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Abstract 

Previous studies have revealed a significant overlap between ADHD and RLS populations, with 

shared pathological mechanisms such as dopaminergic function and iron metabolism deficits. 

However, the genetic mechanisms underlying these connections remain unclear. In our study, we 

conducted a genome-wide genetic correlation analysis to confirm a shared genetic structure 

between ADHD and RLS. We identified five pleiotropic loci through PLACO analysis, with 

colocalization analysis revealing a shared causal genetic variant, rs12336113, located in an intron 

of the PTPRD gene within one of these loci. Additionally, we identified 14 potential shared genes 

and biological pathways between these diseases. Protein-protein interaction analysis demonstrated 

close interactions among six genes: PTPRD, MEIS1, MAP2K5, SKOR1, BTBD9, and TOX3. We 

further investigated gene-driven causal pathways using univariable Mendelian randomization 

(MR), multivariable MR, and Network MR analyses. Our findings indicate that ADHD may 

indirectly promote the onset of RLS by advancing the age of first birth, while RLS could indirectly 

contribute to ADHD by reducing fractional anisotropy in body of corpus callosum. Notably, an 

increase in radial diffusivity, rather than a decrease in axial diffusivity, played a crucial role in this 

process. In conclusion, our research supports a close genetic link between ADHD and RLS, 

identifying PTPRD as the most likely pleiotropic gene between these conditions. Moreover, 

ADHD may indirectly promote RLS onset by advancing the age of first birth, while RLS may 

indirectly promote ADHD onset by causing demyelination in body of corpus callosum. 
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized 

by persistent inattention, hyperactivity, and impulsivity1. It is estimated that 5-7% of school-age 

children have ADHD2,3, and up to 70% of those with childhood-onset ADHD continue to exhibit 

symptoms into adulthood4. ADHD is associated with risk-taking behaviors and various 

neuropsychiatric conditions, significantly increasing the risk of developing chronic diseases in the 

future. Consequently, this disease imposes a substantial societal burden5. 

Restless legs syndrome (RLS) is a common sensorimotor disorder with a prevalence of 6%-12%6. 

It is characterized by intensely unpleasant sensations and an almost irresistible urge to move the 

legs in the evening or at night7. Temporary symptomatic relief may be achieved through leg 

movement or walking, significantly impacting sleep quality and overall quality of life for patients. 

The comorbidity of ADHD and RLS is an intriguing phenomenon. Observational studies have 

shown a significant population overlap between ADHD and RLS. Patients with ADHD, whether 

children, adolescents, or adults, are more likely to exhibit RLS symptoms compared to healthy 

individuals8-10. Conversely, individuals with RLS, regardless of age, have a higher prevalence of 

ADHD, with more severe symptoms11-13. Additionally, cross-generational and family history 

studies suggest a significant genetic link between ADHD and RLS. Parents of children with 

ADHD have a higher incidence of RLS14,15, and children with a family history of RLS exhibit 

more severe ADHD symptoms12. 
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Several explanations have been proposed for the comorbidity. One hypothesis suggests that RLS 

may lead to ADHD symptoms by causing sleep fragmentation and reduced sleep quality16. Another 

theory posits that ADHD and RLS share common pathologies, such as dopaminergic dysfunction 

in the central nervous system (CNS)17-19 and iron metabolism disorders, including reduced serum 

iron levels20-22. Notably, these two pathological changes are closely linked. Iron is a cofactor for 

tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Iron metabolism disorders 

have been shown to alter the density and activity of dopamine D1 and D2 receptors, as well as the 

dopamine transporter (DAT)23,24. 

The potential genetic link and shared pathological mechanisms between ADHD and RLS prompted 

us to investigate whether there are common genetic variants underlying both disorders. In 2009, 

B.G. Schimmelmann and his team conducted a genome-wide association study (GWAS) involving 

224 families (including 386 children with ADHD and their parents)25. The study found no 

significant association between single nucleotide polymorphisms (SNPs) in known RLS risk genes 

(MEIS1, BTBD9, and MAP2K5) and ADHD. We hypothesize that the small sample size and 

limited target genes may have hindered the detection of potential positive results. 

With advancements in GWAS techniques and access to higher-quality data, we had the opportunity 

to explore the genetic mechanisms underlying the comorbidity of ADHD and RLS more 

thoroughly. This study proceeded in three stages. In stage one, we performed a genome-wide 

genetic correlation analysis to determine whether ADHD and RLS share a common genetic 

structure, which can result from pleiotropy (where a genetic variant affects both traits) and/or 

causality (where a genetic variant affects a trait via its effect on an intermediate trait). In stage two, 
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using cross-trait pleiotropic analysis under composite null hypothesis (PLACO) and systematic 

downstream analyses, we identified pleiotropic loci and shared genes between ADHD and RLS, 

focusing on those related to iron metabolism and dopaminergic neuron function. In stage three, 

Mendelian Randomization (MR) analysis leveraged its advantage of being less susceptible to 

confounding bias and reverse causation, allowing us to effectively explore the causal relationship 

between ADHD and RLS. Additionally, Network MR analysis further elucidated indirect causal 

pathways between these two diseases, such as whether RLS can lead to ADHD by inducing sleep 

disturbances. 

 

Methods 

1 Data characteristics 

This study is a secondary analysis of existing GWAS data, all of which were publicly available 

with no original data collection involved. Each included study received approval from their 

respective institutional ethics review committees, and informed consent was obtained from all 

participants. We selected data based on the following criteria: 1) European populations, 2) the 

largest publicly available datasets, and 3) minimal sample overlap in MR analysis. Detailed 

characteristics of the data used in this study are described in Table S1. 

1.1 ADHD 
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The GWAS data for ADHD were derived from three independent cohorts, totaling 225,543 

participants (38,691 cases and 186,843 controls)26. Specifically, participants from iPSYCH 

included 25,895 cases and 37,148 controls, with ADHD diagnosed by psychiatrists according to 

ICD-10 criteria (F90.0, F90.1, F98.8)27. Controls were randomly selected from the same 

nationwide birth cohort and did not have an ADHD diagnosis. In the deCODE cohort (8,281 cases 

and 137,993 controls), ADHD cases included individuals with a clinical diagnosis of ADHD (n = 

5,583) according to ICD-10 criteria (F90, F90.1, F98.8) or those prescribed medication specific for 

ADHD symptoms (n = 2,698). The control sample excluded individuals with diagnoses of 

schizophrenia, bipolar disorder, autism spectrum disorder, or self-reported ADHD symptoms or 

diagnosis. For the PGC cohort (4,515 cases and 11,702 controls), specific diagnostic criteria can be 

found in a previous study by Demontis et al28. 

