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Background: Vision Transformer (ViT) and Convolutional Neural Networks (CNNs) each possess distinct
strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while
CNNs are adept at extracting local features via spatial convolution filters. However, ViT may struggle with
detailed local spatial information, critical for tasks like anomaly detection in medical imaging, while shallow
CNNs may not effectively abstract global context.

Objective: This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to lever-
age their complementary strengths for enhanced performance in medical vision tasks, such as segmentation,
classification, and prediction.

Methods: Following PRISMA guidelines, a systematic review was conducted on 28 articles published
between 2020 and 2023. These articles proposed hybrid ViT-CNN architectures specifically for medical imaging
tasks in radiology. The review focused on analyzing architectural variations, merging strategies between ViT
and CNN, innovative applications of ViT, and efficiency metrics including parameters, inference time (GFlops),
and performance benchmarks.

Results: The review identified that integrating ViT and CNN can mitigate the limitations of each architec-
ture, offering comprehensive solutions that combine global context understanding with precise local feature
extraction. We benchmarked the articles based on architectural variations, merging strategies, innovative uses
of ViT, and efficiency metrics (number of parameters, inference time(GFlops), performance).

Conclusion: By synthesizing current literature, this review defines fundamental concepts of hybrid vision
transformers and highlights emerging trends in the field. It provides a clear direction for future research aimed
at optimizing the integration of ViT and CNN for effective utilization in medical imaging, contributing to
advancements in diagnostic accuracy and image analysis.

Summary StatementWe performed systematic review of hybrid vision transformer architecture using
PRISMA guideline and perfromed through meta-analysis to benchmark the architectures.
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1 INTRODUCTION
Convolutions Neural Networks (CNN) were capable of learning inductive bias and were the state-of-
the-art for many medical imaging applications [2]. Recently, vision Transformer has been adopted
in a lot of applications in medical imaging domain and demonstrated comparative performance [12,
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25, 34]. Since, the transformer has strength in capturing the long-range dependencies by using self-
attention mechanism it has shown a great performance for complex natural language processing
tasks[17, 42]. To identify small anomalies in anatomical imaging, the local correlation among the
neighboring pixels also matters in addition to the long-range dependencies [40]. CNN architecture is
known for being capable to capture such local dependencies[15, 36, 37]. Thus the Vision Transformer
and CNN have complimentary strengths to process medical imaging for various applications, e.g.
segmentation, classification, prediction. Therefore, many works have been attempting to combine
these two architectures to have strength to capture both global and local contents of the images as
hybrid concept architectures[22].

While CNN with the help of spatial convolution filters can primarily learn local features, shallow
CNN networks with less layers often struggle to understand the global context in the image given
the limitation of abstraction. In contrast, ViT learns the long-range dependencies via self-attention
between the image patches to understand the global context while the patch based positional
encoding mechanism may miss relevant local spatial information and it usually cannot attain the
performance of CNNs on small-scale dataset. This limitation of ViT has been highlighted in multiple
recent studies in particularly radiology domain where the findings are minute and contain within
a small spatial location [24, 29]. Combining CNN and ViT in a hybrid modeling architecture can
overcome the limitations of both and ultimately provide an opportunity to learn the global and
local spatial context in an end-to-end model. Given many attempts to embrace strength of both
ViT and CNN in radiology domain in a single end-to-end framework, we conducted the systematic
review to understand various trends of how the Hybrid Vision Transformer (CNN+ViT) was used
to address image processing challenges in radiology and create a comprehensive benchmarking to
guide future development. Shamshad et. al. [34] recently published a comprehensive survey on
transformer applications for medical images; however the survey was primarily focused on the
broad transformer architectures and only briefly mentioned the hybrid structures’ pros and cons.
while we primarily focus on benchmarking the hybrid architectures for radiological images.

Based on the PRISMA guideline, we have selected 28 published articles for full text review that
proposed novel hybrid architecture for medical vision tasks.We performed three-level meta-analysis
- (a) overall architectural variations for the design of the hybrid CNN and ViT; (ii) merging strategies
between CNN and ViT; (iii) purpose of innovative ViT usages; and (iv) design efficiency of the
architectures in terms of number of parameters and inference time efficiency. To the best of our
knowledge, there exist no systematic review paper that focuses on the hybrid architectures that
combine ViT and CNN for the usage in radiology domain. While there exists survey papers that
analyze ViT or CNN usage separately in medical imaging domain [34], we particularly focused
on how the ViT is combined with other modules as a hybrid vision transformer architecture and
applied to analyze varying scale features in radiology images. Through the meta-analysis, we not
only analyzed and summarized the contents of the published literature, our also paper defines
fundamental concepts of the hybrid vision transformer to make clear pathway for future research
in this area.

