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Fine-mapping and gene-prioritisation techniques applied to the latest Genome-Wide Association 

Study (GWAS) results have prioritised hundreds of genes as causally associated with disease. 

Here we leverage these recently compiled lists of high-confidence causal genes to interrogate 

where in the body disease genes operate. Specifically, we combine GWAS summary statistics, 

gene prioritisation results and gene expression RNA-seq data from 46 tissues and 204 cell 

types in relation to 16 major diseases (including 8 cancers). In tissues and cell types with well-

established relevance to the disease, the prioritised genes typically have higher absolute and 

relative (i.e. tissue/cell specific) expression compared to non-prioritised ‘control’ genes. 

Examples include brain tissues in psychiatric disorders (P-value < 1x10-7), microglia cells in 

Alzheimer’s Disease (P-value = 9.8x10-3) and colon mucosa in colorectal cancer (P-value < 

1x10-3). We also observe significantly higher expression for disease genes in multiple tissues 

and cell types with no established links to the corresponding disease. While some of these 

results may be explained by cell types that span multiple tissues, such as macrophages in brain, 

blood, lung and spleen in relation to Alzheimer’s disease (P-values < 1x10-3), the cause for 

others is unclear and motivates further investigation that may provide novel insights into disease 

etiology. For example, mammary tissue in Type 2 Diabetes (P-value < 1x10-7); reproductive 

tissues such as breast, uterus, vagina, and prostate in Coronary Artery Disease (P-value < 

1x10-4); and motor neurons in psychiatric disorders (P-value < 3x10-4). In the GTEx dataset, 

tissue type is the major predictor of gene expression but the contribution of each predictor 

(tissue, sample, subject, batch) varies widely among disease-associated genes. Finally, we 

highlight genes with the highest levels of gene expression in relevant tissues to guide functional 

follow-up studies. Our results could offer novel insights into the tissues and cells involved in 

disease initiation, inform drug target and delivery strategies, highlighting potential off-target 

effects, and exemplify the relative performance of different statistical tests for linking disease 

genes with tissue and cell type gene expression. 
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Introduction  1 

Genome-wide association studies (GWAS) for complex diseases have identified thousands of 2 

risk loci in the last two decades1. An important first step in translating GWAS findings into 3 
biological and clinical insights is to take broadly identified risk loci, incorporating associations 4 

across usually many genes due to linkage disequilibrium (LD), and interrogate them to pin-point 5 

the causal variants and genes. To identify causal disease genes, fine-mapping and gene 6 

prioritisation strategies have been developed2 and - only in recent years - lists of high-7 

confidence causal genes for multiple diseases have been compiled3–11. Since (i) the probability 8 

of success in drug development increases with support for the relevant gene in GWAS12, and (ii) 9 

tissue-specific genes are more likely to become drug targets than broadly expressed genes13–15, 10 
profiling the gene expression of these disease-associated genes across multiple tissues and cell 11 

types could aid the development of new drugs16,17 and limit off-target effects18,19. However, a 12 
systematic characterisation of gene expression for GWAS prioritised genes has yet to be 13 

performed. 14 
 15 
While understanding the specific cell types involved in disease and their spatial distribution has 16 
been of intense interest in recent years20–25, owing to the technological and computational 17 

advances of single-cell genomics (reviewed here26), we first focus here on identifying the 18 
relevant tissues in which disease-associated genes are expressed. Tissues known to be 19 
implicated in diseases serve as positive controls, essential to benchmark and optimise 20 

approaches that assess the relevance of cell and tissue types. Such positive controls are scarce 21 
for cell types27,28. Moreover, growing evidence highlights the intricate interconnections among 22 
the body’s various systems (nervous, immune, metabolic, hematopoietic, endocrine), 23 
suggesting that multiple tissues could typically be involved in disease29–31. After investigating 24 

tissues, we apply the same systematic approach at the higher resolution of the cell type. 25 
 26 

In this study, we characterise the tissues and cell types in which disease-associated genes are 27 

expressed. Our primary analysis uses three alternative approaches that leverage RNA-seq and 28 

GWAS data: the first - that we call “from GWAS to Gene Expression” - interrogates whether 29 

genes prioritised as causal in the latest landmark GWAS of major diseases have distinct gene 30 

expression features from those of other protein-coding genes (Fig 1a). The second approach - 31 

that we call “from Gene Expression to GWAS” - examines whether high-expression genes are 32 

enriched for GWAS signal, as calculated by MAGMA32 (Fig 1b). In the third approach, we 33 
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perform a systematic PubMed scan to assess the evidence for tissue-disease associations 34 

reported in the literature (Fig 1c). Contrasting results systematically across the three 35 
approaches allows for triangulation of results. Furthermore, we ensure the robustness of our 36 

study by employing three distinct definitions for disease-associated genes and utilising three 37 
different sets of control genes. We apply our testing framework to more than 200 cell types and 38 

tissue regions obtained from the ARCHS433 and Tabula Sapiens34 resources (Fig 1d). We also 39 

characterise, for each individual gene, to what extent different predictors (batch ID, subject ID, 40 
age, sex etc) contribute to gene expression (Fig 1e) and identify genes with the highest 41 

absolute and relative gene expression in relevant tissues (Fig 1f). 42 

 43 

Analyses are performed across eight cancers - for which there is a strongly implicated tissue for 44 

each - as well as Schizophrenia (SCZ), Inflammatory Bowel Disease (IBD), Alzheimer’s 45 

Disease (AD), Coronary Artery Disease (CAD), Bipolar Disorder (BD), Type 2 Diabetes (T2D), 46 
Attention-Deficit/Hyperactivity Disorder (ADHD) and Serum 25 Hydroxyvitamin D (Vitamin D). 47 
These outcomes were selected to optimise the power of the relevant GWAS and the availability 48 
of curated lists of high-confidence disease genes. 49 

 50 
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 51 
Figure 1. Overview of the study to characterise the gene expression features of genes associated to diseases. a, Approach using 52 
lists putatively causal genes, prioritized based on GWAS results. b, Approach using genes with the highest absolute expression or 53 
highest relative expression in each tissue and cell type. c, PubMed-based literature search to assess the tissues that are most often 54 
cited for each disease. d, The approaches in a-c were repeated for the cell types and tissue regions available in the ARCHS4 and 55 
Tabula Sapiens resources. e, The predictors of gene expression were analysed for each gene using the variance partition R 56 
package. f, For each gene, absolute and relative gene expression was evaluated. Figure partially created with BioRender.com. 57 
 58 
  59 
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Results 60 

Defining absolute and relative expression across tissues and cell types  61 

We obtained bulk-tissue, RNA-seq gene expression data from the GTEx consortium35. 62 
Throughout this study, we assess two gene expression measurements: (1) absolute gene 63 

expression, representing the median number of transcripts per million (TPM) of each gene in 64 

each tissue, and (2) relative gene expression, calculated by dividing the absolute gene 65 
expression (median TPM) of each gene in a tissue by the total expression of that gene across 66 

all the other tissues (Methods). The relative gene expression measure, often referred to as 67 

gene expression specificity, has been widely used to map genes to their specific tissue and cell 68 
type expressions 14,36,37. 69 