1.2 RLS 

The GWAS data for RLS originated from six independent cohorts, totaling 480,982 participants 

(10,257 cases and 470,725 controls)29. Specifically: (1) The deCODE cohort (2,636 cases and 

11,448 controls) assessed RLS using a self-completed questionnaire based on the International 

RLS Study Group (IRLSSG) diagnostic criteria. (2) Participants in the INTERVAL study (3,065 

cases and 24,923 controls) and the DBDS cohort (1,379 cases and 25,186 controls) were assessed 

using the Cambridge-Hopkins RLS questionnaire (CH-RLSq). (3) In the UK Biobank cohort 

(1,916 cases and 406,649 controls), RLS status was determined using the ICD-10 code G25.8. (4) 

In the Donor InSight-III cohort (565 cases and 1,798 controls), RLS status was self-reported using 

a questionnaire developed as part of the RISE study, based on IRLSSG criteria and created in 
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collaboration with an RLS expert. (5) The Emory cohort (696 cases and 721 controls) had RLS 

status clinically verified by one of two clinicians and supplemented by objective measurements of 

periodic leg movements in sleep (PLMS) along with additional secondary and supportive 

diagnostic features. 

1.3 Confounders 

Through a systematic literature search, we identified six characteristics that might confound the 

relationship between ADHD and RLS: body mass index (BMI)30,31, smoking behavior32,33, serum 

vitamin D levels34,35, estimated glomerular filtration rate (eGFR)36,37, serum iron levels20-22, and 

dopaminergic dysfunction in the CNS17-19. These factors were adjusted in the MVMR analysis. 

Notably, dopaminergic neurons in the CNS primarily function by synthesizing and releasing 

dopamine, which cannot cross the blood-brain barrier. Unfortunately, we currently lack GWAS 

data describing dopaminergic dysfunction or cerebrospinal fluid (CSF) dopamine levels. 

Dopamine 3-O-sulfate is a major metabolite of dopamine, so we used CSF dopamine 3-O-sulfate 

levels to indirectly reflect dopaminergic function in the CNS38. 

1.4 Candidate mediators 

We explored the bidirectional indirect causal pathways between ADHD and RLS using Network 

MR analysis. All candidate mediators had to meet the following criteria, supported by previous 

literature: 1) they may be influenced by the exposure factors, and 2) they may affect the outcome 

factors. In the causal pathway from ADHD to RLS, we identified five personal behavior traits 

(smoking behavior, alcohol consumption, use of depression medications, age at first birth, and 
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multiple gestation), two mental illnesses (anxiety disorders and depression), six chronic diseases 

(obesity, type 2 diabetes mellitus, asthma, ischemic stroke, chronic kidney disease, and migraine), 

eight iron-sensitive imaging features, and nine DTI features as candidate mediators. Conversely, 

the pathway from RLS to ADHD included three sleep traits (combined sleep disorders, insomnia, 

and disorder of the sleep-wake rhythm), eight iron-sensitive imaging features, and nine DTI 

features. Detailed results of the literature search are provided in Table S10. 

2 Stage one: exploring shared genetic structure 

The flowchart of the entire study is shown in Figure 1. We used linkage disequilibrium score 

regression (LDSC, v1.0.01) to estimate the genome-wide genetic correlation between ADHD and 

RLS39, employing European ancestry genotype data from 1000 genomes as the reference panel40. 

High-definition likelihood (HDL) reduces the variance of genetic association estimates by about 60% 

compared to LDSC41. We performed HDL using the R package HDL-v1.4.0, utilizing 1,029,876 

well-imputed HapMap3 SNPs as the reference panel. 

3 Stage two: exploring genetic pleiotropy 

(1) PLACO identified pleiotropic SNPs between ADHD and RLS42. (2) Based on PLACO results, 

functional mapping and annotation (FUMA) characterized pleiotropic loci43. (3) Bayesian 

colocalization analysis using the "coloc" package (v5.2.1) identified shared causal variants in each 

pleiotropic locus44. We analyzed top SNPs within 250kb upstream and downstream of each locus, 

declaring a colocalized locus with a posterior probability of H4 (PP.H4) greater than 0.75. (4) 

Tissue enrichment analysis was conducted at the SNP level with 53 available tissue types from 
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GTEx (v.8) using MAGAMA method. (5) We mapped the identified pleiotropic SNPs into shared 

genes using MAGMA and gene mapping (including positional mapping, eQTL mapping, and 3D 

Chromatin Interaction mapping). (6) Using the "clusterProfiler" R package, we evaluated the 

functional enrichment of pleiotropic genes in KEGG45 and GO46 pathways. (7) We used the 

STRING (version 12.0) database for protein–protein interaction (PPI) analysis to identify the most 

closely connected pleiotropic genes47. Bonferroni correction was applied for multiple testing in all 

analyses. 

4 Stage Three: Exploring gene-driven causality 

In this stage, we primarily used the two-sample MR method to investigate the potential causalities 

between ADHD and RLS. This research adheres to the STROBE-MR guidelines48 (Table S5). 

4.1 Univariable MR 

Genetic variants were selected as instrumental variables (IVs) based on strong associations with 

the exposure (� �  5 � 10
��). The R² value of SNPs estimated the variance in exposure, and the 

F-statistic measured instrument strength. Only SNPs with F-statistic > 10 were included for 

analysis. Independent SNPs were clumped based on European ancestry reference data (1000 

Genomes Project, r² > 0.001, genomic region = 10,000 kb). To meet the independence assumption 

for MR analysis, 10 IVs for ADHD associated with BMI, serum 25-Hydroxyvitamin D levels, and 

stroke, and 2 IVs for RLS associated with BMI were excluded (Table S6) based on the LDtrait 

query (https://ldlink.nih.gov/?tab=ldtrait). 
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The Inverse-Variance Weighted (IVW) method49 was our primary analysis due to its accuracy and 

power when all selected SNPs are valid IVs. To ensure robustness, we applied eight secondary MR 

methods: Maximum Likelihood (ML)50, Weighted Median (WM)51, MR-Egger regression52, 

Constrained Maximum Likelihood - Model Average (cML-MA)50, contamination mixture method 

(ConMix)53, robust adjusted profile score (MR-RAPS) 54, debiased IVW (dIVW), and the Bayesian 

Weighted MR (BWMR)55. 

To clarify the direction of causality, we implemented the following measures: (1) excluded IVs 

significantly associated with the outcome (� �  5 � 10
��) 56, (2) further filtered IVs using the 

Steiger filtration57, (3) performed a Steiger test post-MR analysis to confirm the causal direction57, 

and (4) conducted reverse MR analysis. 

