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HIGHLIGHTS: 

1.- Accurate predictions of hospital discharges could enable optimization of patient flow management 

within hospitals. 

2.-Emerging machine learning and time-series forecasting methods present novel avenues for refining 

hospital discharge predictions.    

3.-In this study, we integrated length of stay predictions using Light Gradient Boosting Machines with 

several time-series forecasting techniques to produce daily hospital discharge forecasts.  

4.-Through the combined used of these methodologies, we were able to obtain successful predictions 

on more than 80% of the days. 
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Abstract 

OBJECTIVE: Reliable hospital discharge predictions still remain an unmet need. In this study, we 

aimed to forecast daily hospital discharges by ward, until seven days ahead, using machine learning 

methods.    

 

METHODS: We analyzed all (n=67308) hospital admissions proceeding from the Emergency 

department in a University Hospital, from January-2018 to August-2023. Several train-test splits were 

defined simulating a prospective, weekly acquisition of data on new admissions. First, we trained 

Light Gradient Boosting Machines (LGBM) and Multilayer Perceptron (MLP) models to generate 

predictions on length of stay (LOS) for each admission. Based on predicted LOS, timeseries were 

built and predictions on daily hospital discharges, by ward, seven days into the future, were created 

employing diverse forecasting techniques. Mean absolute error (MAE) between predicted and 

observed discharges was used to measure the accuracy of predictions. Discharge predictions were 

also categorized as successful if they did not exceed by 10% the mean number of hospital daily 

discharges. 

 

RESULTS:  LGBM slightly outperformed MLP in 25 weekly LOS predictions (MAE 4.7±0.7 vs 4.9±0.7 

days, p<0.001). The best techniques to forecast, seven days ahead, the daily number of hospital 

discharges were obtained using Prophet (MAE 5.0, R2=0.85), LGBM (MAE 5.2, R2=0.85), seasonal 

ARIMA (MAE 5.5, R2=0.81) and Temporal Fusion Transformer (TFT)(MAE 5.7, R2=0.83). After 

categorizing the predictions, LGBM, Prophet, seasonal ARIMA and TFT reached successful 

predictions in 82.3%, 81.1%, 77.7% and 77.1% of days, respectively. 

 

CONCLUSIONS: Successful predictions of daily hospital discharges, seven days ahead, were 

obtained combining LOS predictions using LGBM and timeseries forecasting techniques. 
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Lay abstract: 

 

Currently, most public hospitals in western countries have close to full occupancy for significant 

periods of time. Under these conditions, it is common for emergency admissions to be delayed, which 

causes significant patient discomfort and can negatively impact their quality of care. Predicting the 

daily number of hospital discharges would enable hospital administrators to implement measures to 

prevent hospital overcrowding. 

In this study, we used several artificial intelligence methods to predict, seven days in advance, the 

number of daily hospital discharges, obtaining successful predictions in more than 80% of the days 

that were analyzed.   

In conclusion, we have shown that available machine learning methods offer new and valuable 

options to predict hospital discharges, until seven days in advance, with high efficiency and reliability.  
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Introduction 

Currently, most public hospitals in western countries have close to full occupancy for significant 

periods of time. Under these conditions, it is common for emergency admissions to be delayed, which 

causes significant patient discomfort and can negatively impact their quality of care. 

Predicting the daily number of hospital discharges would enable hospital administrators to implement 

measures to prevent hospital overcrowding [1].  Although many studies have analyzed the factors that 

impact on hospital stays in specific services or populations [2-6], forecasting the overall daily number 

of hospital ward discharges is complex and has received less attention [7]. 

In recent years, some experiences using machine learning methods to predict hospital discharges 

have been published, some of them based on administrative data with few or no clinical covariates [8-

10], and others being modeled to generate discharge forecasts only 24h in advance [11-13], which is 

a very short time lapse for hospital managers to be able to adapt hospital resources to the predicted 

healthcare demands.  

In this study we aimed to predict the number of daily discharges by ward, seven days into the future, 

in a large university hospital. First of all, using clinical variables, we predicted the individual length of 

stay (LOS) with two different machine learning algorithms. Secondly, the number of hospital and ward 

daily discharges was predicted based on individual LOS predictions and calendar-related variables 

using a tree-based and timeseries forecasting methods.   
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Material and Methods 

Design 

We retrospectively analyzed the electronic medical records of the patients discharged from the 

Corporació Sanitaria Parc Taulí (CSPT).  Our institution is a 714-bed public university hospital serving 

a population of 394,000 in Barcelona county (Catalonia).  

We included all the patients ≥18 years being admitted from the Emergency department (ED) and 

discharged from our hospital from 1st January 2018 until 31st August 2023. The patients admitted in 

2020 were excluded from the analysis due to the uncommon hospital dynamics as a result of the 

COVID's pandemic. Programmed admissions, and patients admitted to Pediatrics, Psychiatry or 

Rehabilitation services were excluded.  

To generate forecasts, a prospective inclusion of patients was simulated. All hospitalized patients until 

25 index dates (every Monday from March 6 until August 21, 2023) were analyzed. First of all, for 

each patient, a LOS prediction was made based on variables collected at the time of admission (see 

section "Patient-related variables" described below). Secondly, aggregating the patients admitted 

before each index date by their predicted day of discharge, a timeseries dataframe with the predicted 

number of discharges per day, by departments and wards, was obtained.   