 70 
Exploring the expression profiles of disease-associated genes  71 

To identify where in the body disease-associated genes operate, here we leverage GWAS and 72 
gene expression data utilising three alternative strategies: (i) ‘GWAS to Gene Expression’; (ii) 73 

‘Gene Expression to GWAS’; and (iii) ‘Systematic Literature Search’. 74 
 75 

GWAS to gene expression 76 
Heritability across the genome is influenced by polygenicity and the genome's correlation 77 
structure (LD), causing signals from single causal variants in key disease genes to spread 78 

across wide regions and many genes. Although the 'omnigenic model' suggests there may be 79 
few key (‘core’) disease genes despite widespread genetic associations38, identifying those 80 
causal variants and genes remains challenging. To link regulatory SNPs to their target genes 81 

and prioritize genes based on GWAS results, comprehensive annotations of genome 82 

function35,39–43 and a range of statistical and computational approaches have been developed44–83 
48.  84 
 85 

Given the absence of a single gold standard approach, we use three alternative methods to 86 

collect, for each disease, lists of putatively causal genes inferred from GWAS results: (i) 87 
nearest-to-hit genes: genes are prioritized by physical proximity to each GWAS hit, (ii) fine-88 

mapped genes: we extracted from published studies - often produced by large GWAS consortia 89 

- lists of genes prioritized on the basis of multiple statistical and functional genomic prioritization 90 

strategies, and (iii) PoPS genes: derived using the recently published method Polygenic Priority 91 

Scores (PoPS)48, which leverages polygenic enrichment and functional gene features to 92 
prioritise genes.  93 
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 94 
- Nearest-to-hit genes: While functional data can be incorporated to improve precision in 95 
assigning SNPs to genes44, previous research suggests that the nearest gene to the lead SNP 96 

is the most likely causal gene44,48. We performed clumping on the GWAS hits and identified an 97 

average of 162 ‘nearest-to-hit’ genes for each trait, with an average distance of 28Kbp between 98 
the SNP and the protein coding gene (See Methods, Table 1 and Supplemental Table 1). 99 

 100 
- Fine-mapped genes: The latest landmark GWAS of the major diseases3–11 have incorporated 101 
sub-studies performing gene prioritization analyses to produce lists of approximately 50-300 102 

high-confidence causal genes for each disease. While different studies use a different selection 103 

of methods to prioritize putatively causal genes, most of them integrate GWAS results with the 104 
latest functional genomics data (Methods). Our literature search on fine-mapped genes resulted 105 
in gene lists ranging from 49 genes prioritized for Bipolar Disorder (BD) to 281 genes prioritized 106 
for Inflammatory Bowel Disorder (IBD), with an average of 126 across the 8 diseases 107 
investigated (Supplemental Table 2). 108 

 109 
- PoPS genes: The method PoPS48 leverages gene-level Z-scores from GWAS (calculated 110 
using the software MAGMA32), as well as gene features from single-cell gene expression data, 111 

biological pathways and predicted protein-protein interaction networks to prioritize putatively 112 
causal genes. For each trait, we extracted the genes with the top 1% PoPS scores, 113 
corresponding to 184 protein-coding genes with highest PoPS scores for each trait. The top 1% 114 
of genes threshold was selected because it provides a similar number of genes as the other two 115 

prioritization approaches, preventing biases due to differences in the number of genes included 116 
for each group of disease-associated genes (Supplemental Table 3). 117 
 118 

The Venn diagrams in Fig 2 shows the overlap of genes for each of the diseases examined. 119 

Across the eight non-cancer diseases, fine-mapped genes and the nearest-to-hit genes showed 120 
the highest overlap, likely due to the use of genomic distance to fine-map variants and prioritize 121 

genes in the previously published studies from which we extracted the lists of fine-mapped 122 

genes. Differences in the criteria used for prioritizing genes may have partially led to differences 123 

in the number of overlapping genes. For example, PoPS scores were one of the eight strategies 124 
used for creating the list of fine-mapped genes for CAD, but PoPS scores were not used for any 125 

of the other outcomes. 126 
 127 
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For each disease, we performed t-tests to compare the absolute gene expression and relative 128 

gene expression between disease-associated genes (fine-mapped, nearest-to-hit and PoPS 129 
genes) vs control genes. In Fig 2, we report the t-test P-values, whereas the effect size, 130 

measured using Cohen’s D, is included in Supplemental Figure 1. The absolute gene 131 
expression of disease-genes vs other genes is higher in tissues with established links to each 132 

disease (Fig 2, blue columns). For instance, SCZ-associated genes are more expressed in the 133 

brain, although the P-values vary significantly across brain tissues (from P-value = 3.09x10-2 for 134 
the nearest gene list in substantia nigra to P-value = 2.01x10-29 for PoPS genes in the brain 135 

cortex). CAD-associated genes are more expressed in the aorta, coronary and tibial arteries (P-136 

values < 10-7). IBD-associated genes are most expressed in the small intestine and colon 137 
transverse (P-values < 10-4 except for nearest-to-hit genes). Vitamin D genes are most 138 

expressed in the skin and in the liver, with the latter tissue being where the biologically inactive 139 
vitamin D3 is activated to produce 25-hydroxyvitamin D3

49.  140 

 141 
Intriguingly, other significant results point to tissues not typically linked to the disease: AD-142 
associated genes do not show higher expression across brain tissue. Instead, the most 143 

significant differences in expression appear in the blood and spleen (PoPS genes P-value < 10-144 
13, nearest-to-hit genes P-value < 10-5) and in adipose tissues (PoPS genes P-values < 10-13). 145 
SCZ-associated genes are more expressed in the pituitary (PoPS genes P-values = 3.66x10-5). 146 
CAD-associated genes present higher expression across multiple tissues including 147 

reproductive, adipose, and digestive systems, as well as in the lung (P-values < 10-6). IBD-148 
associated genes present highest expression in lung (P-values < 10-4), blood and spleen (P-149 
values < 10-6). Differences between T2D associated genes vs control genes appear most 150 

significant in breast mammary tissues (P-values < 10-7). Disease genes' relative gene 151 
expression t-test results are similar to those for absolute gene expression, but show smaller P-152 

values.  153 

 154 

We also applied the Anderson-Darling test50 to assess whether disease-associated genes have 155 

a distribution of expression that differs from that of other protein-coding genes (i.e. not only in 156 

terms of mean expression). This test is more sensitive to detect differences in the tails of the 157 
distribution, in comparison to tests focusing only on mean differences (e.g. t-tests) or at the 158 

shape of the cumulative distribution (e.g. two-sample Kolmogorov-Smirnov)51. In most cases, 159 

the Anderson Darling tests reported lower P-values than the t-tests (Supplemental Figure 2). 160 
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Full results for the t-tests and Anderson-Darling tests for each disease, each tissue, and each 161 

gene list are included in Supplemental Table 4. 162 
 163 

Overall, genes prioritized by PoPS show smaller P-values across a wider range of tissues, 164 
especially for CAD, AD, T2D and Vitamin D, suggesting that PoPS prioritizes genes with higher 165 

levels of expression. In the original PoPS publication48, PoPS scores are combined with the 166 

genomic location to provide a list of high-confidence causal genes. However, this list has a low 167 
recall (it detects few genes for each disease). Therefore, we used the top 1% PoPS, that results 168 

in 184 genes per disease. This number of genes is similar to the GWAS fine-mapping and 169 

closest gene to locus approaches and would not lead to biases in statistical power for our tests. 170 
 171 