To ensure the robustness of our results, we employed several sensitivity analysis methods: (1) 

used different thresholds (� �  5 � 10
�� and � �  1 � 10

��) to extract IVs and calculated 

results accordingly, (2) utilized one primary and eight secondary analysis methods for robustness, 

(3) applied Cochran’s Q statistic to assess heterogeneity in IVW estimates, (4) evaluated horizontal 

pleiotropy using the p-value for the intercept in MR-Egger52 and the global test in MR-PRESSO58, 

(5) excluded outlier SNPs identified by MR-PRESSO and repeated the analysis with the remaining 

SNPs, and (6) used the leave-one-out method to determine if results were driven by any single 

SNP. 

4.2 Multivariable MR 
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We adjusted for six confounding factors in the bidirectional MVMR analysis. The IVW, Lasso, 

Weighted median, and MR-Egger methods estimated the causal effect. Pleiotropy was tested by 

comparing the MR-Egger intercept to zero. IVW was the primary method for estimating MVMR 

effects in the absence of pleiotropy. If pleiotropy was present, we used multivariable MR-Egger for 

estimation. 

4.3 Network MR 

We used Network MR to explore indirect effects in the bidirectional causal pathways between 

ADHD and RLS. This involved two procedures. First, MR assessed the effect of exposure on 

candidate mediators (β1). Then, mediators significantly associated with exposures were used as 

exposures to infer causalities between mediators and the outcome (β2). The magnitude of the 

mediating effect was evaluated using the product of coefficients method (β1×β2), ensuring the 

direction of the mediating effect aligned with the overall effect. The proportion of the mediating 

effect was calculated by dividing the mediating effect by the overall effect. The standard error of 

the mediating effect was derived using the delta method59. For each procedure's results, we 

conducted heterogeneity and horizontal pleiotropy analyses as sensitivity checks. 

4.4 Evaluation and correction for the bias from sample overlap 

We used the UVMR method to explore the causal relationship between ADHD and RLS, with both 

datasets containing participants from the deCODE cohort. The maximum sample overlap rate was 

2.38% (11,448 / 480,982)60. When evaluating the causal relationships between eight iron-sensitive 

imaging features, nine DTI features and RLS, the maximum sample overlap rates were 6.25% 
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(30,056 / 480,982) and 7.61% (36,642 / 480,982), respectively, due to probable common 

participants from the UK Biobank. Since these overlaps were relatively small, the resulting bias 

was deemed negligible61-63. However, when exploring the relationship between ADHD and the age 

of first birth, the maximum sample overlap rate was 25.42% (137,993 / 542,901) due to 

participants from the deCODE cohort. Additionally, when exploring the causality between the age 

of first birth and RLS, the maximum overlap rate was 32.86% ([11,448+166,944] / 542,901) due to 

participants from both the deCODE cohort and the UK Biobank. To ensure robust results, we used 

the MRlap method64,65 to correct for bias from sample overlap in these analyses. 

All MR analyses were conducted using R version 4.3.1, with the TwoSampleMR (0.5.7), 

MR-PRESSO, and MRlap (0.0.3) packages. 

 

Results 

1 Stage one: exploring shared genetic architecture 

The LDSC revealed a significant positive genetic correlation between ADHD and RLS (rg = 0.285, 

p = 9.19E-07). The HDL method produced similar results (rg = 0.271, P = 1.51E-05, Table 1). 

2 Stage two: exploring genetic pleiotropy 

2.1 Pleiotropic SNPs and risk loci 

PLACO was applied to identify pleiotropic variants between ADHD and RLS at SNP-level (Table 

S2). The Manhattan plot for the result is shown in Figure 2A. The QQ plots demonstrated no 
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premature divergence between observed and expected values, ruling out group stratification 

(Figure 2B). Based on PLACO results, we further identified five pleiotropic genetic loci using 

FUMA platform (Table 2). Colocalization analysis revealed a shared causal genetic variant, 

rs12336113 (PP.H4 = 0.78), between ADHD and RLS at locus 4. This variant is located in the 

intronic region of the PTPRD gene. Further tissue enrichment analysis identified that these 

pleiotropic SNPs are primarily enriched in various brain tissues (Figure 2C). 

2.2 Pleiotropic genes 

We used MAGMA gene analysis and gene-mapping methods to translate identified SNP-level 

signals into gene-level signals, identifying 14 significant pleiotropic genes between ADHD and 

RLS (Table S3). GO analysis of these genes revealed enrichment in functions related to the 

Schaffer collateral-CA1 synapse, glutamatergic synapse, and cell adhesion mediator activity 

(Figure 2D, Table S4). However, KEGG analysis was not significant after FDR correction. To 

further elucidate the relationships among these genes, we conducted PPI analysis, which revealed 

that six genes closely related to neuropsychiatric disorders (MEIS1, TOX3, BTBD9, SKOR1, 

PTPRD, MAP2K5) form an interaction network (Figure 2E).  

3 Stage three: exploring gene-driven causality 

3.1 Univariable MR 

Using a threshold of � �  5 � 10
�� for selecting IVs (Table S6), the results indicated that 

ADHD increases the risk of RLS (IVW: Odds ratio (OR) = 1.203, 95% confidence interval (CI) = 

1.058 to 1.368, P = 4.80 � 10
��, Figure 3A). Eight other MR methods produced consistent 
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estimates, with six reaching statistical significance. The reverse MR analysis showed that RLS also 

increases the risk of ADHD (IVW: OR = 1.039, 95% CI = 1.002 to 1.077, P = 3.92 � 10
��, 

Figure 3A), with consistent results from eight other MR methods, six of which were statistically 

significant. Sensitivity analyses suggested no heterogeneity or horizontal pleiotropy interference, 

and leave-one-out analysis confirmed that results were not driven by any single IV. The causal 

direction from exposure to outcome was validated by the Steiger test. Detailed sensitivity analysis 

results are in Table S7, 8. Additionally, when extracting IVs with more lenient criteria (P = 

 1 � 10
��), the estimates continued to support the bidirectional causal relationship between ADHD 

and RLS (Figure 3B). 