2 METHOD
2.1 Study Selection
Figure 1 outlines the search strategy. Initially, papers for review were identified from Google
Scholar, encompassing all articles published between Jan, 2020 and Aug, 2023. The first screening
pass identified papers pertaining to six keywords [(‘Vision transformer’, ‘ViT’, ‘Hybrid ViT’) AND
(‘Radiology’, ‘Image Analysis’, ‘Modeling’)]. Papers were excluded based on: (i) publication year
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before 2020 and after 2023 Aug, (ii) not peer-reviewed, and (iii) proposed usage not related to
radiology.
To properly filter papers, we parsed the methods and experiments sections to determine the

architecture and usage. We selected only architectures that combine self-attention or transformer
modules in visual feature extraction and integrate with CNN modules. Vanilla ViT also proposed
CNN embedding for input patches [28], thus we defined hybrid ViT as the Vision Transformer
architecture that integrates CNNmore extensively in end-to-end learning than the variant of vanilla
ViT. Additionally, hybrid transformer architectures that used transformer modules solely for text
feature extraction were excluded, as we focused on transformer usage for visual radiologic features.
Finally, papers that only concatenated the output of two architectures without proposing any

new design modifications were excluded. Subsequently, three independent reviewers, JK, AU, and
IB, scanned the retrieved papers and selected relevant papers based on predefined inclusion and
exclusion criteria. Conflicts were resolved by majority voting.

2.2 Meta-Analysis
We primarily focused on four meta analysis factors as described below.

2.2.1 Architecture. We categorized the existing hybrid architectures into parallel and sequential
design (Fig. 1). Parallel design includes the one where CNN and ViT modules used in-parallel
to cooperatively learn the feature representation from the data and various intermediate fusion
functions is generally used to increase the co-understanding between the modules, such as cross-
attention. Note that both modules are parsing the data in the same level of granularity and have
less dependence on each other. In contrast, CNN and ViT are used in sequence in sequential
design where output of one module is directly passed onto others. One module is used for initial
feature extraction and other module for generating an abstract view based on previous module
interpretation. Therefore, the dependency between the CNN and ViT modules is much higher in
the sequential design.

(a) (b)

Fig. 1. Architecture variations- (a) parallel and (b) sequential

2.2.2 Merging Strategy . Based on the architectural variations (sequential or parallel), various
strategies have been employed to merge the CNN and ViT to effectively utilize their respective
strengths. We have identified three broad techniques for merging ViT and CNN: (i) feature reshaping
- this is extremely well adopted technique for the sequential architecture where output of one
module is resized using simple linear function (such as flatting) to be fed into the other. For example,
given that ViT only parse sequential input tokens, CNN feature maps are flattened into sequential
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tokens if the output is passed to ViT; (ii) positional encoding - Since flattened feature maps lose
spatial information, often architecture that use feature reshaping also include positional encoding to
capture the spatial information based on the feature map; (iii) fusing module - for the parallel design
where both of the modules are co-learning together, most of the literature used linear combination
of ViT and CNN output to create a fusion between these two modules or use a different model for
learning the fusion parameters.

(a) (b) (c)

Fig. 2. Merging Strategies variations - (a) Feature reshaping, (b) Positional encoding, and (c) Fusing Module.

2.2.3 Transformer utilization. Given the usage of transformer varied widely between the hybrid
models, we also categorized the hybrid model based on the final usage of the transformer - (i)
Encoder - when the transformer is used to embed the raw or processed data. In other words generate
a compressed representation of input; (ii) Decoder - when the transformer is used for the generation
of reconstruction or interpretation.

2.2.4 Application . We observed that hybrid transformer architectures are adopted in various prob-
lems of computer vision for healthcare, starting from classic tasks like classification, segmentation,
reconstruction, registration to regression, synthesis, view combination, and text generation. We
aimed to group the designs based on the architecture to better highlight the design choices and
metric for performance evaluation.

2.3 Benchmarking criteria
We used five criteria to benchmark these models which are centered around understanding the
utility and efficiency of the hybrid models.