One potential explanation for the differences between the disease-associated genes and all 172 
other protein coding genes is that the genes associated with any disease have distinct gene 173 

expression profiles only because they are related to human traits and diseases. Therefore, we 174 
hypothesized that if we compare our lists of disease genes with other genes that are more 175 
similar in their connection to human traits (i.e. we run t-tests comparing disease genes vs other 176 

disease genes, instead of disease genes vs any protein coding gene) the differences in gene 177 
expression levels would be attenuated. To further investigate this, we repeated our analyses 178 
using two more stringent control groups. These control groups consisted of genes associated 179 
with diseases identified through GWAS, and were extracted from the Open Targets resource52 180 

(Methods). Results using Open Target control genes are consistent with analyses using all 181 
protein-coding genes. In fact, the differences in absolute and relative expression between 182 
disease-associated genes and Open Targets control genes are more significant (Supplemental 183 

Figs 3-10 and Supplemental Table 5). For example, AD-associated genes are more expressed 184 
than Open Target control genes across all tissues. For CAD, only the brain does not show a 185 

significant difference between CAD-associated genes and control genes. For SCZ, disease-186 

associated genes show higher expression in testis and pituitary, in addition to the brain tissues. 187 

Taken together, these results demonstrate that disease genes present higher expression in 188 

particular set of tissues, even if a more restrictive criteria for the control genes group is used. 189 

 190 

Gene Expression to GWAS 191 
In this section we test whether genes with high absolute and relative expression in a tissue are 192 

enriched in GWAS signal. Originally proposed by Skene et al.53, this approach utilizes the 193 

software MAGMA32 to assess the enrichment of GWAS among genes in the top decile of 194 
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absolute and relative (also called specific) gene expression (see Methods). We expand the 195 

original approach here since we also investigate absolute gene expression - in addition to 196 

relative gene expression - to assess whether absolute expression may also provide valuable 197 

insights for highlighting relevant tissues. 198 
 199 

Our findings are overall consistent with the results obtained by the t-tests and the Anderson-200 
Darling tests (Fig 2, red columns). For SCZ, BP and ADHD, MAGMA results were nominally 201 

significant in numerous brain tissues (P-value < 0.05), such as cortex, anterior cingula, 202 

hippocampus, amygdala, or cerebellum or nucleus accumbens. The strongest results were 203 
between cortex and anterior cingula tissues and SCZ (P-value < 10-12). For CAD, numerous 204 

tissues show significant P-values for both absolute and relative expression, with arteries (P-205 
value < 10-6), colon sigmoid (P-value = 4.67x10-6) and esophagus (P-value = 8.44x10-5) having 206 

the strongest enrichment of GWAS signal among their most specific genes. In IBD, the intestine, 207 
blood, testis, liver, lung, and spleen are the tissues with strongest enrichment (P-values < 10-3), 208 
while AD shows the strongest result in spleen and blood (P-values < 10-6). For Vitamin D, liver is 209 
the most relevant tissue (P-value = 2.52x10-3). For T2D, none of the tissues showed significant 210 

results. Overall, MAGMA enrichments for relative gene expression are more pronounced than 211 
for absolute gene expression. MAGMA results for each disease, each tissue, and each gene list 212 
are included in Supplemental Table 6. 213 

 214 

Systematic Literature Search 215 

We investigated disease-tissue associations by cross-referencing our findings with PubMed 216 
data using two methods to construct the PubMed search queries. For the first method, we use 217 

Medical Subject Headings (MeSH) terms, a standardized vocabulary from the National Library 218 

of Medicine. For the second method, we identify tissue/disease pair names in the title and 219 
abstract of the PubMed articles. Both methods provide consistent results (Fig 2, yellow 220 

columns). While the PubMed search results largely support our findings, there are additional 221 
tissues identified that may be understudied, as the number of occurrences in the literature is 222 

low. For instance, the spleen in relation to AD and IBD, as well as tissues associated with the 223 

digestive system in the context of CAD, offer promising avenues for further exploration. Results 224 
with the number of papers found for each query are included in Supplemental Table 7 & 8. 225 

 226 
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Correlation in results across the three alternative strategies 227 

Across the different sets of tests, we observe the strongest correlation of results between the t-228 
test and Anderson-Darling tests (mean correlation across diseases and gene lists r = 0.729 and 229 

42/48 correlation tests P-values < 1x10-3), and between t-tests and MAGMA (mean r = 0.547 230 
and 35/48 correlation test P-values < 1x10-3). Correlations among the three approaches (GWAS 231 

to gene expression, gene expression to GWAS, and PubMed search) varied widely across 232 

diseases: the disease with highest correlation of results was SCZ, followed by CAD and IBD 233 
(mean correlation across tests r = 0.825, r = 0.707 and r = 0.691, respectively with most P-234 

values < 1x10-5). Finally, the trait with the lowest correlation was T2D, (r = 0.269). Detailed 235 

correlation results are included in Supplemental Table 9. 236 
 237 
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Figure 2. Heatmap showing results of the association between gene expression in each GTEx tissue and a, Schizophrenia; b, 240 
Coronary Artery Disease; c, Alzheimer’s Disease; d, Inflammatory Bowel Disease; e, Bipolar Disorder; f, ADHD; g, Type 2 Diabetes; 241 
h, Vitamin D. In blue, results showing the Log10 P-value for a one-side t-tests, testing the null hypothesis that disease-associated 242 
genes are not more expressed than other protein-coding genes expressed in that tissue. In red, results showing the Log10 P-value 243 
for enrichment of GWAS signal across the set of genes with highest absolute and relative expression for each tissue. In yellow, 244 
results for the Literature Search using PubMed. Abs. Exp, Absolute expression; Rel. Relative expression; F, Fine-mapped genes; N, 245 
Nearest-to-hit genes, P, Polygenic Priority Scores genes; Title & Abst, Title and Abstract; MeSH, MeSH terms. 246 
 247 

The gene expression landscape of cancer genes  248 

Given that for a cancer we have a strong hypothesis of what is the primary tissue involved (e.g. 249 
colon for colorectal cancer), we applied the ‘nearest-to-hit’ prioritization method to cancer traits. 250 

Genetic variants associated with eight common cancers were prioritized via GWAS54, and the 251 

gene closest to each GWAS hit was selected (Supplemental Table 10). The number of genes 252 
found was low for most cancer traits: 12 for bladder, 13 for kidney, 16 for lung, and 28 for ovary. 253 