3.2 Multivariable MR 

After adjusting for BMI, smoking initiation, serum 25-hydroxyvitamin D levels, estimated 

glomerular filtration rate, serum ferritin levels, and CSF dopamine 3-O-sulfate levels, ADHD 

remained an independent risk factor for RLS (MVMR_IVW: OR = 1.143, 95% CI = 1.009 to 

1.295, P =  3.57 � 10
��). Similarly, the effect of RLS on ADHD remained robust (MVMR_IVW: 

OR = 1.085, 95% CI = 1.012 to 1.162, P =  2.11 � 10
��). The multivariable MR-Egger intercept 

term was close to zero, indicating no horizontal pleiotropy. However, the heterogeneity test 

indicated heterogeneity across all IVs, possibly due to the inclusion of too many IVs in the MVMR 

analysis (Table S9). 

3 Network MR 
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To explore the indirect causal pathways between ADHD and RLS, we conducted Network MR 

analysis. For the specific screening process of mediators, please refer to Tables S11,12. We finally 

found that ADHD can indirectly increase the risk of RLS by advancing the age at first birth 

(indirect effect =0.021, 95% CI = 0.001 to 0.042, P = 3.76 × 10
��, proportion = 11.62%, Figure 

4A, C). Considering the sample overlap between exposure and mediator (25.42% 

[137,993/542,901]), and between mediator and outcome (32.86% [166,944/542,901 + 

11,448/542,901]), we used the MRlap method to correct for bias from sample overlap and 

re-estimated the causal effect. The mediating effect remained significant (indirect effect = 0.021, 

95% CI = 0.001 to 0.040, P = 2.36 × 10
��, proportion = 4.13%). 

We also found that RLS can indirectly lead to ADHD by reducing fractional anisotropy (FA) in the 

body of the corpus callosum (indirect effect =0.006, 95% CI = 0.000 to 0.012, P = 3.32 × 10
��, 

proportion = 16.67%, Figure 4B, C). To further analyze the specific changes in body of corpus 

callosum, we divided it into five principal components (PCs) and included them in the Network 

MR analysis. We found that RLS can indirectly lead to ADHD by reducing the first FA PC in the 

body of the corpus callosum (indirect effect =0.006, 95% CI = 0.000 to 0.013, P = 3.82 × 10
��). 

Additionally, we included the axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity 

(MD) values of the body of the corpus callosum in the Network MR analysis and found that RLS 

increases the mean RD in the body of the corpus callosum (IVW: Beta = 0.027, 95% CI = 0.002 to 

0.052, P = 3.35 × 10
��), which in turn promotes the occurrence of ADHD (IVW: Beta = 0.135, 95% 

CI = 0.020 to 0.248, P = 2.14 × 10
��, Figure 4D). These analyses showed no heterogeneity or 
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horizontal pleiotropy in the MR results between exposure and mediator, and between mediator and 

outcome (Table S13). 

 

Discussion 

This study investigates the genetic mechanisms underlying the comorbidity of ADHD and RLS, 

divided into three stages. In stage one, a genome-wide genetic correlation analysis revealed a 

shared genetic structure between the two diseases. Considering this could result from genetic 

pleiotropy and/or causality, we conducted further analyses. In stage two, comprehensive analyses 

identified pleiotropic genetic variants, risk loci, shared genes, and biological pathways. In stage 

three, MR analysis demonstrated a bidirectional causal relationship between ADHD and RLS. 

ADHD can indirectly promote the onset of RLS by advancing the age at first birth. Conversely, 

RLS can indirectly contribute to the onset of ADHD by reducing FA in the body of the corpus 

callosum, with the most significant changes in PC 1. In this process, the increase in RD, rather than 

the decrease in AD, plays a crucial role. 

1 Genetic pleiotropy 

Previous GWAS studies did not find significant associations between SNPs in RLS risk genes and 

ADHD, possibly due to a small sample size (sample size = 386) and the limited number of target 

genes (only MEIS1, BTBD9, and MAP2K5). Our research is based on the latest GWAS data and 

analysis methods. Through cross-trait PLACO analysis, we identified five shared genetic risk loci 

between ADHD and RLS. Colocalization analysis indicated that one of these loci (locus 4, PP.H4 
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= 0.78) contains a shared causal variant, rs12336113, located in an intron of the PTPRD gene. 

Subsequently, using Gene-mapping and MAGMA methods, we identified 14 potential shared 

genes between these two disorders. PPI analysis showed that six of these genes—PTPRD, MEIS1, 

MAP2K5, SKOR1, BTBD9, and TOX3—are closely connected. 

The PTPRD gene encodes the protein tyrosine phosphatase receptor type delta, which is highly 

expressed in brain tissue and is associated with spatial learning, synaptic plasticity, and motor 

neuron axon guidance66-68. A study on the role of structural variation in ADHD (including 335 

ADHD patients and their parents, and 2026 healthy controls) found four independent deletions 

within the PTPRD gene69, further validated by quantitative PCR. Given that PTPRD has been 

identified as a candidate gene for RLS70, and two out of four ADHD probands with PTPRD 

deletions reported RLS symptoms, this study suggests a possible link between PTPRD and the 

comorbidity of ADHD and RLS. Our findings further support this hypothesis. Additionally, the 

shared genetic variant rs12336113, located in an intron of PTPRD, may contribute to both ADHD 

and RLS by regulating PTPRD expression. 

Furthermore, we identified five genes closely related to PTPRD: MEIS1, MAP2K5, SKOR1, 

BTBD9, and TOX3. These genes are highly expressed in brain tissue and are associated with 

embryonic neuronal development, iron metabolism, dopamine synthesis, and the pathogenesis of 

RLS37. The interactions and regulatory relationships of these genes with PTPRD, as well as their 

roles in the comorbidity of ADHD and RLS, require further investigation. 

2 Gene-driven causality 
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A large cross-sectional study of Danish blood donors (who are generally required to be healthy, 

particularly with normal iron levels) with a sample size of 25,336 found a strong association 

between ADHD and RLS even after adjusting for BMI and smoking factors and excluding the 

interference of iron metabolism disorders71. This suggests that, in addition to shared pathogenesis, 

there may be a causal relationship between these two conditions. MR analysis uses SNPs as 

instrumental variables for causal inference. Since the allocation of SNPs is entirely random, 

unaffected by confounding factors, and occurs before the outcome, MR results are less prone to 

confounding bias and reverse causation compared to observational studies. 

