain elusive. Current 

preventive measures, although diverse, have not substantially reduced POAF incidence following 

CABG. Recently, microRNAs (miRNA) have emerged as promising biomarkers, offering 

potential for predicting disease onset and outcomes[12, 13]. These stable, non-coding RNAs play 

a crucial role in gene expression regulation across various biochemical pathways [14]. A seminal 

study by Barth et al. in 2005 observed distinct gene expression patterns in patients with 

permanent AFib compared to those in sinus rhythm among patients undergoing open heart 

surgery for valve repair or CABG, suggesting the potential of miRNAs as indicators of POAF 

risk [15].  

The stable expression of circulating miRNAs post-sample collection is a characteristic 

that suggests these molecules have the potential to serve as reliable biomarkers for predicting 

future disease events, e.g., POAF.  Alterations in miRNA levels are intricately linked to the 

signaling cascades governing electrical remodeling and atrial fibrosis in the heart. Therefore, 

specific miRNAs and their quantitative profiles potentially could serve as indicative markers for 

a spectrum of clinical scenarios related to the heart, e.g., acting as either favorable or unfavorable 
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indicators for the onset of AFib [16, 17]. Evidence indicates that miRNAs serve as predictive 

markers for AFib in patients with cardiovascular diseases. For instance, Galenko et al. (2019) 

identified circulating miRNAs capable of discerning individuals at a heightened risk of AFib, 

and observed an association between reduced expression of miRNA-21 and AFib [18]. Kiliszek 

et al. (2020) also illustrated significant differences in the levels of 34 miRNAs in sera from 

patients with AFib recurrence compared to those without AFib recurrence [19]. Additionally, 

Cao et al. (2021) identified seven upregulated and 13 downregulated differentially expressed 

miRNAs to distinguish patients with AFib from healthy individuals [20]. However, given the 

complexities associated with AFib, there remains a need to explore feasible biomarkers that can 

predict first occurrence of AFib to prevent adverse outcomes in patients with cardiovascular 

diseases. 

This study aimed to investigate whether miRNAs can predict POAF following CABG. 

We used machine learning methods to identify a group of circulating miRNAs, measured pre-

operatively, that could distinguish between patients who went on to develop POAF and those 

who maintained sinus rhythm following CABG. We also determined whether this group of 

miRNAs had known associations with cardiovascular diseases, tested for enrichment of these 

miRNAs in biological pathways, with an emphasis on enrichment in pathways related to 

cardiovascular disease, and identified the target genes of these miRNAs to form a miRNA-target 

gene interaction network. The results will provide insights into the target genes and biologically 

relevant pathways that are impacted during the emergence of POAF. 
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Methods 

Study subject inclusion and exclusion criteria 

The Internal Review Board (IRB) from Marshfield Clinic Health System approved this cohort 

study prior to data access and determined that the study posed minimal risk to participants. 

Patients who were candidates for CABG at Marshfield Clinic Health System (MCHS) 

were identified by a MCHS cardiologist (JB) as he encountered them in his practice, by 

reviewing the scheduled surgeries of three MCHS cardiologists who performed CABG 

procedures, or by alerts from medical staff of emergent, unscheduled CABG procedures to be 

performed by the three MCHS cardiologists. Before the CABG procedure was performed, 

identified patients were screened for study eligibility by a review of electronic health record 

(EHR) data conducted by study staff. Inclusion criteria were age ≥ 18 years at time of screening, 

patient was an established MCHS patient, CABG surgery was to be performed at MCHS, and 

patient had no history of a prior CABG procedure. Exclusion criteria were patient had a previous 

history of atrial fibrillation, patient had a previous CABG performed, patient was in shock, 

patient had a previous heart valve surgery, patient had a myocardial infarction with balloon 

pump procedure within 72 hours prior to CABG, patient was scheduled for cardiac procedures in 

addition to CABG, patient received a blood transfusion within two weeks prior to CABG, patient 

had an infection requiring antibiotics, patient was unable to communicate effectively enough to 

report POAF symptoms following discharge, patient had a history of non-compliance, and 

patient or caregiver had personal or cultural beliefs regarding the patient’s condition or medical 

care which made it unlikely they would report symptoms of AFib after hospital discharge, 

potentially producing misclassification error among controls. A MCHS cardiologist (JB) 

performed a second review of the EHR data to verify that patients met study eligibility criteria. 
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Participant recruitment 

Following screening and before the CABG procedure, eligible patients were provided with a 

description of the study and asked to provide informed consent to participate in the study. A 

short interview was conducted with participants who provided informed consent to obtain 

information not readily available in the EHR, including history of blood transfusions, use of 

prescription and over-the-counter medications, previous surgeries, previous cardiac-related 

hospitalizations, family history of cardiac and other serious diseases, and consumption of 

caffeine, alcohol, and tobacco products. Study participants also provided a 10 mL blood sample 

prior to their CABG procedure. 