2.3.1 Modality. Hybrid models are primary developed to deal with high dimensional spatial data
(e.g. 2D, 3D, 4D) to process them in computationally efficient way through transformer while
keeping both local and global spatial context. Therefore, we consider the imaging modality (2D -
X-ray, 2D + time - Ultrasound (US), 3D - Magnetic Resonance (MR), Computed Tomography (CT),
Positron Emission Tomography (PET)) as a primary benchmarking criteria which is ideally a proxy
to represent the data dimensionality.

2.3.2 Model size. We measured the model size by the number of trainable parameters. In theory, as
the number of trainable parameters increases, so does the need for more training samples [11], which
limits the large model’s applicability for interesting clinical use cases due to the lack of training
data and manual annotation in the clinical domain. However, the number of training parameters
also depends on the input data dimension. Therefore, we defined an efficient hybrid design as a
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model that can handle high dimensional input data with fewer training parameters. We primarily
record the number of trainable parameters either from the published paper (if documented) or
by loading the model summary in python, if the model is supplied by the authors with academic
open-source license.

2.3.3 Computing efficiency. To measure the computing efficiency, we used the flops/image as a
benchmarking creteria to demonstrate feasibility of applying the algorithm real time. Flops denotes
the number of floating point operations performed to run the inference on a single image. Given
the assumption that the hardware configurations may vary, flops shows a standardize hardware
independent measure of the algorithmic efficiency of the hybrid model. Though, we calculated and
tested all the models on 4 A100 GPU cores with 32GB memory. Similar to model size, we rely on
the published manuscript for the flops if documented or calculated the flops by doing inference on
a single random input image generated based on the dimension specified by the authors.

2.3.4 Training data size. Though training sample size is not directly related with the hybrid model
design, we incorporated it as a benchmarking creteria to highlight task and modality specific
trend of the targeted use cases and how it ultimately affects the model performance. We directly
capture the number of training samples from the reported documentation by the original authors.
If multiple training setting was mentioned in the paper, we only selected the largest cohort setting
and report the number of total exams included.

2.3.5 Performance. Based on the applications (Sec. 2.2.4), we ultimately benchmark the reported
performance. Given the issue of not availability of the shared codebase or a common dataset, we
only documented the reported performance by the original authors on distinct datasets. However,
the performance benchmark highlights overall performance for a task based on a standard task-
specific metric, e.g. Dice for segmentation accuracy, AUC for classification prediction true positive
and false positive trade-off at different probability threshold (F1 if AUC is not reported), Structural
Similarity Index (SSIM) for reconstruction and registration quality compared to the input data, and
Bleu1 score for evaluating the quality of text generation compared to the original reference text.

3 RESULTS
In Fig. 3, we present the PRISMA diagram with total articles included and excluded at each step
of filtering. Finally, within the scope of this survey, we analyzed 28 articles that satisfied all our
inclusion criteria. Table 1 shows the meta analysis results and Table 2 benchmarking according to
the defined meta analysis and benchmarking criteria in Sec. 2.2 and Sec. 2.3 respectively.
Meta-analysis: Architecture
Despite parallel architecture enhances cooperative learning between CNN and ViT, as simplistic
design option, most hybrid architectures follow sequential structure (25 out of 28) where the
output of the CNN feature extractor block is fed into ViT for generating compressed representation
(Table 1). Particularly, the hybrid models proposed for segmentation mostly (11 out of 12) follow
the U shape architecture based on U-Net, and transformer with self-attention module is included
between encoder and decoder branch within the U-Net shape backbone. For the classification,
restoration and reconstruction, similar sequential architecture idea has been adopted where CNNs
are used as feature extractor and feature maps are flattened and fed into transformer with positional
encoding which either calculated in the feature space [13] or referred to the image space using
learnable parameters [40]. After the transformer encoding, CNN decoder is included based on the
image generation task requirement, e.g. registration, reconstruction.