2.1 ADHD, age at first birth, and RLS 

As previously mentioned, numerous studies have shown a significantly higher prevalence of RLS 

in patients with ADHD, as well as a higher incidence of RLS in the parents of children with 

ADHD. Through MR analysis, we identified ADHD as an independent risk factor for RLS. This 

finding is supported by various models, passed the Steiger test for directionality, and is robust to 

heterogeneity, horizontal pleiotropy, and outliers tests. It remains consistent under different 

selection criteria for instrumental variables. Even after adjusting for BMI, smoking initiation, 

serum 25-hydroxyvitamin D levels, estimated glomerular filtration rate, serum ferritin levels, and 

CSF dopamine 3-O-sulfate levels in multivariable MR analysis, the association remains, further 

enhancing the credibility of our conclusion. Additionally, network MR analysis revealed that 

ADHD might indirectly promote RLS onset by advancing the age at first birth. 
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Previous cross-sectional, cohort, and genetic studies support that ADHD is an independent risk 

factor for early childbearing, possibly due to increased libido and risk-taking behavior leading to 

unintended pregnancies72-75. Previous research also supports pregnancy history as an independent 

risk factor for RLS76,77. Women without a history of pregnancy have RLS incidence rates similar to 

men, while women with a pregnancy history have significantly higher rates of RLS78. Furthermore, 

the risk of future RLS increases with each subsequent pregnancy79. This may be due to long-term 

effects of iron deficiency, vitamin D deficiency, hormonal changes, and weight gain during 

pregnancy80. Thus, women who have children at a younger age may be exposed to the risks 

associated with pregnancy for a longer period, leading to a cumulative effect that ultimately 

increases the incidence of RLS. From another perspective, early childbearing is closely related to 

adverse maternal health outcomes. Studies have shown that early childbearing increases the risk of 

obesity, diabetes, and COPD in mothers81-84, which are significant risk factors for RLS31,85-87. 

Therefore, we believe that ADHD may increase the risk of RLS by advancing the age at first birth. 

However, it should be noted that this explanation only addresses the indirect causal pathway for 

female ADHD patients developing RLS. Whether this pathway applies to males requires further 

research. Additionally, the relationship between age at first birth and RLS needs more validation 

from observational studies. 

2.2 RLS, demyelination of the corpus callosum body, and ADHD 

Over a long-term follow-up, a large cohort study focusing on Australian children (sample size = 

2120)88 and another on 7072 Chinese adolescents89 both support RLS as an independent risk factor 

for future ADHD. Through MR analysis, we also found that RLS can promote the onset of ADHD. 
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This conclusion was supported by various sensitivity analyses and remained robust after adjusting 

for multiple confounding factors in multivariable MR analysis. 

Patients with ADHD and RLS may both exhibit changes in white matter tracts. Previous DTI 

studies found reduced FA values in the corpus callosum of RLS patients90. Byeong-Yeul Lee and 

his team identified a reduction in the body of the corpus callosum through thickness analysis91, 

while Deniz Sigirli and his team found significant changes in the posterior midbody of the corpus 

callosum through shape analysis92. A large meta-analysis encompassing 32 datasets (26 involving 

children and 6 involving adults) showed that one of the most significant and consistent white 

matter changes in ADHD patients is the reduced FA value in the body of the corpus callosum93. 

These studies suggest that changes in the corpus callosum body fibers are a common pathological 

feature of both diseases. Network MR analysis further revealed that RLS can indirectly contribute 

to the onset of ADHD by reducing FA in the body of the corpus callosum, with the most 

significant changes in PC 1. In this process, the increase in RD, rather than the decrease in AD, 

plays a crucial role. 

FA, AD, and RD are common parameters in DTI. FA reflects the degree of water molecule 

diffusion anisotropy; its reduction indicates disruption in the integrity and organization of white 

matter fibers. RD reflects the diffusion of water molecules perpendicular to the main fiber 

direction; its increase is mainly seen in demyelination and less frequently in axonal damage. AD 

indicates the diffusion of water molecules parallel to the main fiber direction; its reduction 

primarily reflects axonal damage. Therefore, reduced FA and increased RD in the body of the 

corpus callosum, without significant changes in AD, suggest demyelination in this region. Animal 
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and clinical studies have shown that iron metabolism abnormalities can cause brain 

demyelination94-97. A study examining postmortem brain tissue samples of RLS patients (n=11) 

and healthy controls (n=11) using WB found less myelin and loss of myelin integrity in RLS brains, 

coupled with decreased ferritin and transferrin in the myelin fractions98. The body of the corpus 

callosum comprises highly myelinated fibers that interconnect the two cerebral hemispheres, 

playing a crucial role in sensory integration, motor coordination99, and emotional-cognitive 

regulation100. Our study suggests that demyelination in the corpus callosum body of RLS patients 

may indirectly lead to the development of ADHD. The specific relationship between 

demyelination, iron metabolism disorders, and these two diseases is an intriguing area for future 

research. 

3 Limitations 

Our study has the following limitations: (1) The GWAS data used in our analysis are derived from 

European populations, limiting the generalizability of our conclusions. (2) Observational studies 

indicate that the association between different ADHD subtypes and RLS varies in strength, which 

needs further clarification through stratified GWAS analyses in the future. (3) Some MR analyses 

may be affected by mild sample overlap. We have rigorously assessed the overlap rate and 

corrected the results using relevant algorithms (MRlap) when necessary. (4) Dopaminergic system 

dysfunction may be a common pathological change between ADHD and RLS. However, in the 

GWAS database, we currently lack a better marker than CSF dopamine 3-O-sulfate levels to 

describe this change. Thus, when using MR analysis to explore the causal relationship between 

ADHD and RLS, we cannot entirely rule out the possibility of pleiotropic IVs. Nevertheless, 
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considering we employed multiple models robust to horizontal pleiotropy and the results remained 

stable, this issue is not overly concerning. (5) From a triangulation of evidence perspective, we 

urge future observational studies to further verify the following MR analysis results: A. Explore 

whether ADHD can be an independent risk factor for RLS in cohort studies; B. Determine 

whether early childbearing is an independent risk factor for RLS. (6) We also call for future 

research to further elucidate the potential roles of the PTPRD gene, iron metabolism disorders, and 

demyelination of the corpus callosum body in the comorbidity of ADHD and RLS. 

 

Conclusions 

ADHD and RLS share a common genetic structure, with PTPRD being the most strongly 

supported pleiotropic gene. The potential roles of other genes require further investigation. There 

is a gene-driven bidirectional causal relationship between ADHD and RLS. ADHD may indirectly 

promote the onset of RLS by advancing the age of first birth, while RLS may indirectly contribute 

to the development of ADHD by causing demyelination in the body of the corpus callosum. 
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Tables 

 

Table1. Genome-wide genetic correlation between ADHD and RLS using LDSC and 
HDL 

Diseases LDSC  HDL 

  h2 Rg se P  h2 Rg se P 

ADHD 0.086 
0.285 0.058 9.19E-07 

 0.103 
0.271 0.063 1.51E-05 

RLS 0.007  0.006 

Abbreviations: ADHD Attention deficit hyperactivity disorder, HDL High-definition 
likelihood method, h2 heritability, LDSC Linkage disequilibrium score regression, 
Rg genetic correlation estimate, RLS Restless legs syndrome, se standard error. 