Participant follow-up and ascertainment of case-control status 

Within 30 days following patient discharge after the CABG procedure, details of the CABG 

procedure were extracted from the EHR by MCHS cardiologists.  The details included type of 

CABG surgery (on- or off-pump), time on pump, number of vena cannulas used, type of 

anesthesia, length of surgery, aortic clamp time, type and amount of blood products received (if 

any), lowest hematocrit, lowest body (bladder) temperature achieved, perioperative medications, 

diagnosis of AFib following CABG, and occurrence of infection or stroke while hospitalized. 

Cases were defined as patients who developed POAF within 30 days after the CABG 

procedure. Controls were patients who remained in sinus rhythm for 60 days following the 

CABG procedure. A MCHS cardiologist contacted patients by telephone once 30 days had 

elapsed following the CABG procedure to ask the patients whether they had been diagnosed with 

AFib following the procedure. For patients who reported POAF, the cardiologist confirmed the 

diagnosis by reviewing EHR data or, if the patient was treated at another facility after CABG 
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surgery, obtaining and reviewing medical records from other facilities. For patients without 

POAF, the telephone interview also determined if, within the 30-day period, patients had an 

acute cerebral vascular event, received blood products, had other cardiac procedures, felt 

fluttering or pain in the chest, or experienced dizziness. At 60 days after the CABG procedure, 

patients were interviewed by telephone again to inquire about their health status. The patients 

diagnosed with POAF within 30-days after CABG were asked whether they had an infection that 

required treatment with an antibiotic, an acute cerebral vascular event, had received any blood 

products, or had any cardiac procedures, and, if yes, whether these occurred before or after the 

AFib diagnosis. The patients who did not have AFib within 30-days after CABG were asked 

whether they had an acute cerebral vascular event, received blood products, had other cardiac 

procedures, felt fluttering or pain in the chest, or experienced dizziness in the 30-60 day period 

after the CABG procedure. Patient EHR data were reviewed by MCHS cardiologists to verify 

patient reports given in the telephone interviews, and the clinical data were used to categorize 

patients by case-control status. 

Processing of blood samples, extraction of miRNA, and measurement of miRNA expression 

Blood samples were collected in 10 mL tubes that contained no anticoagulants. The blood was 

allowed to clot in the tubes for 1-2 hours at room temperature before centrifugation (3000 rpm 

for 10 minutes) at 4°C. miRNA was extracted from the serum collected after centrifugation using 

the miRNeasy Serum/Plasma Kit (Qiagen, Valencia, CA), according to the manufacturer’s 

instructions. The quality (A260:A280 ratio) of the extracted miRNA was measured using a 

NanoDrop™ spectrophotometer (ThermoFisher Scientific, Waltham, MA). The expression of a 

panel of 84 miRNAs was measured by reverse transcription quantitative polymerase chain 

reaction (qPCR) in the miRNA samples using the Human Serum & Plasma miScript miRNA 
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PCR Array (Qiagen), following the manufacturer’s instructions, on a LightCycler 480 Instrument 

(Roche, Indianapolis, IN). The 84 miRNAs were selected by the manufacturer for inclusion on 

the panel because the serum expression levels of the miRNAs had been correlated with heart 

disease, liver disease, atherosclerosis, diabetes, and certain cancers in previous research. Delta 

cycling threshold (∆Ct) values for each miRNA were calculated by subtracting the average Ct 

value for six housekeeping small RNAs (SNORD61, SNORD68, SNORD72, SNORD95, 

SNORD96A, and RNU6-2) from the Ct value for the miRNA. 

Statistical analysis 

Descriptive statistics are presented as medians and interquartile ranges (IQRs) for continuous 

variables, and as counts and percentages for categorical variables. Baseline characteristics were 

compared using the Wilcoxon test for continuous data and the Pearson χ2 test for categorical 

data. All statistical analyses were conducted using R version 4.3.1 (R Project for Statistical 

Computing) with the tidycmprsk and ggplot2 packages. 

Machine learning methods 

We utilized standard machine learning algorithms to differentiate between AFib and control 

groups. The dataset was divided into 80% training (n=12) and 20% validation (n=3) subsets. A 

correlation-based feature selection method was applied to identify the top 10 miRNAs out of 84, 

with a correlation threshold set at 0.7. Random Forest, eXtreme Gradient Boosting (XGBoost), 

K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) methods were employed for 

classification. The models were built using R libraries including ‘randomForest’, ‘xgboost’, 

‘kNN’, and ‘caret’. The prediction performance of the models was evaluated using receiver 

operating characteristic (ROC) curves with the R package ‘pROC’. 
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The correlation coefficient between two miRNAs, A and B can be calculated using the following 

equation. 