Parallel architectures were particularly proposed to conserve same level features using both CNN
and transformer; however fusing the feature spaces at multiple level is a challenging problem and
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Fig. 3. PRISMA study selection diagram for Hybrid Vision Transformer in Radiology

needs innovative measure. For segmentation, CPT U-Net [48] adopted the CNNwith parallel branch
with ViT and fuse the each feature maps from parallel branches. CPT U-Net shows that performance
also varies depending on the modification of fusing module. For the parallel classification paradigm,
TECNN [1] utilizes parallel architecture using transfomer pathway where the CNN feature maps
are flattened at each step and fed into the transformer, and ultimately merge module combines
both feature space and compute classification score using softmax. As parallel architecture for high
quality image restoration, TransCT decomposed the images into high (HF) and low (LF) frequency
component and used CNN to parse LF and transformer to parse HF. To combine the transformer
and CNN features, they again utilize a simplistic ResNET (2 Conv Layers) to get the final output.
Meta-analysis: Merging Strategy
As also highlighted by the dominance of sequential architectures (25 out of 28), irrespective of
the downstream application, most of existing hybrid architectures [13, 15, 27, 35, 40] leverage
the long-context learning ability of the transformers after calculating feature maps from CNN by
reshaping the feature maps and by adding the positional encoding. Separate fusing modules are
primarily leveraged by the parallel architectures where either linear merging or another model
is used for fusing the features from transformer and CNN [1, 39]. Interstingly, being a sequential
network, DTN [46] simultaneously leverage the feature reshaping for handling exchange between
CNN and transformer, and fusion module for aggregation of two parallel transformer blocks for
temporal image frames. TransMorph [4] designed an unique strategy which we grouped under the
broad category of feature reshaping, though they developed a patch merging module to reshape
and align the features between the 3D Swin transformer blocks in the encoder and the feature maps
generated at each resolution are sent into a ConvNet decoder to produce an output.
Meta-analysis: Transformer utilization
Transformers are solely used for additional compression of the bottleneck features to capture the
global context - out 18 of 28 studies. Interestingly, 7 studies applied transformer for both encoding
and decoding purposes - particularly for target image generation tasks, such as segmentation,
registration, restoration. Image to generation models (R2GEN [7]) primarily use transformer for the
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language generation task where CNN is being used as a image feature extractor. A compelling use
of transformer is observed in 3D transformer GAN which devices a 12 layers transformer network
between the encoderCNN and decoderCNN where 6 transformer layers performs encoding and
6 layers performs decoding before feeding into the CNN decoder block. The primary different
from the original transformer, the transformer block applies parallel decoding to achieve parallel
sequence prediction that is reshaped and processed by 1x1x1 convolution.
Meta-analysis: Application
The hybrid architectures are adopted for all fundamental medical image analysis tasks, e.g. seg-
mentation (12), classification (2), reconstruction (4), registration (3). Additionally, we observed
some innovative applications of the hybrid architectures. For example, ResViT [10] leveraged the
contextual sensitivity of vision transformers along with the precision of convolution operators to
generate missing multi-Contrast MR series and compared against state-of-art convolution only
GAN based models and showed that hybrid methods outperformed. TransCT [47] improvise a to
enhance the final CT image quality from a low dose CT images by using content features from
transformer and latent texture features from CNN. Multi-View ViT [38] designed a cross-view
transformer to transfer information between unregistered image views at the level of spatial feature
maps, and validated for mammogram and chest X-ray.
Benchmarking
Based on the five benchmarking criteria described in Sec. 2.3, we compared the existing 28 architec-
tures. We observed that most the hybrid architectures (23/28) are applied for the high dimensional
imaging modalities, such as MR, CT, PET. This deign choice could be influenced by the capability of
the transformer-CNN hybrid to digest both local and global context from a high dimensional image
space and generate a denser representation compared to CNN only encoder. Highest number of
trainable parameters (346.8M) is observed in Ultrasound ViT[33] that process variable length echo
cardiogram videos since they utilized 16 parallel BERT encoders for spatio-temporal reasoning
and two parallel regression tasks where they used ResNetAE to distil the US frames into smaller
dimension embedding (1024D) and the resulting embeddings are stacked for the clip, and BERT
encoders are used to process variable length videos. T2Net[14] contains lowest number of trainable
parameters (1.4M) where they proposed a multitask learning framework where shared parallel
network backbone, leveraging knowledge from one task to speedup the learning of the other and in-
crease flexibility for sharing complimentary features. Only CNN based model, such as DenseNet121
has 8.1M and ResNet-50 is approximately 25.6M, which shows the fact the hybrid architecture often
does not increase the trainable parameter set as it helps to generate dense representation.
Theoretically, light-weight models with less parameters are faster during inference with less