Colorectal (80 genes), prostate (120 genes) and breast (228 genes) were the cancers with 254 
largest number of genes associated, and significant results were observed in these three 255 
diseases with better powered GWAS: prioritized genes exhibit higher expression in prostate for 256 

prostate cancer (P-value = 2.94x10-6), in breast for breast cancer (P-value = 1.27x10-4), and gut 257 
tissues for colorectal cancer GWAS(colon P-value = 4.54x10-5, small intestine P-value = 258 
7.07x10-5) . The other cancer traits with low number of GWAS associations – and therefore 259 
lower number of genes – showed non-significant tissue-trait association results (Supplemental 260 

Figure 11 and Supplemental Table 11).  261 
 262 
We also performed sex stratified analyses for cancers where the cancerous tissue is only 263 
available in one of the sexes (i.e. ovary, prostate, breast), and assessed the expression of 264 

disease genes across all GTEx tissues in men and women separately. Results were as 265 

expected (Supplemental Figure 12 and Supplemental Table 12): Despite the low number of 266 
genes identified in ovary cancer, the Anderson-Darling test shows a significant association for 267 

vagina in women (P-value = 7.62x10-6), and genes related to prostate cancer are highly 268 

expressed in men. In addition, the association of breast and breast cancer is less significant in 269 
men (Rel. Expression P-value=0.0018) than in women (Rel. Expression P-value=0.00012).  270 

 271 

Sex-stratified analyses for T2D 272 
Since results show T2D genes in breast present higher expression than control genes, we 273 

performed sex-stratified analyses to see whether results were driven by one of the sexes. We 274 
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repeated our analysis and compared the gene expression of disease vs control genes in men 275 

and women separately (Methods). 276 
 277 

For T2D, disease associated genes are more expressed in breast for both sexes 278 
(Supplemental Figure 13, panels a and b), although P-values were slightly lower for men (P-279 

values for Rel. and Abs. Expression < 10-6) than for women (P-values for Rel. and Abs. 280 

Expression < 10-4). Significant results were also observed for adipose tissues (P-values range: 281 
10-3 to 10-13), pituitary in the case of women (PoPS P-value=0.001), and testis in the case of 282 

men (PoPS P-value=5.68x10-12). Significant results were observed only for the PoPS gene list, 283 

and had smaller P-values in the Anderson-Darling test than in the t-tests (Supplemental Table 284 
13).  285 

 286 
To investigate whether specific genes are driving the T2D results in a sex-specific manner, we 287 

examined the expression of individual genes for each gene list (nearest-to-hit, Fine-mapped, 288 
PoPS). Across all tissues with significant P-values, the gene Thymosin Beta 10 (TMSB10) is 289 
highly expressed (Supplemental Fig 13, panel c). TMSB10 plays an important role in the 290 

organization of the cytoskeleton by binding to acting monomers, and therefore inhibiting actin 291 
polymerization. Multiple studies have reported TMSB10 upregulation in cancer 55–58, including 292 
pancreatic cancer 59,60. Moreover, repositories like MalaCards and Gene Cards report the 293 
association between pancreatic cancer and TMSB10 as highly relevant. The relationship 294 

between TMSB10, T2D and pancreatic cancer is particularly interesting, given that T2D has 295 
been consistently associated with pancreatic cancer in previous epidemiological studies, with a 296 
two-fold higher risk of developing pancreatic cancer among diabetes patients 61,62. 297 

 298 
Impact of highly expressed genes 299 

To investigate whether the observed signal is primarily influenced by a small subset of genes 300 

that are highly expressed, we excluded genes within the top 10% of absolute and relative 301 

expression in relevant tissues, defined as the tissues where disease-associated genes were 302 

significantly more expressed than control genes (Methods). The number of tissues removed, 303 

and number of disease-associated genes are listed in Supplemental Table 14. We repeated 304 
the t-test and Anderson-Darling tests with these new lists of disease-associated genes. Results 305 

show that, while the P-values increase for all the tests, results remain consistent after removing 306 

the top 10% expressed genes (Supplemental Fig 14 and Supplemental Table 15). For 307 
example, the cortex and cingulate cortex are significantly associated with schizophrenia 308 
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(Absolute expression P-values < 10-20), and the tissues most associated with AD remain being 309 

small intestine (P-value = 3.82x10-9), spleen (P-value = 4.91x10-8) and lung (P-value = 5.01x10-310 
8). 311 

 312 

The gene expression landscape at the cell-type level 313 

Tissues are composed by different cell types, each of them expressing gene expression 314 

programs to perform specific functions. The cell types in each tissue and their relative 315 

proportions may affect the results observed in the previous sections, since abundant cell types 316 
will be better powered than rare cell types for detecting differences between disease-associated 317 

genes and control genes. To further investigate where in the body disease genes operate, we 318 

repeated our testing framework in a set of cell types and tissue regions extracted from the (i) 319 
Tabula Sapiens34, a dataset which accrues nearly 500,000 cells from 24 different tissues and 320 

organs, many from the same donor, and (ii) ARCHS433, a resource that aggregates RNA-seq 321 
data from the Gene Expression Omnibus and the Sequence Read Archive. 322 
 323 

Fig 3 presents the results of the analyses conducted with a set of tissues from Tabula Sapiens 324 
for Vitamin D, IBD and CAD, and Fig 4 presents the results of the analyses for AD using tissue 325 
regions and cell type-level datasets from both ARCHS4 (Fig 4a) and Tabula Sapiens (Fig 4b). 326 
Results for the other diseases using ARCHS4 can be found in Supplemental Fig 15 and 327 

Supplemental Tables 16-18. We focus on Vitamin D, AD and IBD because significant results 328 
were observed in “non-typical” tissues such as the spleen (primarily composed of immune cells) 329 
and lung. We also focus on CAD because this disease shows the largest number of associated 330 
tissues. Overall, the results for ARCHS4, Tabula Sapiens and GTEx are consistent, although the 331 

P-values for all cell-type analyses tend to be higher. In the Tabula Sapiens, PoPS genes show 332 

higher expression than control genes, but these results are often not replicated in fine-mapped 333 
genes or nearest gene lists (Supplemental Tables 19-21). Therefore, only results that replicate 334 

in at least two gene lists are reported in the following paragraphs. 335 

 336 
Results for IBD in cell types derived from the small intestine, large intestine, and lung show that 337 

IBD-associated genes have higher expression in T-cells (P-values for Relative expression < 338 

0.02). Other immune cell types such as B cells (P-values < 0.038), neutrophils (P-values < 339 
0.034) and dendritic cells (P-values < 0.01) also showed significant differences, albeit with 340 

larger P-values. These findings were consistent with MAGMA results.  341 

 342 
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 343 
Figure 3. Heatmap showing results of the association between gene expression in each cell-type obtained from the Tabula Sapiens 344 
dataset a, Tabula Sapiens datasets were downloaded for each tissue, and absolute and relative expression was calculated for each 345 
cell type in each tissue. b, Results for Coronary Artery Disease. c, Results for Inflammatory Bowel Disease. d. Results for Vitamin 346 
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D. In blue, results showing the Log10 empirical P-value after running 10,000 permutations, testing the null hypothesis that disease-347 
associated genes are not more expressed than other protein-coding genes expressed in that tissue. In red, results showing the 348 
Log10 P-value for enrichment of GWAS signal across the set of genes with highest expression for each tissue. In yellow, results for 349 
the Literature Search using PubMed. Abs. Exp, Absolute expression; Rel. Exp, relative expression; F, Fine-mapped genes; N, 350 
Nearest-to-hit genes, P, Polygenic Priority Scores genes; Title & Abst, Title and Abstract are used in the PubMed Search. 351 
 352 