 
𝑅 =  

𝛴(𝐴𝑖 − 𝐴̅)(𝐵𝑖 − 𝐵̅)

√𝛴(𝐴𝑖 − 𝐴̅)2 𝛴(𝐵𝑖 − 𝐵̅)2
 

 

(1) 

 

Where Ai and Bi are the individual data points for miRNAs A and B respectively. 

A̅  and B̅ are the means of miRNAs A and B respectively. 

Differential expression analysis 

In this study, we analyzed miRNA expression profiles from patients with AFib and control 

subjects using DESeq2. DESeq2's statistical framework, based on a negative binomial 

distribution, accounts for variance-mean dependence and the biological variability typical of 

RNA-seq experiments. Although we have ΔCT values from PCR experiments, we opted to use 

DESeq2 for the statistical analysis. DESeq2 calculated normalized expression values, applied 

shrinkage estimators for variance stabilization, and conducted Wald tests to determine fold 

changes and associated p-values. To minimize false positives, a false discovery rate (FDR) 

adjusted q-value threshold of 0.05 was used. 

MiRNA-disease association and pathway analysis 

We utilized miRNA-disease association information from HMDD v4.0 [21] and miRNet [22]. 

The AFib-miRNA signature and its disease associations were visualized using bar plots created 

with the ggplot2 (ver. 3.4.3) R package. The AFib-miRNA signature and its links to 

cardiovascular-specific diseases were displayed using an alluvial plot generated with the Alluvial 

R package. KEGG pathway analysis was conducted with DIANA-miRPath v4.0 [23].  For GO 
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categories and Reactome pathways, we used both DIANA-miRPath v4.0 [23] and miRNet [22].  

Specific pathways were visualized as bar plots using ggplot2 (ver. 3.4.3), and cardiovascular-

specific pathways were displayed using chord diagrams created with the circlize R package. 

MiRNA-gene target interaction 

To identify gene targets for each miRNA, we employed four different miRNA-gene target 

databases: miRWalk [24], miRNet [22], miRDB [25], and miRTarBase [26]. We ensured robust 

predictions by including only gene targets found in at least two of these databases. To further 

refine our results, we focused on gene targets supported by all four databases, ultimately 

identifying 50 genes associated with the AFib-miRNA signature. We used the ComplexUpset 

(version 1.3.3) R package to create upset plots.  

 

Results 

Patient characteristics 

A total of 164 patients were screened for study eligibility. After applying the inclusion and 

exclusion criteria, 84 subjects were excluded due to various reasons, such as having a prior 

diagnosis of atrial fibrillation (n = 26), CABG (coronary artery bypass grafting) surgery 

performed previously or scheduled at another facility (n = 15 and n = 2, respectively), or other 

disqualifying factors as outlined in the flowchart (Fig. 1). 

Of the remaining 80 subjects, 64 were further excluded due to declining to participate (n 

= 18), not completing the consent process before surgery (n = 17), or not being confirmed as 

eligible (n = 13). Ultimately, 16 subjects (8 cases and 8 controls) provided informed consent and 

were enrolled in the study. One case was excluded post-enrollment due to the development of 
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atrial flutter following CABG surgery, resulting in a final cohort of 15 subjects (7 cases and 8 

controls) for the miRNA analysis. 

Baseline Characteristics 

The baseline characteristics of the study cohort are detailed in Table 1. The mean age at CABG 

surgery was 71.4 ± 7.7 years for cases and 68.4 ± 7.7 years for controls. Both groups consisted 

predominantly of male (cases: 85.7%, controls: 87.5%) and non-Hispanic white individuals 

(100% in both groups). The majority of participants in both groups were married (cases: 71.4%, 

controls: 75.0%).  

Important clinical features included a high prevalence of alcohol consumption among 

cases (57.1%) compared to controls (25.0%). Tobacco use was observed in 14.3% of cases 

versus 25.0% of controls. All cases (100%) and 87.5% of controls had used aspirin daily. Further 

clinical history characteristics and other pertinent variables are detailed in Table 1. 

Statistical analysis 

Both cases and controls had similar mean ages with overlapping standard deviations. The t-test 

revealed no significant (p ≥ 0.05) age difference between the groups.  