Since new, unknown, admissions occur between each index date and the day to be predicted, a 

second model was developed, using a timeseries approach, that included the predicted number of 

discharges per day of the previous model as well as other temporal and autoregressive variables (see 

section "Calendar-related variables" described below), combining an estimate of discharges that will 

occur for known patients as well as discharges for patients yet to be admitted.     

 

Variables used for the analysis:  

Patient-related variables. All patient-related variables were collected in the ED, before hospital 

admission. These included the age, gender, ED diagnoses and comorbidities, medical procedures 

performed or requested from the ED, prescription of broad-spectrum antibiotics (Anatomical 

Therapeutic Chemical codes J01DH or J01CR05), number of ED visits in the last 6 months, weekday 
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at admission, and time elapsed from ED admission until hospital admission. Finally, the clinical 

service, hospital ward, physician on charge, and LOS were also collected.  

Principal diagnoses were encoded using ICD-10-CM and grouped into 1195 categories according to 

pathophysiology or 1211 categories according to organ involvement. Principal diagnoses and 

comorbidities were also classified into 159 common syndromes. Finally, a comorbid index was 

developed using the B coefficients of comorbidities that significantly impacted on LOS in a linear 

regression model (Supplementary Table 1). ED procedures were also classified using ICD-10-PCS 

codes and 53 variables identifying the most common emergency procedures were generated. 

Calendar-related variables:  the timeseries dataframe with predicted discharges by day was 

completed with variables identifying weekdays, non-working days, and their respective lagged 

variables. Sine and cosine Fourier's terms were also included as independent variables to capture 

weekly or monthly patterns in hospital discharges using the numpy.fft function of the NumPy package, 

version 1.23.5 [14]. 

 

Prediction of length of stay (LOS):  

We used Light Gradient Boosting Machines (LGBM) and Multilayer Perceptron (MLP) to predict the 

LOS for all admissions occurring until 25 index dates.  LGBM is a tree-based, open access machine 

learning method developed by Microsoft [15,16], while MLP is a network of fully connected neurons 

with a non-linear activation function [17]. For both methodologies, we employed patient-related 

variables collected at the ED before hospital admission. Mean absolute error (MAE) was used as the 

metric applied to the loss function. Further details on LGBM and MLP methods applied are described 

in the Supplementary Methods section. 

 

Predictions of daily number of hospital discharges: 

Weekly forecasts on daily number of hospital discharges were generated with LGBM and compared 

with six timeseries forecasting methods: Seasonal ARIMA with exogenous variables (SARIMAX), 

Prophet, Long-Short term memory (LSTM), Temporal Fusion Transformer (TFT), Neural Hierarchical 

Interpolation for timeseries forecasting (N_HiTS), and Temporal Convolutional Network (TCN). 
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The SARIMAX model is a statistical timeseries forecasting technique that extends the traditional 

Autoregressive Integrated Moving Average (ARIMA) model to account for seasonality and additional 

covariables [18]. Prophet is a non-linear, additive regression model developed by Facebook that 

captures the linear trend and uses Fourier's terms to capture the seasonality of the timeseries. 

Holiday or other categorical effects can also be added as dummy variables [19,20]. LSTM is a 

recurrent neural network used for natural language processing and timeseries forecasting [21]. TFT is 

a neural network developed by Google that allows to generate timeseries forecasts adding attention 

mechanisms to LSTM-type encoders [22]. N_HiTS is a recently described neural network architecture 

for timeseries forecasting based on multiple interconnected blocks of MLP networks [23]. Finally, TCN 

has been developed for timeseries forecasting using several stacked, one-dimensional, convolutional 

networks, feeding only from past observations to forecast future timesteps [24]. 

 

Building the timeseries:   

After obtaining the LGBM-predicted length of stay for each episode, the predicted date of discharge 

was calculated by adding the predicted length of stay to the corresponding date of admission. 

Grouping the episodes by the predicted date of discharge, hospital departments, wards and gender 

resulted in department and ward-specific timeseries dataframes, each one with predicted and real 

discharges by date. These timeseries dataframes were completed with known calendar-related 

variables and splitted into train and test datasets. The real number of discharges in each test dataset 

were set to missing before running the predictions. All this process was repeated for each index date, 

from 2023-03-06 until 2023-08-21, in order to obtain 25 train-test datasets and weekly predictions on 

daily discharges. For hospital discharge predictions using LGBM, we used the whole study period. 

However, due to the exclusion of year 2020 admissions, we only included data from January 2021 to 

August 2023 for all timeseries forecasting methods. Further details on LGBM and timeseries methods 

applied to predict the daily number of discharges are described in the Supplementary Methods 

section. 
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Comparing the prediction methods and classification of the predictions: 

Mean absolute error (MAE) and median absolute errors (MdAE) were the metrics applied to compare 

the different machine learning methods. In addition, Akaike Information Criterion [25] was also 

calculated for predictions performed in three index dates (6th March, 8th May and 10th July 2023), and 

their mean values were used to compare between the most efficient methodologies. 

Finally, as an excess of real discharges over predicted ones usually does not raise significant 

concerns for patient flow, we categorized daily predictions as unsuccessful if the predicted discharges 

exceeded by 10% the mean number of daily discharges; otherwise, they were considered successful. 