number of floating point operations; While T2Net has the lowest parameters, Multi-view ViT [38]
for chest X-ray has the fastest inference speed which could be based on the fact that it process
2D compress X-ray images. Inference speed for segmentation (TransUNet [6]) and reconstruction
(Transmorph [4]) models is often higher than the classification due to their pixel or patch-wise
processing strategies. Following the similar trend as CNN, hybrid models are often trained and
validated on open-source datasets, e.g. BraTS [16], Figshare [8], KiTS21 [20], TCIA [9], Synapse,
with limited samples of high dimensional medical images, and obtained current state-of-the-art
performance for all major medical image analysis tasks by outperforming its CNN or transformer
only counterparts. This trends for all major medical image analysis tasks shows the benefit of
designing hybrid architectures by combining both CNN and transformers.
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Table 1. Meta-Analysis of the existing hybrid architectures performed based on the criteria defined in Sec.2.2. Studies are grouped based on the targeted
applications. ‘Transf.’, ‘Util.’ refers to Transformer and Utility respectively.

Reference Application Architecture Merging Transf. Util. Transf. Backbone CNN Backbone

U-net Transformer[31] Sequential Fusing Encoder Multi-head Cross-Attention U-Net

UTNet[15] Sequential Feature Reshaping
Positional Encoding

Encoder
Decoder Multi-head Self-Attention U-Net

CPT U-Net[48] Parallel Fusing Encoder
Decoder Pyramid Vision Transformer U-Net

UNETR[19] Sequential Feature Reshaping Encoder Vision Transformer U-Net

Swin UNETR[18] Sequential Feature Reshaping
Fusing Encoder Swin Transformer U-Net

COTRNet[35] Sequential Feature Reshaping
Positional Encoding Encoder Light Vision Transformer U-Net

Cotr[43] Segmentation Sequential Feature Reshaping
Positional Encoding Encoder Deformable Transformer-encoder U-Net

Hybrid ViT and CNN[39] Sequential Fusing Encoder
Decoder Vision Transformer U-Net

TransBTS[40] Sequential Feature Reshaping
Positional Encoding Encoder Light Vision Transformer U-Net

Bitr U-Net[21] Sequential Feature Reshaping
Positional Encoding Encoder Vision Transformer U-Net

CBAM
After U-Net[44] Sequential Feature Reshaping Encoder Axial Fusion Transformer U-Net

WAU [26] Sequential Feature Reshaping Decoder Window Attention Group Convolution
Depthwise Separable CNN

ChexVit[13] Classification Sequential Feature Reshaping
Positional Encoding Encoder Vision Transformer CheXNet [32]

TECNN[1] Parallel Feature Reshaping
Fusing Encoder Vision Transformer DenseNet

SLATER[23] Reconstruction Sequential Feature Reshaping
Positional Encoding Decoder Cross-Attention Specialized CNN

3D Transformer GAN [27] Sequential Feature Reshaping
Positional Encoding

Encoder
Decoder Vision Transformer Specialized CNN
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T2Net [14] Reconstruction Sequenital Feature Reshaping Encoder Task-Attention
Soft-Attention Specialized CN

MIST-Net[30] Sequential Feature Reshaping
Fusing Decoder Swin Transformer

Reconstruction Swin-transformer Specialized CNN

Ultrasound ViT[33] Regression Sequential Feature Mapping Encoder Bert ResNetAE/DenseNet

DTN[46] Sequential Feature Reshaping
Fusing

Encoder
Decoder Dual Transformer Specialized CNN

ViT-V-Net[5] Registration Sequential Feature Reshaping
Positional Encoding Encoder Vision Transformer Specialized CNN

Transmorph [4] Sequential Feature Reshaping Encoder Swin Transformer U-Net
ResViT[10] Image Synthesis Sequential Feature Reshaping Encoder Vision Transformer Specialized CNN

TransCT[47] Restoration Parallel Feature Reshaping Encoder
Decoder Vision Transformer Specialized CNN

Multi-View ViT[38] Combining Views Sequential Feature Reshaping Encoder Cross View-Attention ResNet
AlignTransformer[45] Sequential Feature Reshaping Encoder Align Hierarchical-Attention ResNet

R2Gen[7] Report Generation Sequential Feature Reshaping Encoder
Decoder Vision Transformer Pretrained (ResNet, VGG)
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Table 2. Benchmark Table. See Sec. 2.3 for benchmarking creteria definition. Inaccessibility of the models are marked as ’–’ which restrict to calculate the
benchmarking creteria.