A chi-square analysis was conducted to assess the association between POAF and two 

categorical factors: alcohol consumption and tobacco use. The results indicated that alcohol 

consumption was not significantly associated with POAF, as the p-value was 0.46. Similarly, no 

significant relationship was observed between tobacco use and POAF, with a p-value of 1.0. The 

results suggested that none of these factors were significantly associated with POAF in this 

cohort. However, due to the limited sample size, further investigation with larger patient groups 

is warranted to validate these findings. 
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 Identifying the miRNAs predictive of AFib 

To identify the miRNAs that are predictive of AFib, we employed a correlation-based feature 

selection method. We eliminated the features that were highly correlated (R <0.80) and selected 

the top 10 ranked miRNAs out the 84 miRNAs. We divided the dataset into training and 

validation sets (at a 7:3 ratio) and evaluated the performance of four machine learning 

methods—Random Forest, K-Nearest Neighbor (KNN), XGBoost, and Support Vector Machine 

(SVM)—in classifying AFib and control samples using the 10 selected miRNAs obtained from 

correlation-based feature selection. These 10 miRNAs, including hsa-miR-19a-3p, hsa-miR-19b-

3p, hsa-miR-184, hsa-miR-200a-3p, hsa-let-7a-5p, hsa-miR-124-3p, hsa-miR-423-5p, hsa-miR-

96-5p, hsa-miR-100-5p, and hsa-miR-17-5p, were collectively termed as an AFib-miRNA 

signature. The Random Forest model demonstrated perfect performance on the training dataset 

with an accuracy, sensitivity, specificity, and AUC of 1.0. However, its performance slightly 

dropped on the test dataset, with an accuracy, sensitivity, specificity, and an AUC of 0.80, 0.87, 

0.71, and 0.76, respectively. The KNN model showed a balanced performance across both 

datasets. On the training dataset, it achieved an accuracy, sensitivity, specificity, and an AUC of 

0.75, 0.62, 1.0, and 0.84, respectively. On the test dataset, it achieved an accuracy of 0.80, 

sensitivity of 0.62, specificity of 1.0, and an AUC of 0.77. XGBoost yielded high performance 

on both datasets. It achieved an accuracy, sensitivity, specificity, and an AUC of 0.9, 0.90, 0.89, 

and 0.97, respectively, on the training dataset. On the test dataset, it maintained a good accuracy, 

sensitivity, specificity, and an AUC of 0.73, 0.75, 0.71, and 0.83, respectively. The SVM model 

had the lowest performance among the evaluated methods, and obtained an accuracy, sensitivity, 

specificity, and an AUC of 0.55, 0.62, 0.46, and 0.53, respectively on the training dataset. Its 

performance further declined on the test dataset, as shown in Table 2.  
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Overall, XGBoost exhibited the highest AUC on both training and test datasets, 

indicating its superior performance in distinguishing AFib from control samples. These results 

underscore the importance of model selection and validation in the development of robust 

classifiers for AFib detection using miRNAs. The prediction performance of these models were 

evaluated using ROC curves, as shown in Fig. 2. 

Identification of differentially expressed miRNAs 

Differential expression analysis (DEA) was employed to evaluate expression variations in the 

miRNA expression profiles of patients with atrial fibrillation (AFib) (n=7) and controls (n=8). 

Differentially expressed miRNAs were screened based on fold change and a FDR threshold of 

q<0.05. A total of 13 miRNAs were identified, with 12 being upregulated, including hsa-miR-

96-5p, hsa-miR-184, hsa-miR-208a-3p, hsa-miR-17-5p, hsa-miR-499a-5p, hsa-miR-200a-3p, 

hsa-miR-203a, hsa-miR-210-3p, hsa-miR-9-5p, hsa-miR-204-5p, hsa-miR-146a-5p, and hsa-

miR-133b. One miRNA, hsa-miR-574-3p, was downregulated, as shown in Fig. 3A. Four of 

these miRNAs—hsa-miR-96-5p, hsa-miR-184, hsa-miR-17-3p, and hsa-miR-200a-3p—overlap 

with the AFIB-miRNA signature (Fig. 3B).  

AFib-miRNAs and disease association 

 The AFib-miRNAs target various genes that can contribute to the development of disease 

pathways. These miRNAs are involved in numerous disease pathways, including cardiovascular 

diseases, cancers, and other non-cardiovascular diseases. The top 10 significant (p<0.001) non-

cardiovascular diseases associated with these miRNAs include Vulvar Carcinoma, Multiple 

Sclerosis, Retinoblastoma, Kaposi's Sarcoma, Medulloblastoma, Chronic Kidney Disease, 

Macular Degeneration, B-Cell Leukemia, Crohn's Disease, and Myeloid Leukemia. MiRNAs 
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such as hsa-let-7a-5p, hsa-miR-96-5p, hsa-miR-124-5p, and hsa-miR-17-5p showed enrichment 

in multiple diseases (Fig. 4A), suggesting their broader impact on disease pathology. The 

majority of the diseases associated with these miRNAs are related to cancer. 