 

Statistical analysis 

Continuous variables are reported as mean and standard deviation and categorical variables are 

summarized by frequencies and percentages. Associations between continuous variables were 

analyzed using Pearson's correlation. Differences on continuous variables between groups were 

assessed using Student’s t test if univariate or linear regression for multivariate analysis. These 

analyses were performed using the Python's scipy version 1.10.1 [26] and statsmodels version 0.14.0 

[27] packages.   

 

Ethics: 

All data were treated anonymously in order for this study to comply with the provisions of Spanish and 

European laws on Protection of Personal Data. The study was approved by the ethics committee of 

the CSPT. 
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Results 

A total of 67308 hospitalization episodes proceeding from the Emergency department (ED) took place 

in the Medical (n=35935), Surgical (n=14156), Gynecological-Obstetrical (n=8533) or Short-stay 

(n=7677) departments of the CSPT during the period of study. Additionally, 1007 patients were 

discharged from the Intensive Care Unit (57.1% due to exitus, and 24.3% being transferred to other 

hospitals).  

Mean age of the admitted patients was 65.3 (Standard deviation [SD] 20.7) years and 51.8% were 

women. The length of hospital stay showed an exponential distribution with a mean length of stay of 

8.1 days (SD 11.4; range 0-355; median 4.0) (Supplementary Figure 1). Mean number of diagnoses 

established in the ED was 1.4 (SD 0.9), and mean number of past comorbidities was 4.2 (SD 3.9). A 

more detailed description of the characteristics of the episodes of hospitalization included in this study 

is depicted in Table 1. 

 

Prediction of length of stay (LOS) 

Weekly LOS predictions for new admission episodes occurring from 6th March until 27th August 2023 

are shown in Supplementary Table 2. LOS predictions using LGBM slightly outperformed MLP, with 

MAE values of 4.7 (SD 0.7) for 25 weekly LGBM predictions versus 4.9 (SD 0.7) for MLP, t-test  

p<0.001) (Supplementary Table 2).  

Due to these results, the predicted number of daily discharges inferred from LGBM LOS predictions 

was used, in addition to calendar-derived variables, for the final prediction of daily hospital 

discharges.  

Feature importance in LGBM LOS predictions is shown in Supplementary Figure 2. Median stay by 

ward and service, and mean or median stay by diagnosis (ungrouped and grouped), age, time spent 

in the ED before admission, main procedures, use of broad spectrum antibiotics, and the comorbidity 

index were the most important variables to predict LOS.  

Using univariate and multivariate linear regression analysis (Supplementary Table 3) we observed 

that higher errors in LGBM LOS predictions were associated with higher comorbidity indexes, 
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admission on Medical or Surgical departments (instead of Obstetrics or Short stay wards), use of 

broad spectrum antibiotics, or being diagnosed with a disease with longer mean LOS.     

 

Prediction of hospital daily discharges 

Mean number of daily discharges was 38.9 (SD 17.6) for all admitted patients proceeding from the 

ED. Mean daily discharges for medical, surgical, obstetrical and short-stay departments were 21.0 

(SD 12.9), 8.3 (4.4), 4.5 (SD 2.1) and 4.6 (SD 2.5), respectively. Daily discharges in our hospital 

showed a strong weekly seasonal pattern, with important fluctuations between weekends and working 

days, more evident for medical and surgical departments than for other services (Supplementary 

Figure 3).  

Forecasts on hospital daily discharges were generated using LGBM and diverse timeseries 

methodologies. Mean and SD of MAE for 25 weekly predictions of whole hospital discharges was 5.0 

(SD 1.7) using Prophet; 5.2 (SD 1.6) for LGBM; 5.5 (SD 1.7) with SARIMAX; 5.7 (SD 1.7) for TFT; 6.2 

(SD 6.0) for LSTM; 6.5 (SD 2.8) for TCN; and 7.7 (SD 6.7) discharges for N_HiTS. Similarly, 

Pearson's correlations between predicted and observed whole hospital discharges were R2=0.85 for 

LGBM and Prophet, 0.83 for TFT, 0.81 for SARIMAX, 0.76 with LSTM, 0.72 for TCN and 0.66 with 

N_HiTS. Mean MAE of all predictions on discharges, by forecasting method, department and ward 

are detailed in Table 2.  

The best results for hospital discharge prediction were obtained using Prophet, LGBM, SARIMAX or 

TFT (Table 2, Figure 1). Prophet and SARIMAX offered a lower Akaike Information Criterion 

compared to LGBM and TFT since they reached similar predictions with lower number of variables. 

LGBM obtained the best predictions in medical wards, while SARIMAX and Prophet generated slightly 

better results in the surgical department (Table 2, Supplementary Fig 4).  

The most relevant variables for predicting daily hospital discharges using LGBM, as revealed by 

feature importance analysis, were the number of LOS-predicted discharges, lagged-values of daily 

admissions and discharges, transformed Fourier's sinus and cosinus variables, and a category 

identifying the non-working days (Supplementary Fig 5). 
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Proportion of dates with a successful prediction 

Finally, as already mentioned, predictions for the whole hospital were classified as unsuccessful if 

they exceeded by 10% the mean number of daily discharges. With a mean number of 38.4 daily 

discharges we considered an unsuccessful prediction if the number of predicted discharges, for the 

whole hospital, exceeded in >4 the number of observed discharges.  