Reference Modality Parameters(M) Inference Time(GFLOPs) Sample Size Performance

U-net Transformer[31] CT 42.5 – TCIA (public):82 total Dice:78.5

UTNet[15] MR 14.4 40.9 M&Ms [3](public)
Training:150/Test:200 Dice:88.3

CPT U-Net[48] CT 123.8 150.6 Synapse1(public) 30 Dice 0.81

UNETR[19] CT/MRI 92.5 41.1 BTCV:20subjects,
MSD:484 CT/MRI Dice:0.89

Swin UNETR[18] MRI 61.9 394.8 BraTS21
Training:1251 / Val:219 Dice:0.92

COTRNet[35] CT – – Kits21
Training:240 / Val:60 Dice:0.61

Cotr[43] CT 41.9 399.2 Kits21
Training:240 / Val:60 / Test:100 Dice:0.61

Hybrid ViT and CNN[39] CT – – Synapse
Training:18 / Val:12 Dice:0.87

TransBTS[40] MRI 32.9 333.0 BraTS19
Train:335 / Val:125 Dice:0.9

TransUNet[6] CT/MRI 105.1 1186.9 Synapse
Train:18 / Val:12 Dice: 0.77

Bitr U-Net[21] MRI 43.4 186.2 BraTS21
Training:1251 / Val:219 Dice:0.92

After U-Net[44] CT 41.5 – BCV Training:18 / Test:12 Dice:0.81

WAU[26] CT/MRI 21.8 15.94 Synapse: 18
MSD: 484 Dice:0.80

ChexVit[13] X-Ray – – ChestX-Ray14 [41]
Training:86,524 / Val:25,596 AUC:0.83

1https://www.synapse.org/#Synapse:syn3193805/wiki/89480

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

granted m
edR

xiv a license to display the preprint in perpetuity. 
 is the author/funder, w

ho has
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

copyright holder for this preprint 
T

he
this version posted June 22, 2024. 

; 
https://doi.org/10.1101/2024.06.21.24309265

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.06.21.24309265
http://creativecommons.org/licenses/by-nc-nd/4.0/


TECNN[1] MRI 22.5 – BraTS, Figshare
Training:998 + / Val:285 + / Test: 142 +

Recall:0.97
Precision:0.967
F1-Score:0.968

SLATER[23] MRI 36.0 174.8 IXI:Training:25 / Val:5 / Test:10 SSIM(T2): 97.77

3D Transformer GAN [27] PET 42.0 –
Brain MRI
Training:10935(15subjects×729patches)
Val:Leave-One-Out-Cross-Validation

SSIM:0.986

T2Net [14] MRI 1.4 140.3 IXI Dataset, Clinical MRI Dataset
Training:420 / Val:60 / Test:120 SSIM:0.87

MIST-Net[30] CT 11.8 576.0
2016 NIH AAPM Mayo Challenge
Training:4,274 sinograms
Test:391sinograms

SSIM:0.98

Ultrasound ViT[33] Echocardiogram 346.8 521.7 Echonet-Dynamic
Training:7522 / Val:1504 / Test:1504 MAE:6.77

DTN[46] MRI – – Oasis, IXI, BraTS
Training:256 / Val:19 / Test:150 Dice:0.76

ViT-V-Net[5] MRI 31.5 778.4 In-House T1 Weight
Training:182 / Val:26 / Test:52 Dice:0.72

Transmorph[4] CT/MRI/XCAT 46.7 1427.0 Oasis
Training:256 / Val:19 / Test:150 Dice:0.816

ResViT[10] CT/MRI 123.4 973.0 IXI, BraTS, CT-MRI
Training:59 / Val:29 / Test:42

SSIM
T1,T2->FLAIR:0.886

TransCT[47] CT 12.6 598.7 2016 NIH AAPM Mayo Challenge
Training:7patients / Val:1 / Test:2

SSIM
0.92

Multi-View ViT[38] X-Ray 23.6 9.5
CheXpert
Training:23628(16810 patients)
Val:3915/ Test:3870

AUC
0.834

AlignTransformer[45] X-Ray – –

MIMIC CXR
Training:368,960
Val:2,991
Test:5,159

BLEU1
0.378
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R2Gen[7] X-Ray 78.4 35.4