Furthermore, we identified associations between seven miRNAs in the AFib-miRNA 

signature and cardiovascular diseases. The miRNAs hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-

184, hsa-miR-19a-3p, hsa-miR-19b-3p, hsa-miR-423-5p, and hsa-miR-96-5p showed statistically 

significant (p<0.005) associations with AFib, acute myocardial infarction, hyperactivity disorder, 

hypertrophic cardiomyopathy, pulmonary hypertension, and vascular disease, as shown in Fig. 

4B. 

Biological relevance of the AFib-miRNA signature 

We investigated the biological relevance of the miRNAs using KEGG, GO, Reactome pathway 

analysis. The AFib-miRNA signature play crucial roles in various biological functions, 

impacting multiple diseases, including cardiovascular diseases. In KEGG pathway analysis, the 

AFib-miRNA signature was significantly enriched in pathways such as proteoglycans in cancer, 

p53 signaling pathway, hepatitis B, EGFR tyrosine kinase inhibitor resistance, and AGE-RAGE 

signaling pathway in diabetic complications, as detailed in Supplementary Table 1. The 

enrichment analysis of the AFib-miRNA signature is illustrated in Supplementary Fig. 1A. 

Focusing on AFib-miRNA signature enriched in cardiovascular-related pathways, we identified 

specific KEGG pathways involved in cardiovascular diseases, including hypertrophic 

cardiomyopathy, MAPK signaling, PI3K-Akt signaling, FoxO signaling, and TGF-beta signaling 

(Table 3 and Supplementary Fig. 1B).  
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GO annotation analysis revealed a strong association between the miRNAs and biological 

processes, such as the positive regulation of transcription by RNA polymerase II, the regulation 

of gene expression (both positive and negative), cytokine-mediated signaling, regulation of the 

apoptotic process, and heart development. Significant GO terms (Benjamini-Hochberg FDR q < 

0.001) are shown in Fig. 5A, with detailed miRNA enrichment in biological processes and p-

values listed in Supplementary Table S2. GO molecular functions analysis highlighted that the 

AFib miRNA signature is highly enriched in transcription binding, DNA-binding transcription 

factor activity, RNA polymerase II-specific activity, protein binding, RNA polymerase II-cis-

regulatory region sequence-specific DNA binding, and protease binding (Fig. 5B). Detailed 

enrichment in molecular functions, target genes, and p-values are provided in Supplementary 

Table S3. In terms of cellular components, the AFib miRNA signature is enriched in the 

nucleoplasm, nucleus, nuclear chromatin, membrane raft, and cytoplasm (Fig. 5C), with details 

in Supplementary Table S4. 

We further identified GO categories specific to cardiovascular diseases. The AFib-

miRNA signature are significantly enriched in biological processes including heart development, 

positive regulation of smooth muscle cell proliferation, striated muscle cell differentiation, 

cortical actin cytoskeleton organization, and positive regulation of leukocyte adhesion to arterial 

endothelial cells (Fig. 6A). For molecular functions, the AFib-miRNA signature is enriched in 

chromatin binding, DNA binding transcription factor activity, enzyme binding, identical protein 

binding, and protein kinase activity (Fig. 6B). In cellular components, enrichments include 

caveola, cell-cell junction, COP9 signalosome, cytoplasm, and dopaminergic synapse (Fig. 6C). 

Detailed information on AFib-miRNA signature enrichment in cardiovascular-related GO 

categories, target genes, and p-values is available in Supplementary Table S5. 
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Additionally, the AFib miRNA signature enriched in Reactome pathways including 

Interleukin-4 and Interleukin-13 signaling, TNFR1-mediated ceramide production, TNFR1-

induced proapoptotic signaling, TNFR1-induced NFkappaB signaling pathway, and Interleukin-

10 signaling, as shown in Supplementary Table S6. 

AFib-miRNA-gene interaction prediction 

We identified key gene targets associated with the AFib-miRNA signature to uncover the genetic 

network affected by these miRNAs and provide insights into the biological alterations linked to 

cardiovascular diseases. Using miRWalk, miRNet, miRDB, and miRTarBase, we identified 

9,763 gene targets for the AFib miRNA signature. We focused on gene targets shared by five or 

more of the AFib-miRNA signature miRNAs (Fig. 7A). This approach led us to identify 50 

genes. Next, we used miRNet (2.0) [22] to construct a miRNA-gene interaction network with 30 

gene targets using the shortest path algorithm (Fig. 7B). We examined the expression of these 30 

genes in human dilated and hypertrophic cardiomyopathy. This analysis revealed that these 

genes are enriched in fibroblasts, cardiomyocyte-I, II, and III, macrophages, and adipocytes (Fig. 