According with this definition, we observed that 144 (82.3%), 142 (81.1%), 136 (77.7%) and 135 

(77.1%) of the 175 dates between 6th March and 27th August 2023 were successfully predicted with 

LGBM, Prophet, SARIMAX or TFT respectively (Figure 2).   
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Discussion 

In this study we have combined individual length of stay predictions with temporal series forecasting 

to predict the hospital discharges by department and wards, seven days in the future from 25 index 

dates. This approach outperforms previous studies, most of them aimed to predict daily hospital 

discharges based on the length of stay (LOS) of each particular admission episode without 

considering trends or seasonalities [28-31], or predicting daily discharges using timeseries forecasting 

methods without considering individual clinical variables that impact on LOS [8,10].   

Our study is retrospective. However, we managed to make 25 weekly predictions, each one based on 

new admissions along the last week, simulating a prospective collection of data and generating 

weekly predictions for a period of five months.  Our results show that it is feasible to obtain a 

significant estimation of the number of daily discharges by ward, up to seven days in advance, with a 

single weekly acquisition of data on new admissions, making it easy to be applied in many settings.  

We only analyzed hospital admissions proceeding from the ED. It is conceivable that the inclusion of 

programmed admissions (i.e. programmed surgery), which often have a more predictable hospital 

stay [12] would probably improve our predictions. 

First of all we tried to compare LGBM, a tree-based algorithm, with a MLP neural network to predict 

individual LOS. In our assays, a correctly tuned LGBM to prevent overfitting offered better results than 

MLP, at higher speed, and with no need of scaling input data. We are not aware of previous attemps 

to use LGBM to predict LOS, although other boosting techniques have been tried and showed better 

results than classical tree-based methods like random forest [32]. In our opinion, the superiority of 

LGBM could be explained by its known high efficiency in handling large datasets with many 

categorical variables and sparse data [15]. Among the limitations for LOS predictions we should 

mention that we did not include some variables that could probably impact on better LOS predictions, 

like the social status (i.e. patients living alone, poverty,..), laboratory values, or variables on drug 

therapies other than broad-spectrum antibiotics. In addition, we only analyzed the diagnoses and 

procedures performed or requested from the ED. It is probable that incorporating more precise 

diagnoses achieved during hospitalization, or new procedures performed after hospital admission, 

would probably improve the predictions. In any case, since we intended to predict the discharges 
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several days in advance, unlike some previous studies [12], we did not find convenient to take into 

account the diagnoses established at discharge. 

Secondly, after performing individual LOS predictions, we compared LGBM and diverse timeseries 

forecasting methods to predict hospital daily discharges. In the past, linear regression models [3] and 

classical timeseries analysis with ARIMA, seasonal ARIMA, ARMA or exponential smoothing have 

already been applied to forecast hospital patient flow with little success [9,33]. SARIMAX was 

previously used to predict hospital admissions and occupancy [10], but it has not been applied, to our 

knowledge, to forecast hospital discharges.  

In recent years, new and efficient computational tools have appeared for timeseries forecasting that 

have now been assayed in this study. Facebook's Prophet, described in 2017, has already been 

assayed to predict hospital discharges using holidays as the unique covariate [8]. Using the predicted 

number of daily discharges (derived from predicted LOS) as an additional covariate, we have been 

able to increase Prophet's predictability.           

In our opinion, although very good predictions could be obtained with Prophet or SARIMAX, both 

methods are rather simple prediction tools, where forecasts are mainly built on past values of the 

target variable, with few covariates, so that they could generate misleading predictions in changing 

scenarios like the opening or closing of new hospital wards, or if significant changes in inhospital 

patient composition do occur. 

LGBM also offered very good predictions. In the past, other tree-based methods, like random forest or 

XGBoost, have been used in classification tasks, to identify hospitalized patients that will probably 

leave the hospital 24 hours in advance [12,34]. We are not aware that LGBM, or any other boosting 

technique, have been used in regression tasks, as we did, to predict the daily number of hospital 

discharges. LGBM is a flexible method, that can be adjusted with covariates, rapid to execute and 

interpretable. 

We also tried four different timeseries neural network architectures (LSTM, N_HiTS, TCN and TFT). 

We are not aware of previous attemps to use, neither of them, to predict hospital discharges. Among 

these methods, TFT clearly reached the best predictions, very close to those obtained with LGBM, 

Prophet or SARIMAX, but with significantly higher computational costs.  
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Finally, we categorized the predictions as successful if they did not exceed by 10% the mean number 

of daily discharges, in a similar way as other authors have applied to classify predictions on hospital 

admissions [10]. Using this approach, successful predictions in more than 80% of the dates were 

obtained with LGBM and Prophet.    

In conclusion, we have shown that available machine learning methodologies and timeseries 

forecasting techniques offer new and valuable options to predict hospital discharges by ward or 

department, until seven days in advance, with high efficiency and reliability. We have also shown that 

a two-phase forecast, initially predicting LOS using LGBM and subsequently forecasting the number 

of daily discharges applying LGBM or Prophet, yielded the best results. These methods should enable 

the departmental directors and hospital managers to better adjust hospital resources to future 

healthcare needs.  
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Table 1. Characteristics of the hospitalization episodes included in the study 

 Total Medical  
department 

Surgical 
department 

Gynecological-Obstetrical 
department 

Short-stay 
department 

    Obstetrics 
service 

Gynecology 
service 

 

Admissions, No. 