For CAD, the most significant differences in expression between disease-associated and control 353 
genes were observed in the relative expression of T cells in the vasculature system (P-value = 354 

0.0028). Additionally, we found significant differences in relative expression in smooth muscle 355 

cells in the heart (P-value < 0.0271) and fat tissues (P-value < 0.0438 for fine-mapped genes, 356 
P-value < 0.0138 for PoPS and nearest genes) and cardiac fibroblasts in the heart (P-value < 357 

0.045). Various immune cell types such as macrophages, mast cells, and NK cells in the 358 
vasculature system were significant (P-value < 0.0146) but only for PoPS genes.  359 
 360 
For Vitamin D, the results aligned with the GTEx and ARCHS4 analyses. We observed the most 361 

significant difference in expression in the liver, specifically in hepatocytes, between disease-362 
associated and control genes (P-values < 0.0012). 363 
 364 

In the case of AD, Fig 4a shows results using ARCHS4, where disease-associated genes 365 
present high absolute and relative expression in immune-related cell types (e.g. Absolute and 366 
relative expression P-values < 0.05 for dendritic cells, macrophages and neutrophils). Fig 4b 367 
shows results using Tabula Sapiens, where similar patterns emerge as in ARCHS4. For 368 

instance, macrophages (in the spleen, blood, and fat) and neutrophils (in fat) show significant 369 
differences between disease-associated and control genes (P-values < 0.03). Since brain 370 

tissues were not available in Tabula Sapiens, we could only look at brain-related cell types in the 371 

ARCHS4 dataset (Supplemental Fig 15). Microglia - known to play a critical role in AD63- is the 372 

sole brain tissue significantly associated (P-value = 9.72x10-3 for relative expression). Genes 373 

linked to SCZ, BP, and ADHD show significant absolute and relative expression in motor 374 

neurons in ARCHS4 (P-value = 0.00021 for PoPS genes; P-value = 0.036 for fine-mapped 375 
genes; P-value > 0.05 for nearest-to-hit genes), but not in the broader category of neurons 376 

(even though the sample size and number of studies is larger for this cell type). 377 
 378 

Tabula Sapiens and ARCHS4 results offer insights not easily discerned at the tissue level. For 379 

example, the results that we observe between AD and IBD in spleen, blood and lung are 380 
probably driven by the high fraction of macrophages and other innate immune system cells 381 
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present within those tissues. However, both datasets have their own limitations: In the case of 382 

ARCHS4, the representation of cell types and tissue regions is less systematic than in GTEx: 383 
after quality control (Methods), 8 immune and 6 CNS-related cell types are included, with only 384 

one related to the digestive system. Furthermore, ARCHS4's heterogeneity may have reduced 385 
power to detect associations in other diseases despite correction of batch effects. While Tabula 386 

Sapiens34 may provide a more systematic multiorgan dataset at the cellular level, the scale of 387 

this dataset is smaller (they measured single-cell RNA-seq data for a total of 15 individuals, 388 
respectively, in contrast to e.g. GTEx, which assessed more than 700 individuals). Moreover, 389 

some tissues of interest were not available here, such as brain tissues to interrogate cell types 390 

related to AD, SCZ, BP or ADHD.  391 
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 392 
Figure 4. Heatmap showing results of the association between gene expression in each cell-type obtained from the Tabula Sapiens 393 
dataset. a, Results using RNA-seq data from cell types and tissue regions extracted from the ARCHS4 resources. b, Results using 394 
RNA-seq data from the Tabula Sapiens for blood (red section), spleen (blue section), and fat (yellow section). 395 
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Predictors of gene expression of disease genes 396 

In the previous sections, we demonstrated that disease-associated genes exhibit both high 397 
absolute and high relative expression in certain tissues and cell types. Although previous 398 

studies have shown that tissue type is an important predictor in gene expression64, in this 399 

section we expand this work by evaluating multiple factors that may contribute to gene 400 
expression variability in disease-associated genes specifically. Additionally, we assess whether 401 

the relative contributions of gene expression predictors differ significantly between disease-402 

associated and control genes.  403 
 404 

To characterize the biological factors (such as tissue, sample ID, subject ID) and technical 405 

factors (such as batch ID) that contribute to variability in the gene expression of each disease-406 
associated gene, we used the 'variancePartition' R package (v.4.3)64. variancePartition uses a 407 

linear mixed model framework in which the expression values of each gene are the dependent 408 
variable, and distinct sources of variation – such as those driven by tissue type, individual 409 
differences, and technical effects – are the independent variables. Overall, tissue type explains 410 

the highest proportion of the variance in gene expression (Fig 5a and Supplemental Table 22). 411 
However, there is a lot of variability across individual genes; while for some genes tissue type 412 
explains more than 70% of the variability in their expression, for other genes factors such as the 413 
type of batch, collection site, explain <20% of the variance. Fig 5b and c shows SCZ fine-414 

mapped genes as an example of such variation in variance explained. Supplemental Figs 16-415 
18 and the R Shiny website associated with this manuscript 416 
https://juditgg.shinyapps.io/diseasegenes/ include gene-level results quantifying the contribution 417 
of each variable to the variation in expression of each gene and disease. 418 

 419 

Given the differences in results across genes, we tested whether the variancePartition results 420 
for disease-associated genes are different from all other protein-coding genes. The variance 421 

explained by biological factors (e.g. tissue, individual) and technical factors (collection site, 422 

batch type) in disease-associated genes was compared vs the variance in other protein coding 423 
genes. Individuals, batch type, RNA Integrity Number (RIN), and sex exhibited small yet 424 

significant differences in contributing to gene expression variability between disease-associated 425 

and control genes. (Fig 5d). When comparisons are assessed for each gene list and disease 426 
individually, results remain consistent. Only for Vitamin D, tissue-type explains a greater 427 

proportion of the variance for disease-associated genes than for control genes (Supplemental 428 

Figs 19-21). 429 
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 430 

 431 
Figure 5. Variance partition is used to investigate the factors influencing gene expression of disease-associated genes. a, 432 
Violin plots representing the distribution of variance partition across all disease-associated genes for the eight diseases investigated. 433 
b, variance partition results for genes associated with schizophrenia. Genes labelled represent: two genes encoding protein 434 
phosphatases (PPP2R3A & PPP2R2B) where tissue-type explain a large fraction in gene expression variance, and a gene (STAB1) 435 
where tissue explains less than 10% in gene expression variance. The dopamine receptor 2 (DRD2) is also included because it is 436 
the main receptor for most antipsychotic drugs65,66. c, Bar plots of individual genes showing the variance partition estimates at the 437 
individual gene level for genes highlighted in panel b, d, Violin plots showing the differences in variance partition results between 438 
disease-associated genes and control genes.  439 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.20.24309121doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24309121
http://creativecommons.org/licenses/by/4.0/