7C). Furthermore, we built a miRNA-small molecule interaction network to explore the targets 

for the AFib miRNA signature. The AFib-miRNA signature targets various small molecules, as 

shown in Fig. 7D. 

Discussion 

Early detection of AFib holds significant promise as it can inform management decisions that 

alter the natural progression and complication profile of this disease. Traditional parameters, 

including demographic characteristics such as age, gender, alcohol consumption, tobacco use, 
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and previous medical history, may not reliably predict AF, especially in studies with small 

sample sizes. However, molecular information may offer valuable insights. 

In this study, we investigated the presence of circulating miRNAs in patients who had 

undergone CABG by employing microarray and bioinformatics analyses. These techniques 

allowed us to identify potential biomarkers for predicting AFib post-CABG. Leveraging machine 

learning techniques, we selected the top 10 ranked miRNAs out of 84 and evaluated their AFib 

prediction performance using Random Forest, KNN, XGBoost, and SVM models. The Random 

Forest and XGBoost models demonstrated superior prediction performance compared to the 

other methods, with test sensitivities of 0.76 and 0.83, respectively.  To further explore the 

miRNAs differentially expressed between cases and controls, we performed differential 

expression analysis. We found that four of these upregulated miRNAs—hsa-miR-96-5p, hsa-

miR-184, hsa-miR-17-3p, and hsa-miR-200-3p—overlapped with the AF-miRNA signature. 

While the 13 differentially expressed miRNAs showed significant differences between cases and 

controls, nine of the 13 miRNAs were not accurately predictive of AF. Thus, we focused 

exclusively on the AF-miRNA signature for further analysis. It is important to note that our 

preliminary analysis, previously published, identified a different set of miRNAs and primarily 

involved statistical analysis[13]. The findings from our current analysis, focusing on miRNA 

identification, are detailed in this study. 

The association between the AFib-miRNA signature and cardiovascular diseases revealed 

that miRNAs such as hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-184, hsa-miR-19a-3p, hsa-miR-

19b-3p, hsa-miR-423-5p, and hsa-miR-96-5p were significantly associated with various 

cardiovascular diseases, including acute myocardial infarction, hyperactivity disorder, 

hypertrophic cardiomyopathy, pulmonary hypertension, and vascular disease. The literature 
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supports these findings. For instance, miR-124-3p promotes cardiac fibroblast activation, while 

miR-17-5p is associated with acute myocardial ischemia injury and cardiac hypertrophy and 

serves as a novel biomarker for diagnosing acute myocardial infarction [27], while miR-17-5p is 

associated with acute myocardial ischemia injury and cardiac hypertrophy and serves as a novel 

biomarker for diagnosing acute myocardial infarction [28-30]. Circulating miR-184 is a potential 

predictive biomarker for cardiac damage and acts as a biomarker for AFib in patients with 

valvular heart disease [12]. Lower expression levels of miR-19a-3p/19b-3p are found in the 

plasma of heart failure patients, with miR-19b-3p identified as a strong prognostic biomarker for 

acute heart failure [31, 32]. Increased expression levels of miR-423-5p are linked to heart failure 

diagnosis [33], and miR-96-5p functions as a potential diagnostic biomarker for acute 

myocardial infarction [34].  

Further biological relevance of the AFib-miRNAs revealed that these miRNAs target 

specific KEGG pathways associated with cardiovascular diseases, such as hypertrophic 

cardiomyopathy (HCM), MAPK signaling pathway, PI3K-Akt signaling pathway, FoxO 

signaling pathway, and TGF-beta signaling pathway. AFib is a common sequela of HCM, with 

evidence showing approximately a 20% lifetime risk for the development of AFib in HCM [35, 

36]. The HCM pathway maps out the genetic and metabolic interactions involved in the disease. 

Hundreds of gene mutations in the sarcomere proteins are linked to HCM, increasing the Ca2+ 

sensitivity of cardiac myofilaments. This heightened sensitivity likely raises ATP utilization, 

potentially causing an energy imbalance in the heart under stress.  Specific miRNAs such as hsa-

miR-17-5p and hsa-miR-19a-3p influence key signaling molecules and pathways in HCM, 

including those involved in cardiac hypertrophy and fibrosis [37-39]. For example, miR-19a-3p 

and 19b-3p target components of the TGF-β signaling pathway, crucial in the fibrotic response 
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seen in HCM [39]. KEGG pathway analysis showed that the AFib-miRNAs, including hsa-let-

7a-5p, hsa-miR-17-5p, hsa-miR-19a-3p, hsa-miR-124-3p, and hsa-miR-200-3p, were 

significantly (P<0.005) involved in the MAPK signaling pathway, PI3K-Akt signaling pathway, 

and FoxO signaling pathway. These pathways are important in atrial fibrosis in patients with 

chronic AFib [40-43].  