Female, No. (%) 

Age, mean(SD) 

LOS1, mean(SD) 

Nº Diagnostics, mean(SD) 

Nº Previous Diagnostics, mean(SD) 

Nº Procedures, mean(SD) 

Comorbidity index2, mean(SD) 

Patients with chronic conditions, No.(%) 

Patients with advanced chronic conditions3, No.(%) 

Patients with low Barthel index, No.(%) 

Patients on broad_spectrum antibiotics, No.(%) 

Number of previous ED attendances4, mean(SD) 

67308 

34876 (51.8) 

65.3 (20.7) 

8.1 (11.4) 

1.4 (0.9) 

4.2 (3.9) 

0.5 (1.1) 

0.86 (1.53) 

13739 (20.4) 

1,614 (2.4) 

6893 (10.2) 

5079 (7.5) 

2.0 (1.6) 

35935 

16004 (44.5) 

72.7 (15.7) 

10.2 (12.3) 

1.6 (1.0) 

5.5 (3.9) 

0.6 (1.2) 

1.24 (1.82) 

9935 (27.6) 

1380 (3.8) 

5634 (13.8) 

3424 (9.5) 

2.0 (1.5) 

14156 

6231 (44.0) 

62,8 (20.0) 

9.5 (12.8) 

1.2 (0.5) 

2.8 (3.2) 

0.6 (1.1) 

0.51 (1.20) 

1,892 (13.3) 

121 (0.9) 

847 (6.0) 

1395 (9.9) 

1.8 (1.4) 

7786 

7786 (100) 

31.9 (5.8) 

2.2 (2.3) 

1.1 (0.4) 

0.5 (0.9) 

0.1 (0.5) 

0.02 (0.17) 

2 (0.03) 

0 (0) 

0 (0) 

3 (0.04) 

2.7 (2.1) 

747 

747 (100) 

39.1 (13.4) 

2.6 (4.4) 

1.2 (0.5) 

1.2 (1.9) 

0.4 (0.8) 

0.12 (0.44) 

4 (0.5) 

0 (0) 

0 (0) 

9 (1.2) 

2.3 (1.8) 

7677 

3758  (49.0) 

71.8 (15.9) 

1.8 (1.7) 

1.4 (0.7) 

5.0 (3.6) 

0.6 (1.2) 

0.84 (1.42) 

1801 (23.5) 

111 (1.4) 

383 (5.0) 

131 (1.7) 

2.0 (1.8) 

 

1LOS: length of stay;  2Comorbidity index (see text); 3Patients with chronic conditions with <1 year of expected life expectancy; 4Number of 
previous Emergency department visits during the last 6 months. 
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Table 2. Accuracy of different machine learning methods to predict the daily number of hospital discharges, by departments and wards. 