 22 

 440 

Joint evaluation of absolute and relative gene expression  441 

New drugs underpinned by genetic evidence have a significantly higher success rate in clinical 442 

trials16. Consequently, genes prioritized via GWAS are often examined in experimental studies 443 

to validate their causal role in disease and understand their biological function. Given that (i) the 444 
VariancePartition results show wide variability among genes in the contribution that tissue type 445 

infers on gene expression, and (ii) the relative gene expression (a.k.a. tissue- and cell-type- 446 

specificity) of candidate target genes can inform drug efficacy18,67 and side effect prediction19, 447 
here we identify the genes with both high absolute and high relative expression across tissues. 448 

In Figure 6, we present the genes with both high absolute and relative gene expression for the 449 

tissue with the most significant differences between disease-associated and control genes. 450 
Results for the rest of tissues can be found at the R Shiny website associated with this 451 

manuscript https://juditgg.shinyapps.io/diseasegenes/. 452 
 453 

 454 
Figure 6. Exploring disease-associated genes showing both high absolute and high relative expression. Scatter plots 455 
showing the relationship between absolute gene expression and relative gene expression in disease-associated genes. Only the 456 
tissue with the most significant differences between disease-associated and control genes is shown. 457 
 458 
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When assessing both high absolute and relative gene expression, we find that absolute 459 

expression provides useful information beyond specificity. For example, ALB is a gene 460 
associated with vitamin D that presents high absolute and relative expression in liver, FN1 is a 461 

gene associated with CAD with high absolute and relative expression in the coronary artery. In 462 
contrast, APOE presents high expression in tissues such as breast and liver but is not 463 

specifically expressed in any of them (low relative expression), and OTOL1 is a gene associated 464 

with schizophrenia, with high relative expression in the Frontal Cortex, but low absolute 465 
expression. 466 

 467 

Nevertheless, absolute expression alone is typically insufficient to identify the most suitable 468 
tissues for validating individual disease-associated genes because these genes often maintain 469 

elevated expression across various tissues. Supplemental Figs 22 to 29 show the co-470 
occurrence of the 10 most expressed fine-mapped genes across diseases, showing a high 471 

overlap of highly expressed genes across multiple tissues. These results - showing that many 472 

disease genes are often expressed across many tissues - are in line with previous studies 473 

showing that 46% of protein-coding genes are expressed in all tissues68.  474 

 475 
  476 
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Discussion 477 

In this study, we have systematically characterized the gene expression features of GWAS 478 
prioritized genes. Genes associated with diseases exhibit higher absolute and relative gene 479 

expression not only in the anticipated tissues and cell types (e.g. brain in SCZ, BP and ADHD), 480 

but also in tissues and cell types not typically associated with the diseases (e.g. lung and spleen 481 
in AD and IBD, motor neurons in psychiatric disorders, cells in the PONS associated with IBD). 482 

Additional analyses removing genes with the highest expression and using more stringent 483 

criteria for the control group showed similar results. Next, we explored which biological and 484 
technical factors are significant predictors of gene expression in disease-associated genes. 485 

Although tissue-type is a consistent key contributor to gene expression variability of disease-486 

associated genes in GTEx, results varied widely, with some disease gene showing batch and 487 
subject ID as important predictors of gene expression. Finally, and given that (i) highly 488 

expressed genes tend to maintain their elevated expression level across multiple tissues, and 489 
(ii) tissue-specific genes are reported to be twice as likely as broadly expressed genes to be 490 
drug targets16,17, we highlight disease genes with both absolute and relative gene expression –491 

as these properties will be important for further experimental validation and drug target 492 
development. 493 
 494 
We first focus our study on tissue-level analysis, despite the intense focus in the field on cell-495 

types. We focus on tissues because: (1) extensive prior knowledge of disease-tissue 496 
associations provides a “ground truth” and thus informs the benchmarking of our approach, (2) 497 
multiple-organ, single-cell transcriptomic atlases – that systematically characterize the cell type 498 
composition of tissues – have been performed on a limited number of individuals, since they 499 

require high-coverage sequencing to obtain highly accurate single-cell expression profiles, (3) 500 

cell types present different phenotypic properties at multiple levels, which make them difficult to 501 
define and categorize28. Despite these challenges, we also leveraged RNA-seq data from the 502 

ARCHS4 and Tabula Sapiens resources to explore in what cell types and tissue regions GWAS 503 

signal and gene expression converges. ARCHS4 and Tabula Sapiens results highlight the gain 504 
in specificity that can be obtained when the relevant cell types are rare (e.g. microglia in the 505 

brain, where much of the GWAS signal for Alzheimer’s disease resides, but composes only ~7% 506 

of non-neuronal cells in the brain69). They also explain some tissue-level associations driven by 507 
the presence of relevant cell types that can be found in multiple tissues (e.g. the presence of 508 

monocytes, relevant for AD and IBD, in spleen, lung, blood etc.). However, the ARCHS4 and 509 

Tabula Sapiens analyses also highlight the challenges related to using single cell and cell-type 510 
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datasets stated above. Examples of these challenges include capturing measures of gene 511 

expression for cell types with a very low number of cells that may be obtained from the same 512 
individual, and accurately defining what is a ‘cell-type’ given a gene expression program (e.g. 513 

the cell type ‘neuron’ is abundant in ARCHS4 but likely heterogenous, resulting in no significant 514 
results between neurons and psychiatric disorders). 515 

 516 

Our approach differs from some other approaches that combine GWAS and functional genomic 517 
data to make inference disease etiology. For example, Transcriptome-Wide Association Studies 518 

(TWAS) integrate GWAS findings with expression quantitative loci (eQTLs) to investigate how 519 

genetic variations influence gene expression47. TWAS relies on the availability of the eQTL data 520 
and on genes with highly heritable gene expression70. In contrast, our strategy provides a gene 521 

expression profile of disease-associated genes regardless of eQTL data availability and gene 522 
heritability, broadening the scope for combining GWAS signal and gene expression.  523 

 524 
Identifying disease-associated genes that are active in a wide range of tissues, including 525 
unexpected ones, is crucial because drugs often cause side effects in the tissues where their 526 

target genes are active71. By providing comprehensive expression profiles of disease-527 
associated genes, we aim to support future research in validating candidate genes and 528 
developing drug targets more effectively. However, our study has several limitations. First, no 529 
gene prioritization methods are perfect, and therefore it is possible that some genes categorized 530 

as ‘disease-associated’ may not significantly contribute to disease. Additionally, the fine-mapped 531 
and PoPS prioritization approaches used functional genomics data such as tissue and cell-type 532 
specific RNA-seq, which may lead to some circularity in the analyses. Unlike previous studies72, 533 

the focus of this work is not to benchmark different prioritization methods, but to follow up on 534 
previously prioritized genes to assess their expression in the body; Second, our analyses were 535 

performed at the gene level, and therefore alternative mRNA transcripts were not explored here; 536 