Gene Ontology (GO) annotations provide key insights into the biological processes, 

cellular components, and molecular functions associated with AFib. AFib-miRNAs play a 

significant role in AFib by regulating the expression of genes involved in crucial pathways such 

as heart development and positive regulation of smooth muscle cell proliferation, contributing to 

the pathogenesis of AFib [44-47]. GO annotation analysis also provides insights into the 

enrichment of AFib-miRNAs in molecular functions, including transcription binding, DNA-

binding transcription factor activity, and RNA polymerase II-specific; cellular components such 

as caveolae, cell-cell junction, COP9 signalosome, and cytoplasm. This comprehensive analysis 

highlights the importance of the identified AFib-miRNAs in AFib development and 

cardiovascular disease progression.  

The identified AFib-miRNA signature has the potential to be predictive of POAF in 

patients undergoing CABG as shown by its significant enrichment in several important pathways 

that contribute to AFib and other cardiovascular diseases. However, this study has some 

limitations. The small sample size limits the generalizability and robustness of the findings, 

necessitating further validation with larger cohorts. Additionally, while the miRNA signatures 

identified show promise, their predictive power needs to be confirmed through independent 

validation studies. The study also does not account for potential confounding factors such as 

medication use, which might influence miRNA expression. Future research should aim to 
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address these limitations by incorporating larger, diverse populations and considering additional 

variables that may affect miRNA expression. 

Data availability 

Data in a de-identified format will be made available by request to the corresponding author.  
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Figures 

 

 

Figure 1. Flow chart of participant recruitment.
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Figure 2. The comparison of prediction performance. (A) Evaluation of machine learning methods' prediction ability using ROC 

curves to distinguish AFib patients from controls in the training dataset. (B) Evaluation using test datasets.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.21.24309328doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309328
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

 

 

Figure 3. Differential expression analysis. (A) Volcano plot showing 12 upregulated and one downregulated miRNAs. (B) Venn 

diagram displaying the overlap between the 10 miRNAs in the AFib-miRNA signature identified by machine learning analysis and the 

13 differentially expressed miRNAs.
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Figure 4. MiRNA-disease association.  (A) Bar plot showing the association of the AFib-miRNA signature with various cancers and 

diseases. The X-axis represents AFib-miRNAs and the Y-axis shows p-values. (B) Alluvial plot illustrating the AFib-miRNA 

signature association specific to cardiovascular diseases.
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Figure 5. AFib-miRNA signature enrichment in gene ontology annotations. (A) Bar plots 

showing the enrichment of the AFib-miRNA signature in biological processes. (B) Enrichment 

in molecular functions. (C) Enrichment in cellular components. The X-axis represents –log10 (p-

value) and the Y-axis shows the number of target genes and Gene Ontology term names. 
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Figure 6. AFib-miRNA signature in cardiovascular-associated Gene Ontology annotations. 

(A) Chord diagram displaying the involvement of the AFib-miRNA signature in biological 

processes. (B) Involvement in molecular functions. (C) Involvement in cellular components.
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Figure 7.  MiRNA-gene target interactions. (A) Upset plot depicting shared gene targets 

within the AFib-miRNA signature. (B) Network demonstrating connections between AFib-

miRNAs (in red rhombus) and target genes (in black circles). (C) Comparative expression levels 

of AFib-miRNA signature targeted genes in hypertrophic cardiomyopathy. Plot generated from 

the Broad Institute of MIT and Harvard’s Single Cell Portal. (D) Network plot displaying 

specific predicted small molecule drugs targeting the miRNA signature, with miRNAs 

represented in navy blue rhombus and small molecules in burgundy circles. 
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Tables 

 

Table 1. Baseline characteristics of the study population 
 

Cases Controls 

Characteristic N = 7 N = 8 

Age at CABG surgery - years (mean ± SD) 71.4 ± 7.7 68.4 ± 7.7 

Sex - Male 6 (85.7%) 7 (87.5%) 

White, non-Hispanic race 7 (100.0%) 8 (100.0%) 

Marital status - Married 5 (71.4%) 6 (75.0%) 

Consume alcohol 4 (57.1%) 2 (25.0%) 