 Prophet LGBM SARIMAX TFT LSTM TCN N_HiTS No. daily discharges, 

mean 

AIC 1.8 77.8 1.8 105.8 101.8 73.6 101.8  

All departments. MAE, mean  

All departments. Females. MAE, mean 

All departments. Males. MAE, mean 

5.0 

3.2 

3.6 

5.2 

4.0 

3.8 

5.5 

3.3 

3.6 

5.7 

3.2 

4.2 

6.2 

4.0 

4.4 

6.5 

3.5 

4.7 

7.7 

4.6 

5.6 

38.9 

20.2 

18.7 

Medical department. MAE, mean 

Surgical department. MAE, mean 

Obstetrical department. MAE, mean 

Short stay department. MAE, mean 

4.2 

2.5 

1.6 

1.6 

3.8 

2.7 

1.9 

1.9 

4.0 

2.4 

1.7 

1.6 

4.5 

2.1 

1.6 

1.6 

4.8 

2.7 

1.7 

1.5 

5.2 

3.0 

1.4 

1.6 

5.7 

2.8 

1.6 

1.5 

21.0 

8.3 

4.5 

4.6 

Ward 1, MAE, mean 

Ward2, MAE, mean 

Ward3, MAE, mean 

Ward4, MAE, mean 

Ward5, MAE, mean 

Ward6, MAE, mean 

Ward7, MAE, mean 

Ward8, MAE, mean 

Ward9, MAE, mean 

Ward10, MAE, mean 

1.7 

1.3 

1.4 

1.3 

0.7 

1.4 

1.5 

2.7 

1.6 

1.6 

1.6 

1.3 

1.2 

1.2 

0.7 

1.1 

1.4 

3.1 

2.1 

1.9 

1.7 

1.4 

1.5 

1.4 

1.0 

1.6 

1.5 

2.3 

1.8 

1.6 

1.6 

1.4 

1.3 

1.3 

0.7 

1.2 

1.5 

3.1 

1.7 

1.6 

1.8 

1.5 

1.4 

1.4 

0.8 

1.7 

2.1 

2.8 

1.9 

1.5 

1.7 

1.7 

1.6 

2.2 

0.6 

1.3 

2.1 

3.3 

1.9 

1.6 

1.9 

1.5 

1.5 

1.4 

0.7 

1.5 

1.5 

2.2 

1.7 

1.5 

4.8 

4.0 

3.9 

2.9 

1.6 

3.6 

3.2 

4.4 

5.3 

4.6 
 

 AIC: Akaike Information Criterion. SARIMAX: Seasonal ARIMA with exogenous variables. LGBM: Light Gradient Boosting Machines; TFT: Temporal 
 Fusion Transformer;  LSTM: Long Short Term Memory; TCN: Temporal Convolutional Network; N_HiTS: Neural Hierarchical Interpolation for  
 timeseries forecasting. MAE (mean absolute error) values are the mean MAE of 25 weekly predictions of discharges, from March 6 to August 27.
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Figure 1. Concatenated weekly predictions of all hospital discharges. A: Light Gradient 
Boosting Machines and Prophet. B: SARIMAX and Temporal Fusion Transformer.   
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Figure 2. Categorization of discharge predictions as successful or unsuccessful (see criteria 
on the text) on 175 consecutive days. A. Prophet's predictions. B. Light Gradient Boosting 
Machines predictions. C. SARIMAX predictions. D. Temporal Fusion Transformer predictions. 
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SUPPLEMENTARY MATERIAL 

 

 

1.-Supplementary Methods: 

 

1.-PREDICTING THE LENGTH OF STAY (LOS): 

a) Prediction of LOS using Light Gradient Boosting Machines (LGBM). Patient-related variables were 

used to build LGBM models using the Python's lightgbm package, version 3.3.5 [1,2]. Training 

datasets comprised all patients admitted from 1st January 2018 until 78 days before each index date, 

while the test datasets involved the patients admitted during the last 77 days before each index date. 

The length of the test periods was chosen empirically after trying different proportions of train/test 

periods.  Limits to the number of leaves, and a minimum number of episodes by leave were 

established to prevent LGBM trees to overfit. Finally, all models were validated by means of 5-fold 

cross-validation on the training dataset.  

 

b) Prediction of LOS using Multilayer Perceptron (MLP). A MLP neural network was built with the 

TensorFlow package, version 2.13.0 [3], using the same covariables and test periods as for LGBM. 

For MLP each training period was splitted into a train and a validation dataset, the latter including the 

admissions of the last 4 months of the training period. Different network architectures, number of 

epochs and learning rates were assayed, plotting the validation loss curves to control overfitting. The 

final model was a three-layered MLP, with an input layer capturing 376 different variables, a hidden 

layer with 4 fully connected neurons and a dense fully connected output layer.  

 

 

2.-PREDICTING THE DAILY NUMBER OF HOSPITAL/DEPARTMENT/WARD DISCHARGES: 

 

Hospital discharge predictions with LGBM: For hospital discharge prediction with LGBM we also used 

the Python's lightgbm package, version 3.3.5. The train-test split was set to 120 days before each 

index date, extending the test period until seven days ahead from each corresponding index date. 

Seven LGBM models, one for each day of the week were built to predict the number of discharges by 
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hospital department and ward, seven days ahead from each index date. Mean absolute error (MAE) 

was the metric applied to the loss function. Limits to the number of leaves, and a minimum number of 

days by leave were established to prevent LGBM models to overfit.  

 

Hospital discharge predictions using seasonal ARIMA with exogenous variables (SARIMAX): Different 

combinations of the components of the ARIMA class forecasting methodology were assayed using 

the statsmodels version 0.14.0 [4] and pmdarima auto-arima version 2.0.4 [5] packages . A seasonal 

ARIMA (0,0,[7])x(1,1,0,7) model, with exogenous variables (SARIMAX) was chosen as it offered the 

lower Akaike Information Criterion and higher Log-Likelihood [6] values.  One-shot, seven-days 

ahead, 25 weekly predictions were built using all discharge observations until the eve of each index 

date for training, and assigning to the test period all observations from each index date up to six 

additional days ahead. Independent predictions were done for each department and ward using the 

predicted number of discharges (obtained with LGBM LOS predictions), non-working days and 

holiday eves as covariates.     

 

Hospital discharge predictions using Prophet: One-shot, seven-days ahead, weekly  discharge 

predictions were also generated with Facebook's Prophet version 1.1.5 [7], using identical train-test 

splitting and covariates as for SARIMAX.  

 

Hospital discharge predictions using LSTM:  For LSTM predictions, a test period of 21 days preceding 

each index date and spanning 7 days into the future, was established. The validation phase covered 

80 days prior to the test period, while the training data extended from 1st January 2021 until the 

beginning of the validation period. One-day sliding window was used to generate supervised arrays 

with an input length of 21 days and an output length of 7 days, for the training, validation and test 

datasets. Scikit-learn [8] MinMaxScaler was used to scale all variables from -1 to +1 values. LSTM 

models were built with the TensorFlow package, using root mean squared error as the loss function. 