 

 

 

 

 

Figure captions 

Table 2. Colocalized loci identified by PLACO and colocalization analysis between ADHD and RLS  

Locus Top SNP  Locus boundary 
Effect 

allele 

Other 

allele 
P_PLACO Nearest gene 

Function of top 

SNP 
PP.H4 

1 rs12049261 1:107180648-107401497 C G 9.99E-10 RP11-478L17.1 Intergenic 9.16E-03 

2 rs11679120 2:66728627-66816983 A G 1.50E-22 MEIS1 Intronic 6.13E-02 

3 rs10815977 9:8858688-8865153 A G 2.72E-08 PTPRD:RP11-75C9.1 ncRNA_exonic 1.66E-02 

4 rs12336113 9:9155721-9161855 A G 5.00E-08 PTPRD Intronic 7.82E-01 

5 rs4275804 15:67687968-68124665 C T 2.47E-08 IQCH Intronic 7.17E-02 

Locus boundary of each pleiotropic genomic risk locus was denoted as “chromosome: start-end” defined by FUMA for the corresponding 

trait pair. Abbreviations: PP.H4, Posterior Probability of Hypothesis 4 
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Figure 1 depicts the study design. CSF Cerebrospinal fluid, IVs Instrumental variables, SNP Single 

nucleotide polymorphism. 

Figure 2 shows the results of the genetic pleiotropy analysis in stage two. A-B: The Manhattan plot 

and Q-Q plot based on the results of PLACO. C: Tissue enrichment results based on pleiotropic 

SNPs. D-E: Functional enrichment and PPI analysis results based on pleiotropic genes. 

Figure 3 shows the results of the gene-driven causality analysis. A: Results from the UVMR 

analysis using a threshold of 5 � 10
�� for extracting IVs. B: Results from the UVMR analysis 

using a threshold of 1 � 10
�� for extracting IVs. C: Results from the MVMR analysis. 

Figure 4 shows the bidirectional, indirect causal pathways between ADHD and RLS. A: Indirect 

causal pathway between ADHD, age at first birth, and RLS. B: Indirect causal pathway between 

RLS, FA in the body of the corpus callosum, and ADHD. C: Forest plot illustrating the 

relationships between exposure, mediator, and outcome. D: Forest plot displaying the potential 

mediating effects of various PCs of FA, as well as AD, RD, and MD, in the body of the corpus 

callosum. PC Principal component, FA Fractional anisotropy, MD Mean diffusivity, AD Axial 

diffusivity, RD Radial diffusivity. 
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Conclusions:
1. Stage one: There is a genome-wide genetic correlation between ADHD and RLS.
2. Stage two: 5 shared genetic risk loci between ADHD and RLS have been identified, with 1 locus (PTPRD) supported by colocalization results. 14 shared genes have been identified, 6 of which (PTPRD, MEIS1, 

MAP2K5, SKOR1, BTBD9, TOX3) show close association in PPI analysis.
3. Stage three: A bidirectional causal relationship exists between ADHD and RLS. ADHD can indirectly promote the onset of RLS by advancing the age at first birth. Conversely, RLS can indirectly promote the 

onset of ADHD by disrupting the integrity of the body of corpus callosum; demyelination may play a critical role in this process.

Stage three:
Exploring gene-driven causality

Step 1: Univariate MR

Selection of IVs
(1) Genome-wide significance: 5 ×
10
(2)  Exclude IVs closely related to the 
outcome ( 5 × 10 )
(3) LD proning: r² < 0.001, kb = 10000
(4) IVs strength: F-statistic > 10
(5) Eliminate SNPs linked to 
confounding factors using LDtrait
(6) Steiger test for selection

Analysis models
(1) Inverse variance weighted (main)
(2) MR Maximum likelihood
(3) MR Egger
(4) Weighted median
(5) Contamination mixture method
(6) MR Robust adjusted profile score
(7) Debiased inverse-variance weighted
(8) Constrained maximum likelihood
(9) Bayesian Weighted MR

Sensitivity analysis

(1) Heterogeneity: Cochran’s Q

(2) Pleiotropy: MR-Egger intercept; MR-

PRESSO global test

(3) Outliers: MR-PRESSO

(4) Leave-one-out test

(5) Total Steiger test

Bidirectional MR analysis
(1) Exposure: ADHD
Outcome: RLS
(2) Exposure: RLS
Ourcome: ADHD

Replication analysis
(1) Filtering IVs with P < 1 × 10
(2)  The remaining analysis steps are 
consistent with the aforementioned 
process

Step 2: Multivariate MR

Adjusting for potential confounders
(1) Body mass index
(2) Smoking initiation
(3) Serum 25-Hydroxyvitamin D levels
(4) Estimated glomerular filtration rate
(5) Serum ferritin levels
(6) CSF dopamine 3-O-sulfate levels

Bidirectional MR analysis

(1) ADHD and potential confounders as 

the exposure, RLS as the outcome

(2) RLS and potential confounders as the 

exposure, ADHD as the outcome

Restless legs syndrome (RLS)
N-case = 10257

N-control = 470725
PMID = 33239738

Attention deficit hyperactivity disorder (ADHD)
N-case = 38691

N-control = 186843
PMID = 36859734

Q1: Shared genetic architecture ?

Stage one:
Global genetic correlation analysis at genome-wide

Step 1:
Linkage disequilibrium score regression

(LDSC, P < 0.05)

Step 2:
High-definition likelihood method

(HDL, P < 0.05)

Q2: Pleiotropy or / and causality ?