Tobacco use 1 (14.3%) 2 (25.0%) 

Consume caffeine 6 (85.7%) 6 (75.0%) 

Aspirin use daily 7 (100.0%) 7 (87.5%) 

Previously received blood transfusion 2 (28.6%) 0 (0.0%) 

Previous cardiac-related hospitalization 4 (57.1%) 2 (25.0%) 

Family history of heart disease 6 (85.7%) 6 (75.0%) 

Family history of stroke 2 (28.6%) 2 (25.0%) 

Family history of diabetes 1 (14.3%) 1 (12.5%) 

Family history of hypertension 2 (28.6%) 1 (12.5%) 

Post-operative stroke, prior to discharge 0 (0.0%) 1 (12.5%) 

Post-operative infection prior to discharge 0 (0.0%) 1 (12.5%) 

Additional post-operative cardiac procedure, prior to 

discharge 

1 (14.3%) 0 (0.0%) 

Received blood products post-operatively, prior to 

discharge 

2 (28.6%) 0 (0.0%) 

 

 

Table 2. Prediction performance of the machine learning methods 

Method Acc-Tr Acc-Test Se-Tr Se-Test Sp-Tr Sp-Test AUC-Tr AUC-Test 

Random Forest 1 0.8 1 0.87 1 0.71 1 0.76 

KNN 0.75 0.8 0.62 0.62 0.89 1 0.84 0.77 

XGBoost 0.9 0.73 0.90 0.75 0.89 0.71 0.97 0.83 

SVM 0.55 0.46 0.62 0.37 0.46 0.57 0.53 0.60 

*KNN: K-Nearest neighbor 

*Acc: Accuracy 

*Tr: Training 

*Se: Sensitivity 

*Sp: Specificity 

*AUC: Area Under the ROC Curve 
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Table 3. Involvement of AFib-miRNA signature in cardiovascular-associated pathways 

Term Name miRNAs P-value FDR 

Hypertrophic 

cardiomyopathy 

hsa-miR-17-5p,hsa-miR-19a-3p 9.32E-14 1.55E-13 

Dilated cardiomyopathy hsa-miR-17-5p,hsa-miR-19a-3p 1.87E-14 3.28E-14 

MAPK signaling pathway hsa-let-7a-5p,hsa-miR-17-5p,hsa-miR-

19a-3p 

2.89E-18 7.04E-18 

PI3K-Akt signaling 

pathway 

hsa-let-7a-5p,hsa-miR-17-5p,hsa-miR-

124-3p,hsa-miR-200a-3p 

2.00E-23 1.05E-22 

FoxO signaling pathway hsa-let-7a-5p,hsa-miR-17-5p,hsa-miR-

19a-3p,hsa-miR-200a-3p 

3.34E-27 3.34E-26 

TGF-beta signaling pathway hsa-miR-17-5p,hsa-miR-19a-3p 9.43E-27 7.17E-26 

Fluid shear stress and 

atherosclerosis 

hsa-miR-17-5p,hsa-miR-19a-3p 5.56E-20 1.69E-19 

Adrenergic signaling in 

cardiomyocytes 

hsa-miR-19a-3p 0.0127445 0.013048 

Vascular smooth muscle 

contraction 

hsa-miR-124-3p 0.013172 0.013406 

Viral myocarditis hsa-miR-423-5p 0.001448 0.001754 

cGMP-PKG signaling 

pathway 

hsa-miR-184 0.0022891 0.002734 

HIF-1 signaling pathway hsa-let-7a-5p,hsa-miR-96-5p,hsa-miR-

124-3p,hsa-miR-184 

1.26E-10 3.34E-10 
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Supplemental Information 

Supplementary file contains Figure and Tables. 

Supplementary Figure and Table legends 

Supplementary Figure S1. Enrichment of AFib-miRNAs in KEGG Pathways. (A) MiRNA 

enrichment in various cancer and disease pathways. (B) MiRNA involvement in cardiovascular-

specific pathways. 

Supplementary Table S1. Enrichment of AFib-miRNA signature in KEGG pathways. 

Supplementary Table S2. Enrichment of AFib-miRNA signature in gene ontology biological 

processes. 

Supplementary Table S3. Enrichment of AFib-miRNA signature in molecular functions. 

Supplementary Table S4. Enrichment of AFib-miRNA signature in cellular components. 

Supplementary Table S5. Enrichment of AFib-miRNA signature in Gene Ontology categories 

specific to cardiovascular diseases. 

Supplementary Table S6. Enrichment of the AFib-miRNA signature in Reactome pathways. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.21.24309328doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.21.24309328
http://creativecommons.org/licenses/by-nc-nd/4.0/