Training and validation loss plots were used to control overfitting. Final predictions were obtained after 

inverse transforming the scaled predictions on the test datasets.  
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Hospital discharge predictions using TFT: Pytorch-Forecasting version 1.0.0,  

TemporalFusionTransformer package [9] was used for TFT forecasts. Test datasets extended from 

70 days before each index date until 7 days after this date. The validation dataset included the 

observations of the last 7 days before each test dataset, and the training datasets extended from 1st 

January 2021 until the beginning of each validation dataset. One-day sliding window was used to 

generate supervised arrays with an input length of 70 days and an output length of 7 days. Early 

stopping on validation losses, patience limits, and validation loss plots with TensorBoard were used to 

control overfitting.  Different attention head sizes, hidden sizes and learning rates were empirically 

tried to obtain the best results. Quantile loss was the metric used for the loss function.       

 

Hospital discharge predictions using N_HiTS: Pytorch-Forecasting version 1.0.0  N_HiTS package 

was used for N_HiTS forecasts [9]. The same train, validation and tests timeseries dataframes and 

one-day sliding windows arrays used for TFT's forecasting served for N_HiTS forecasts.  Early 

stopping on validation losses, patience limits, and validation loss plots on TensorBoard were also 

used to control overfitting. MQF2DistributionLoss was the metric applied for the loss function.   

 

Hospital discharge predictions using TCN: TensorFlow and Keras version 2.14.0 [10] packages were 

used to build TCN models. Independent models were created for overall hospital discharges and for 

each major hospital departments. In addition, weekly predictions with individual forecasts from day 

one until seven days ahead were generated using convolutional widths of 7 days and six stacked 

convolutional layers with progressive dilations. A validation dataset was used for each prediction. 

Validation losses, patience limits and validation loss plots on TensorBoard were used to control 

overfitting. MAE was the metric used for the loss function.       
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2.-Supplementary Tables: 

 

Supplementary Table 1.  Impact of comorbidities on length of stay (multiple linear regression)  

 

B 

coeffficient Sig (p). 

Lower 0.95 

CI 

Upper 0.95 

CI 

Applied 

factor1 

Abdominal neoplasm 1.08 .000 .69 1.47 1.1 

Acute kidney failure 1.47 .000 .84 2.10 1.5 

Acute pancreatitis 1.17 .001 .50 1.85 1.2 

Anemia 1.17 .000 .84 1.50 1,2 

Asthenia 5.81 .001 2.53 9.09 5.8 

Ataxia 2.87 .001 1.23 4.53 2.9 

Atrioventricular block 1.54 .012 .34 2.73 1.5 

Cerebral haemorrhage 1.99 .000 .99 2.98 2 

Chronic kidney failure 2.03 .000 1.74 2.31 2 

CNS tumour 3.52 .000 1.66 5.38 3.5 

Constitucional syndrome 2.98 .000 1.59 4.38 3 

Cranial traumatism 2.67 .000 1.63 3.70 2.7 

Dorsal vertebral fracture 3.00 .000 2.20 3.80 3 

Dyspnea 2.13 .006 .62 3.64 2.1 

Failure to thrive 1.88 .000 .87 2.90 1.9 

Femur fracture 2.20 .000 1.09 3.32 2.2 

Hypo or hipernatremia 2.17 .000 1.18 3.17 2.2 

Ischemic ictus 1.33 .000 .92 1.74 1.3 

Limb arterial ischemia 2.03 .000 1.15 2.91 2 

Liver cirrhosis 2.94 .000 2.38 3.50 3 

Lumbocyatalgia 1.13 .000 .58 1.68 1.1 

Lumbosacral fracture 3.53 .000 2.05 5.02 3.5 

Lung neoplasm 2.01 .000 1.35 2.68 2 

Metastatic neoplasm 2.71 .000 1.50 3.92 2.7 

Myelopathy 9.83 .000 7.45 12.21 10 

Osteosynthesis infection 6.29 .000 3.12 9.47 6.3 

Pancytopenia 6.39 .000 3.78 8.99 6.4 

Pleuritis 1.87 .004 .60 3.15 1.9 

Polytraumatism 3.47 .002 1.30 5.63 3.5 

Pulmonary embolism 1.38 .002 .51 2.24 1.4 

Spontaneous bacterial 

   peritonitis 

6.62 .020 1.06 12.18 6.6 

 

1Factor applied to build the comorbidity index.  CI: Confidence interval.  
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Supplementary Table 2.  Accuracy of weekly predictions of length of stay for episodes of 
hospitalization  

 

Period of prediction LOS prediction (LGBM) LOS predictions (MLP) 

N MAE MdAE R MAE MdAE R 
 

March 6th – 12th, 2023 

March 13th – 19th, 2023 

March 20th – 26th, 2023 

March 27th – April 2nd, 2023 

April 3rd – 9th, 2023 

April 10th – 16th, 2023 

April 17th – 23th, 2023 

April 24th – 30th, 2023 

May 1st – 7th, 2023 

May 8th – 14th, 2023 

May 15th – 21th, 2023 

May 22nd – 28th, 2023 

May 29th – June 4th, 2023 

June 5th – 11th, 2023 

June 12th – 18th, 2023 

June 19th – 25th, 2023 

June 26th –  July 2nd, 2023 

July 3rd – 9th, 2023 

July 10th – 16th, 2023 

July 17th – 23th, 2023 

July 24th – 30th, 2023 

July 31st – August 6th, 2023 

August 7th – 13th, 2023 

August 14th – 20th, 2023 

August  21st – 27th, 2023 

 