Stage two:
Exploring genetic pleiotropy

Step 1:
Identification of pleiotropic 
variants through pleiotropic 

analysis under composite null 
hypothesis (PLACO)

Step 2:
Identification of pleiotropic loci 
through the functional mapping 

and annotation (FUMA) 
platform

Step 3:
Identification of shared causal 
variants in each locus through 

co-localization analysis (within 
±250kb of the top SNP)

Step 4:

MAGMA tissue expression 

analysis at SNP-level using 

GTEx v8 data for 53 tissue types

Step 6:

GO and KEGG functional 

pathway enrichment analysis 

based on the pleiotropic genes

Step 7:
Further selection of closely 

related pleiotropic genes through 
protein-protein interaction (PPI) 

analysis

Step 5:
Identification of pleiotropic 
genes through MAGMA and 

gene-mapping techniques 
(including positional mapping, 

eQTL mapping, and 3D 
Chromatin Interaction mapping)

Step 3: Network MR

ADHD→ Mediators→RLS
Candidate mediators (30):
(1) Personal behaviors (5)
(2) Mental illness (2)
(3) Chronic diseases (6)
(4) Iron-sensitive imaging features (8) 
(5) DTI FA features (9)

RLS→ Mediators→ADHD
Candidate mediators (20):
(1) Sleep traits (3)
(2) Iron-sensitive imaging features (8) 
(3) DTI FA features (9)

RLS→Body of corpus callosum (BCC) 
traits→ADHD

Candidate mediators (8):
(1) AD in BCC
(2) RD in BCC
(3) MD in  BCC
(4) 5 Principal Component of 5 FA in 
BCC

Further 

analysis
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Exposure
ADHD

RLS

Outcome
RLS

ADHD

nSNPs
16

13

Method
Inverse variance weighted (IVW)
MR Maximum likelihood (MR-ML)
MR Egger
Weighted median (WM)
Contamination mixture method (ConMix)
MR Robust adjusted profile score (MR-RAPS)
Debiased inverse-variance weighted method (dIVW)
Constrained maximum likelihood (cML)
Bayesian Weighted Mendelian Randomization (BWMR)
Inverse variance weighted (IVW)
MR Maximum likelihood (MR-ML)
MR Egger
Weighted median (WM)
Contamination mixture method (ConMix)
MR Robust adjusted profile score (MR-RAPS)
Debiased inverse-variance weighted method (dIVW)
Constrained maximum likelihood (cML)
Bayesian Weighted Mendelian Randomization (BWMR)

beta
0.185
0.189
0.339
0.158
0.243
0.189
0.19

0.182
0.186
0.038
0.039
0.045
0.052
0.051
0.043
0.039
0.039
0.039

se
0.066
0.067
0.243
0.089
0.099
0.07

0.068
0.07

0.068
0.019
0.018
0.039
0.024
0.018
0.018
0.018
0.02

0.018

or (or_lci95, or_uci95)
1.203  (1.058 , 1.368 )
1.209  (1.060 , 1.377 )
1.404  (0.872 , 2.260 )
1.171  (0.985 , 1.393 )
1.275  (1.049 , 1.550 )
1.208  (1.053 , 1.385 )
1.209  (1.059 , 1.381 )
1.200  (1.046 , 1.377 )
1.204  (1.054 , 1.375 )
1.039  (1.002 , 1.077 )
1.039  (1.004 , 1.077 )
1.046  (0.970 , 1.129 )
1.053  (1.006 , 1.103 )
1.052  (1.016 , 1.089 )
1.044  (1.007 , 1.083 )
1.039  (1.003 , 1.077 )
1.039  (0.999 , 1.081 )
1.040  (1.003 , 1.077 )

P_value
4.80E-03*
4.50E-03*
1.84E-01
7.40E-02
2.42E-02*
6.90E-03*
5.12E-03*
9.18E-03*
6.29E-03*
3.92E-02*
3.07E-02*
2.66E-01
2.70E-02*
1.32E-02*
1.85E-02*
3.19E-02*
5.52E-02
3.14E-02*

0.85 1 1.5
Odds Ratio (95%CI)

A

B
Exposure

ADHD

RLS

Outcome
RLS

ADHD

nSNPs
150

44

Method
Inverse variance weighted (IVW)
MR Maximum likelihood (MR-ML)
MR Egger
Weighted median (WM)
Contamination mixture method (ConMix)
MR Robust adjusted profile score (MR-RAPS)
Debiased inverse-variance weighted method (dIVW)
Constrained maximum likelihood (cML)
Bayesian Weighted Mendelian Randomization (BWMR)
Inverse variance weighted (IVW)
MR Maximum likelihood (MR-ML)
MR Egger
Weighted median (WM)
Contamination mixture method (ConMix)
MR Robust adjusted profile score (MR-RAPS)
Debiased inverse-variance weighted method (dIVW)
Constrained maximum likelihood (cML)
Bayesian Weighted Mendelian Randomization (BWMR)

beta
0.088
0.09

0.147
0.151
0.258
0.109
0.092
0.102
0.094
0.039
0.039
0.058
0.055
0.064
0.047
0.04

0.044
0.04

se
0.028
0.026
0.101
0.04

0.041
0.031
0.029
0.031
0.03

0.014
0.014
0.029
0.02

0.013
0.014
0.014
0.016
0.015

or (or_lci95 , or_uci95)
1.092  (1.034 , 1.154 )
1.094  (1.040 , 1.152 )
1.159  (0.951 , 1.412 )
1.163  (1.077 , 1.257 )
1.294  (1.195 , 1.402 )
1.115  (1.049 , 1.185 )
1.096  (1.035 , 1.161 )
1.108  (1.042 , 1.177 )
1.098  (1.036 , 1.164 )
1.040  (1.011 , 1.068 )
1.040  (1.013 , 1.069 )
1.059  (1.000 , 1.122 )
1.056  (1.015 , 1.099 )
1.066  (1.040 , 1.093 )
1.049  (1.020 , 1.078 )
1.040  (1.012 , 1.070 )
1.045  (1.012 , 1.079 )
1.041  (1.010 , 1.072 )

P_value
1.71E-03*
5.51E-04*
1.45E-01
1.28E-04*
4.14E-08*
4.58E-04*
1.74E-03*
1.01E-03*
1.72E-03*
5.74E-03*
4.16E-03*
5.64E-02
6.72E-03*
1.59E-04*
8.87E-04*
5.23E-03*
6.90E-03*
7.91E-03*

0.85 1 1.5
Odds Ratio (95%CI)

(UVMR, IVs Threshold: P < 5e-8)

(UVMR, IVs Threshold: P < 1e-5)

Method
MVMR
-IVW

Outcome
RLS

ADHD

nSNPs
377

374

Exposure
ADHD
Body mass index 
Smoking initiation 
Serum 25-Hydroxyvitamin D levels 
Estimated glomerular filtration rate 
Serum ferritin levels
CSF dopamine 3-O-sulfate levels
RLS
Body mass index 
Smoking initiation 
Serum 25-Hydroxyvitamin D levels 
Estimated glomerular filtration rate 
Serum ferritin levels
CSF dopamine 3-O-sulfate levels

beta
0.134
0.009
-0.079
-0.014
0.506
-0.323
-0.039
0.081
0.336
0.819
0.079
-0.315
0.091
0.037

se
0.064
0.071
0.133
0.12

0.574
0.114
0.027
0.035
0.055
0.089
0.087
0.432
0.085
0.02

or (or_lci95, or_uci95)
1.143  (1.009 , 1.295 )
1.009  (0.878 , 1.158 )
0.924  (0.712 , 1.199 )
0.986  (0.779 , 1.247 )
1.658  (0.538 , 5.106 )
0.724  (0.579 , 0.904 )
0.962  (0.913 , 1.015 )
1.085  (1.012 , 1.162 )
1.399  (1.257 , 1.558 )
2.267  (1.903 , 2.701 )
1.083  (0.913 , 1.284 )
0.730  (0.313 , 1.701 )
1.095  (0.927 , 1.294 )
1.037  (0.998 , 1.079 )