Third, this study mainly used the GTEx dataset, considered a population control that is “normal” 537 

relative to the age of the individual and where the tissues are considered healthy. The gene 538 

expression profiles represent a healthy state and does not explore the dynamics of gene 539 

expression during disease states. However, we propose that – before studying the dynamics of 540 
gene expression between cases and controls – it is important to understand the tissues and cell 541 

types where these genes show high expression and specificity; Fourth, we observe that factors 542 

such as age, sex, and batch have minimal but varying effects on different genes. However, we 543 
did not regress out these covariates prior t-tests or AD tests: Instead, for the GTEx dataset and 544 
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ARCHS4, we obtained the median TPM for each gene across all samples. For the Tabula 545 

Sapiens analyses, we calculated P-values based on a permutation procedure, which generates 546 
a null hypothesis drawn from the data itself but does not explicitly adjust for covariates. 547 

 548 
In conclusion, our study on ‘the gene expression landscape of disease genes’ not only confirms 549 

established links between diseases and tissues, but also identifies unexplained tissue and cell-550 

type-disease associations that warrant further investigation. This systematic characterization of 551 
the gene expression features of high-confidence disease genes opens new avenues for guiding 552 

experimental follow-up and drug design, ultimately advancing our understanding of disease 553 

mechanisms and response to treatment.  554 
 555 

Methods 556 

 557 
RNA-seq datasets 558 

GTEx dataset 559 
Gene expression measurements were obtained for 50 tissues from the GTEx project35 version 560 
8. Median gene TPMs for each tissue were downloaded from 561 
https://gtexportal.org/home/datasets. Standard RNA-seq processing steps were applied to the 562 

dataset as follows: (1) we filtered out all non-protein-coding genes and genes not expressed in 563 
any tissue; (2) we removed the tissues with less than 100 samples, cancer or cell related tissue 564 

types (i.e. EBV-transformed lymphocytes and Leukemia cell lines); (3) we scaled the expression 565 
of each tissue such that the total is 106 TPM. 45 tissues remained after quality control. 566 
 567 
Sex-stratified analyses in the GTEx dataset 568 

In tissues for which we wanted to test whether the disease-associated genes present higher 569 
absolute or relative expression in men and women specifically (i.e. T2D), we extracted the 570 

GTEx expression dataset, and for each tissue, the median gene expression of all genes was 571 

calculated for women and men separately. For each sex, we then created absolute and relative 572 
expression datasets (where columns represent tissues, and rows represent genes). To prepare 573 

sex-specific inputs for the MAGMA analyses, we generated GMT files for men and women 574 

separately, which contain the gene sets composed of the top decile of absolute and relative 575 
gene expression for each sex. T-tests, Anderson-darling tests, and MAGMA analyses were also 576 

performed separately for men and women. 577 

 578 
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ARCHS4 datasets 579 

Gene expression across cell types and tissue regions were extracted from the ARCHS433 580 
resource, which provides access to uniformly processed gene counts from human RNA-seq 581 

experiments stored in the Gene Expression Omnibus (GEO) and Sequence Read Archive 582 
(SRA). Using the ARCHS4 web browser (https://maayanlab.cloud/archs4/), we systematically 583 

identified all the cell types available in the metadata search menu. For some disease-relevant 584 

cell types like microglia in AD, we entered the cell type name directly into the metadata search 585 
bar. ARCHS4 generates R scripts listing the samples related to each cell type, to facilitate their 586 

extraction from the main repository -a HDF5 file named "human_gene_v2.2.h5" available for 587 

download at https://maayanlab.cloud/archs4/download.html (Downloaded version date: 5-30-588 
2023).  589 

 590 
The quality control of ARCHS4 datasets and per-gene TPM calculation was as follows: Only cell 591 
types with more than 100 samples across all experiments available in ARCHS4 were included in 592 

our analyses. Upon obtaining the counts expression matrix for each cell type, we performed 593 
quantile normalization of samples using the function ‘normalize.quantiles’ available on the R 594 
package ("preprocessCore"). Quantile normalization was performed on raw counts. Given that 595 
samples from a specified cell type may originate from multiple experiments with slightly different 596 

conditions, we (1) excluded experiments containing less than 10 samples, and (2) adjusted for 597 
batch effects using the package ComBat_seq73, which is an improved version of the popular 598 
ComBat74. Unlike its predecessor ComBat (designed for microarray data), ComBat_seq is 599 

tailored for RNA-Seq studies and it does not assume a normal distribution of gene expression 600 
data.  601 
 602 

After batch correction, median TPM values for each gene were calculated in each cell type 603 

using the formula: 604 

TPM = %
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑎𝑝𝑝𝑒𝑑	𝑟𝑒𝑎𝑑𝑠	𝑓𝑜𝑟	𝑔𝑒𝑛𝑒

𝐺𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	𝑖𝑛	𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒𝑠	(𝑘𝑏) = 	𝑥	10! ÷ (𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑎𝑝𝑝𝑒𝑑	𝑟𝑒𝑎𝑑𝑠) 605 

where ‘Gene lengths in kilobases’ were calculated using the genomic coordinates indicated in a 606 

GTF file (built GRCh38), downloaded from ENSEMBL. 607 
 608 

Tabula Sapiens datasets 609 

scRNA-seq datasets were obtained from the Tabula Sapiens figshare 610 
(https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_0/14267219). These datasets, 611 
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initially in '.h5ad' format, contained gene counts for each cell and metadata, and were converted 612 

into Seurat objects and then into 'SingleCellExperiment' objects to ensure compatibility with 613 
downstream analysis tools. 614 

 615 
Data quality processing was performed: cells with zero counts across all genes were removed, 616 

and outlier cells with an extreme number of detected genes were excluded. Pseudobulk data 617 

was then generated using the aggregateToPseudoBulk function from the dreamlet R package to 618 
aggregate expression counts across cell types, according to the free cell type annotation 619 

included in the original datasets.  620 

 621 
Calculating ‘Absolute gene expression ‘and ‘Relative gene expression’ values 622 

Since the expression patterns of protein-coding genes tend to follow a negative binomial 623 
distribution, we calculated absolute levels of gene expression by taking the Log2 of the median 624 

TPM+1 values. To calculate relative gene expression, we divided the absolute levels of gene 625 
expression of each gene by its total expression across tissues. The resulting relative gene 626 
expression ranged from 0 (gene is not expressed) to 1 (gene is exclusively expressed in this 627 

tissue). The Log2 of the absolute and relative expression measures were used in subsequent 628 
analyses. 629 
 630 
To calculate absolute and relative gene expression values for each gene in the Tabula Sapiens 631 

dataset, the total expression counts for each cell type was obtained, and normalization was 632 
performed using the calcNormFactors function from the edgeR R package. Absolute gene 633 
expression values were calculated as the total number of counts per million for each gene in 634 

each cell type (after normalization). Data was organized in data tables where each row 635 
represented a gene, and each column represented a cell type. For relative expression of a gene 636 

in a cell type, the cellTypeSpecificity function – which calculates the number of counts of a gene 637 

in a cell type divided by the total number of counts across cell types in that tissue – was utilized 638 

after applying the same normalization procedure as for absolute expression.  639 

 640 

GWAS to Gene Expression 641 

Definition of disease-associated genes inferred from GWAS results. 642 

Three different types of gene lists were inferred for each disease using GWAS results: nearest-643 

to-hit genes, fine-mapped genes, and PoPS genes. For all the gene definitions, we obtained 644 
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each gene ENSEMBL IDs using a GTF file obtained from ENSEMBL (built GRCh37.75). The list 645 

of prioritized genes for each approach and disease can be found in Supplemental Tables 1-3. 646 
 647 