267 

272 

249 

281 

262 

275 

291 

289 

327 

269 

280 

275 

274 

284 

269 

282 

291 

300 

274 

286 

280 

257 

234 

254 

227 

 

5.90 

5.69 

4.76 

4.28 

4.93 

6.18 

4.65 

4.27 

5.95 

4.37 

4.51 

5.44 

4.67 

5.16 

4.43 

4.31 

3.89 

4.70 

4.96 

4.10 

4.44 

4.54 

3.94 

4.30 

3.83 

 

2.53 

2.51 

2.60 

2.36 

2.53 

2.91 

2.33 

2.37 

2.65 

2.32 

2.44 

2.58 

2.51 

2.39 

2.22 

2.33 

2.31 

2.42 

2.37 

2.66 

2.41 

2.48 

2.19 

2.62 

2.34 

 

0.46 

0.42 

0.49 

0.41 

0.41 

0.44 

0.54 

0.48 

0.39 

0.54 

0.56 

0.55 

0.54 

0.53 

0.47 

0.48 

0.56 

0.51 

0.54 

0.44 

0.46 

0.50 

0.57 

0.45 

0.51 

 

6.18 

5.78 

5.10 

4.43 

5.07 

6.46 

4.59 

4.27 

5.61 

4.56 

4.86 

5.72 

5.02 

5.30 

4.72 

4.57 

4.37 

4.91 

5.36 

4.37 

4.70 

5.14 

4.12 

4.33 

3.72 

 

2.98 

2.54 

3.15 

2.33 

2.50 

3.29 

2.15 

2.37 

2.59 

2.16 

2.62 

2.49 

2.59 

2.35 

2.23 

2.30 

2.39 

2.40 

2.23 

2.50 

2.07 

2.85 

2.05 

2.59 

2.23 

 

0.34 

0.42 

0.45 

0.40 

0.33 

0.33 

0.51 

0.43 

0.38 

0.37 

0.44 

0.48 

0.47 

0.45 

0.42 

0.39 

0.46 

0.38 

0.40 

0.36 

0.38 

0.38 

0.48 

0.41 

0.52 

Mean (SD) 274 (21) 4.7 (0.7) 2.5 (0.2) 0.5 (0.1) 4.9 (0.7) 2.5 (0.3) 0.4 (0.1) 

 

LOS: length of hospital stay. LGBM: light gradient boosting machines. MLP: multilayer perceptron. 
MAE: mean absolute error. MdAE: median absolute error. R: Pearson's correlation. SD: standard  
deviation 
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Supplementary Table 3.  Factors associated with higher errors in LOS predictions 

 

Variables MAE if  
present 

MAE if 
absent 

Correlation 
with MAE 
 
 

Univariate 
analysis1 

 
p-value 

Multivariate 
regression 

 
p-value 

Categorical 
    Male gender, mean (SD) 
    Medical admission, mean (SD) 
    Surgical admission, mean (SD) 
    Use of B-S antibiotics, mean (SD) 
 
Continuous 
    Age 
    Comorbidity index 
    Mean LOS by main diagnosis 
    Mean LOS by diagnosis, PG 
    Mean LOS by diagnosis, OG 
    Median LOS by ward 
    Median LOS by service 
    Time in ED before admission    

 
5.6 (10.6) 
6.2 (10.4) 
5.7 (10.3) 
7.2 (11.7) 

 
4.2 (8.0) 
3.3 (7.8) 
4.6 (9.1) 
4.7 (9.1) 

 
 
 
 
 
 
 
0.12 
0.11 
0.29 
0.25 
0.24 
0.22 
0.24 
0.11 

 
<0.001 
<0.001 
<0.001 
<0.001 
 
 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

 
NS 

<0.001 
<0.001 
<0.001 

 
 

NS 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

NS 
 

 

1t-test for the analysis of association between MAE values with categorical variables, Pearson's R for 
correlating MAE values with continuous variables; B-S antibiotics: broad-spectrum antibiotics;  MAE: 
mean absolute error; LOS: length of stay; PG: pathophysiologically grouped;  OG: organ-disease 
grouped. ED: Emergency department. 
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3.-Supplementary Figures: 

 

Supplementary Figure 1. Distribution of length of stays in 67,308 hospitalization episodes 
proceeding from the Emergency department. 
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Supplementary Figure 2. Feature importance in the prediction of length of hospital stay using Light Gradient Boosting Machines. 
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Supplementary Figure 3. Seasonality of hospital discharges in patients admitted from the 
Emergency department. A: Overall discharges. B: Hospital discharges by department (sample 
May 2023). 
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Supplemental Figure 4. Concatenated weekly predictions of discharges. A: Light Gradient Boosting Machines and Prophet in Medical 
Deapartment. B: SARIMAX and Temporal Fusion Transformer in Medical Department.  C: Light Gradient Boosting Machines and Prophet in 
Surgical Deapartment. B: SARIMAX and Temporal Fusion Transformer in Surgical Department.  
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Supplemental Figure 5. Feature importance for LGBM hospital discharge predictions: A: Model for first day prediction; B: Model for 2nd day 
prediction; C: Model for 3rd day prediction; D: Model for 4th day prediction; E: Model for 5th day prediction; F: Model for 6th day prediction; G: 
Model for 7th day prediction. 
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