MIMIC CXR
Training:368,960
Val:2,991
Test:5,159

BLEU1
0.353
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4 DISCUSSION
Following PRISMA guideline, we performed a systematic review for the 28 hybrid CNN and trans-
former architectures for radiological image analysis task. The diverse roles of transformers, from
encoding raw data to decoding generated outputs, highlight their versatility in medical image anal-
ysis tasks. While transformers excel at capturing long-range dependencies, their integration into
hybrid architectures introduces challenges in balancing computational efficiency and performance
across different applications. The wide range of applications for hybrid vision transformer architec-
tures underscores their potential to address various challenges in radiology, from segmentation
and classification to reconstruction and registration. Innovative approaches, such as missing image
generation and image quality enhancement, demonstrate the versatility and adaptability of these
models to clinical needs.
The predominance of sequential architectures in hybrid vision transformer models suggests

a preference for a structured flow of information from CNN feature extraction to transformer-
based representation learning. This sequential approach aligns well with the nature of medical
image analysis tasks, where hierarchical feature extraction and global context understanding are
crucial. The utilization of feature reshaping and positional encoding reflects efforts to bridge
the gap between CNN and transformer representations, enabling effective fusion of spatial and
contextual information. While sequential architectures predominantly rely on these strategies,
parallel architectures explore alternative fusion methods, emphasizing the need for further research
into optimal merging techniques.
However, challenges remain in ensuring robustness, interpretability, and scalability for real-

world applications. Further validation on diverse datasets and clinical scenarios is essential to
establish their efficacy and reliability. While hybrid architectures offer advanced capabilities in
feature representation and context modeling, their computational demands pose practical chal-
lenges, particularly in resource-constrained clinical environments. Optimizing model size, training
efficiency, and inference speed is crucial for facilitating widespread adoption and deployment in
clinical settings. Moreover, the reliance of hybrid architectures on large-scale annotated datasets
raises concerns about data availability and quality, especially for rare diseases and specialized
imaging modalities. Addressing data scarcity through data augmentation, transfer learning, and
domain adaptation techniques is critical for generalizing model performance across diverse clinical
scenarios.
Future research should explore novel hybrid architectures that leverage the complementary

strengths of CNNs and transformers while addressing their inherent limitations. Investigating
alternative fusion strategies, attention mechanisms, and network architectures could lead to more
efficient and effective hybrid models tailored to specific clinical tasks and modalities. Comprehen-
sive validation studies on diverse clinical datasets are essential to assess the generalization and
robustness of hybrid vision transformer models across different imaging modalities and patholo-
gies. Collaborations between clinicians, radiologists, and machine learning researchers are crucial
for co-designing and evaluating models that meet clinical needs and standards. Use of distinct
private datasets for evaluation and reporting their performance using different metrics makes the
comparison between the models extremely challenging. Standardized benchmarking criteria and
open-source dataset is needed for the model understanding. We believe that our review will set a
proper benchmakring framework for the hybrid models.
Efforts to optimize model inference speed, memory efficiency, and hardware compatibility are

essential for enabling real-time deployment of hybrid architectures in clinical workflows. Leveraging
hardware accelerators, model compression techniques, and cloud-based inference services can
facilitate seamless integration into existing radiology infrastructure.
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As hybrid vision transformer models become increasingly integrated into clinical practice, atten-
tion must be paid to ethical and regulatory considerations, including patient privacy, data security,
and algorithmic transparency. By addressing challenges related to model design, computational
efficiency, data availability, and ethical considerations, these models can significantly impact patient
care and healthcare delivery, paving the way for a future where AI-powered radiology transforms
diagnosis, treatment, and patient outcomes.
Limitation Due to non-standardize performance reporting style in literature, we were unable to
create a standard performance benchmark and models were also validated on distinct datasets.
If the model is not available with open-source license, we were unable to calculate the inference
speed and trainable parameters. We did make an effort to reach the corresponding authors but
didn’t get the model access.

5 ESSENTIALS
(1) Hybrid vision transformer architectures preserves both local and global spatial dependencies

in radiological images.
(2) Such architecture holds tremendous promise for advancing medical image analysis in radiol-

ogy, offering superior performance, interpretability, and clinical relevance.
(3) Comprehensive validation studies on diverse clinical datasets are essential to assess the

generalization and robustness of hybrid vision transformer models.
(4) Efforts to optimize model inference speed, memory efficiency, and hardware compatibility

are essential for enabling real-time deployment.
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