P_value
3.57E-02*
9.03E-01
5.53E-01
9.05E-01
3.78E-01
4.43E-03*
1.54E-01
2.11E-02*
9.18E-10*
5.17E-20*
3.61E-01
4.65E-01
2.85E-01
6.52E-02

0.5 1 2.5
Odds Ratio (95%CI)

MVMR
-IVW

C (MVMR)
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β1: -0.255 (-0.347, -0.164)
P: 4.17E-08*

Exposure
ADHD

A

β2: -0.08 (-0.157, -0.011)
P: 2.46E-02*Indirect effect

β1*β2: 0.021 (:0.001, 0.042)
P: 3.76E-02*

Total effect
β: 0.185 (0.056, 0.313) P: 4.80E-03*

Outcome
RLS

Mediator
Age at first birt

β1: -0.038 (-0.065, -0.012)
P: 4.19E-03*

Exposure
RLS

B

β2: -0.166 (-0.269, -0.064)
P: 1.45E-03*Indirect effect

β1*β2: 0.006 (:0.000, 0.012)
P: 3.32E-02*

Total effect
β: 0.038 (0.002, 0.075) P: 3.92E-02*

Outcome
ADHD

Mediator
FA in Body of corpus 

callosum

Exposure

Attention deficit hyperactivity disorder

Age at first birth

Restless legs syndrome

Mean FA of body of corpus callosum

Outcome

Age at first birth

Restless legs syndrome

Mean FA of body of corpus callosum

Attention deficit hyperactivity disorder

Method

Inverse variance weighted (IVW)

MRlap (adjusting for oversample)

Weighted median (WM)

MR Maximum likelihood (MR-ML)

Bayesian Weighted Mendelian Randomization (BWMR)

Inverse variance weighted (IVW)

MRlap (adjusting for oversample)

Weighted median (WM)

MR Maximum likelihood (MR-ML)

Bayesian Weighted Mendelian Randomization (BWMR)

Inverse variance weighted (IVW)

MR Egger

Weighted median (WM)

MR Maximum likelihood (MR-ML)

Bayesian Weighted Mendelian Randomization (BWMR)

Inverse variance weighted (IVW)

MR Egger

Weighted median (WM)

MR Maximum likelihood (MR-ML)

Bayesian Weighted Mendelian Randomization (BWMR)

nSNPs

16

16

16

16

16

56

56

56

56

56

15

15

15

15

15

13

13

13

13

13

Beta (95%CI)

-0.256  (-0.347 , -0.164 )

-0.332  (-0.454 , -0.209 )

-0.271  (-0.380 , -0.161 )

-0.253  (-0.332 , -0.174 )

-0.259  (-0.354 , -0.164 )

-0.084  (-0.157 , -0.011 )

-0.062  (-0.111 , -0.013 )

-0.047  (-0.153 , 0.059 )

-0.083  (-0.153 , -0.014 )

-0.086  (-0.164 , -0.008 )

-0.038  (-0.065 , -0.012 )

-0.038  (-0.095 , 0.018 )

-0.045  (-0.079 , -0.010 )

-0.038  (-0.065 , -0.012 )

-0.039  (-0.065 , -0.012 )

-0.166  (-0.268 , -0.064 )

-0.347  (-0.930 , 0.237 )

-0.124  (-0.258 , 0.010 )

-0.163  (-0.267 , -0.059 )

-0.168  (-0.274 , -0.063 )

P_value

4.17E-08*

9.47E-08*

1.36E-06*

3.79E-10*

9.24E-08*

2.46E-02*

1.24E-02*

3.83E-01

1.89E-02*

3.01E-02*

4.19E-03*

2.04E-01

1.06E-02*

4.34E-03*

4.43E-03*

1.45E-03*

2.69E-01

6.90E-02

2.10E-03*

1.73E-03*

-0.5 0 0.1
Odds Ratio (95%CI)

Method
IVW

Exposure
RLS
Mean AD of body of corpus callosum
RLS
Mean RD of body of corpus callosum
RLS
Mean MD of body of corpus callosum
RLS
First FA PC in body of corpus callosum
RLS
Second FA PC in body of corpus callosum
RLS
Third FA PC in body of corpus callosum
RLS
Fourth FA PC in body of corpus callosum
RLS
Fifth FA PC in body of corpus callosum

Outcome
Mean AD of body of corpus callosum
ADHD
Mean RD of body of corpus callosum
ADHD
Mean MD of body of corpus callosum
ADHD
First FA PC in body of corpus callosum
ADHD
Second FA PC in body of corpus callosum
ADHD
Third FA PC in body of corpus callosum
ADHD
Fourth FA PC in body of corpus callosum
ADHD
Fifth FA PC in body of corpus callosum
ADHD

nSNPs
16
11
16
12
16
8

16
11
16
4

16
9

14
8

16
26

Beta (95%CI)
0.002  (-0.025 , 0.028 )
0.037  (-0.100 , 0.174 )
0.027  (0.002 , 0.052 )
0.135  (0.020 , 0.248 )
0.024  (0.000 , 0.048 )
0.109  (-0.042 , 0.261 )

-0.036  (-0.062 , -0.011 )
-0.179  (-0.292 , -0.067 )
0.003  (-0.024 , 0.029 )
0.054  (-0.147 , 0.255 )

-0.035  (-0.064 , -0.006 )
-0.157  (-0.459 , 0.143 )
0.006  (-0.020 , 0.032 )
-0.041  (-0.179 , 0.097 )
0.023  (-0.003 , 0.050 )
-0.092  (-0.226 , 0.043 )

P_value
9.10E-01
5.95E-01
3.35E-02*
2.14E-02*
5.48E-02
1.56E-01
5.67E-03*
1.75E-03*
8.53E-01
6.00E-01
1.69E-02*
3.06E-01
6.65E-01
5.59E-01
8.61E-02
1.82E-01

-0.2 0 0.3
Odds Ratio (95%CI)

C

D
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