- Definition of ‘nearest-to-hit’ genes: To find the genes closes to the GWAS hit, we obtained 648 
publicly available GWAS summary statistics for the diseases investigated. We performed 649 

clumping using PLINK 1.975 and individual level genotype data from the UK Biobank as a 650 

reference linkage-disequilibrium (LD) panel (UK Biobank Resource under application number 651 

18177). During clumping, variants with P-values £ 5x10-8 were retained, and variants within a 652 

250 Kbp window correlated ³ 0.5 with the index variant or variants with P-value ³ 0.01 were 653 

removed. For each clump, the nearest protein-coding gene to the index variant was identified. 654 

We used a GTF file obtained from ENSEMBL (built GRCh37.75) to extract the gene start and 655 
gene end coordinates of each protein-coding gene. Information about the GWAS used, number 656 

of clumped variants, genes identified and distance between variant and nearest gene is 657 
included in Table 1. 658 
 659 
Table 1. Gene prioritization based on the nearest gene to GWAS hit. Table shows references for 660 

each GWAS summary statistics, the number of clumped SNPs, genes and median distance 661 
between SNP and selected gene.  662 

Trait 
GWAS summary 
statistics used 

N clumped 
SNPs 

N unique ensemble IDs 
Median distance between 
SNP and nearest protein 

coding gene (bp) 

CAD Aragam et al, 20223 525 297 14,734 

SCZ Trubetskoy et al. 20224 452 310 18,125 

IBD Liu et al, 201576 487 285 11,724 

AD Bellenguez et al, 202211 239 99 8,363 

BD Mullins et al, 202177 73 63 20,660 

ADHD Demontis et al, 20238 32 22 104,008 

T2D Suzuki et al, 202378 50 31 26,633 

Vitamin D Revez et al, 20206 517 200 22,111 

 663 
- Definition of ‘fine-mapped genes’: We acquired gene lists that previously fine-mapped GWAS 664 

for CAD3, SCZ4, IBD5, AD79, BD7, ADHD8, T2D9 and Vitamin D80. Most gene lists were 665 
constructed using a combination of statistical fine-mapping, transcriptome association studies, 666 

and mendelian randomization.  667 
 668 

For CAD, the integration of eight gene prioritization predictors enabled the identification of 220 669 

likely causal genes3. For SCZ, statistical fine-mapping was integrated with summary Mendelian 670 
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randomization and Hi-C interaction data to obtain a list of 120 prioritized genes4. For IBD, we 671 

extracted the list of genes linked to variants fine-mapped, available in the Supplemental material 672 
of the study conducted by Huang and colleagues5. For AD, we used a review of that reported a 673 

list of genes prioritized via fine mapping of GWAS in two previous studies10,11. The list is 674 
available in https://github.com/sjfandrews/ADGenetics/blob/main/results/adgwas_loci.csv. For 675 

BP, fine-mapping of the GWA signals was performed and seven complementary approaches 676 

were used to prioritize 47 credible genes that were mapped to loci by at least three of the seven 677 
approaches7. For ADHD, fine-mapping of the most recent ADHD GWAS8 identified sets of 678 

credible variants for each risk locus. Credible sets were subsequently linked to genes based on 679 

genomic position, information about eQTLs, and chromatin interaction mapping in human brain 680 
tissue as implemented in FUMA. For T2D, we used a gene list containing the nearest gene of 681 

the results of a fine-mapping approach used in 380 independent association signals9. For 682 
Vitamin D, we extracted a list of genes published by Manousaki and colleagues80, who 683 

prioritized genes using the DEPICT method45 on a GWAS of serum 25 hydroxyvitamin D. 684 

 685 
- Definition of ‘PoPS genes’: The PoPS method48 prioritizes disease-associated genes by 686 
integrating gene-level z-scores from MAGMA32, single-cell gene expression data, biological 687 

pathways, and predicted protein-protein interaction networks. The original PoPS publication 688 

suggests combining PoPS scores with location information would provide a list of high-689 

confidence genes. However, the combined PoPS+location approach leads to a low recall (it 690 
detects very few genes for each disease). Therefore, we used the top 1% PoPS, because it 691 
results in a list of 184 prioritized genes per disease. This number of genes is similar to the 692 
number of fine-mapped and nearest-to-hit genes, reducing differences in power due to the 693 

number of genes assessed. Full PoPS results can be accessed at: 694 
https://www.finucanelab.org/data.  695 

 696 

Statistical analyses to compare disease-associated genes vs other genes 697 

The t-test is an inferential statistic used to evaluate whether the means of two independent 698 
samples are significantly different. Here, we run one-side t-tests in R, testing the null hypothesis 699 

that the expression of disease-associated genes is higher than those of the control group. t-700 

tests assume that the sample means are normally distributed. Since gene expression follows a 701 
negative binomial distribution, we normalized the gene expression values by taking the Log2 of 702 

the median TPM+1 before applying the t-tests.  703 

 704 
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The Anderson-Darling50 is a non-parametric test to evaluate whether the gene expression of 705 

disease-associated genes originates from the same distribution than the control group of genes. 706 
It tests the null hypothesis that both groups were drawn from populations with identical 707 

distributions. The Anderson-Darling test is similar to other tests assessing differences between 708 
empirical distributions (such as the two-sample Kolmogorov-Smirnov test51), but it is more 709 

sensitive to differences in the tails of the distribution.  710 

 711 
For the Tabula Sapiens dataset, P-values to compare disease-associated genes vs control 712 

genes were calculated using a permutation approach (10,000 permutations). We calculate 713 

empirical P-values here to account for the small sample size of the dataset (up to 15 individuals, 714 
although typically only 2 individuals were used to extract scRNA-seq measurements for each 715 

tissue). This method avoids bias in cases where cell types are obtained from cells derived from 716 
the same individual, ensuring that results are not affected by violated assumptions of 717 

independence –which would invalidate a t-test. 718 
 719 

Gene Expression to GWAS 720 

Definition of genes in the top decile of expression  721 

For each tissue, we defined to gene-sets that are in the top decile of gene expression: one 722 
gene-set is composed by the 10% of genes with the highest absolute gene expression. The 723 
second gene-set is composed by the 10% of genes with the highest relative gene expression. 724 
To obtain these gene-sets, we first classified all protein-coding genes into 11 quantiles. In this 725 

classification, the 1st quantile is composed by genes without expression in a specific tissue, 726 
whereas the 11th quantile encompasses the genes with the highest expression values. We then 727 

grouped genes from the top quantile and tested their GWAS enrichment using MAGMA and the 728 
UK Biobank as a reference panel. We expanded the gene coordinates by adding a 35 kb 729 

window upstream and a 10kb window downstream of the gene. The Major Histocompatibility 730 

Complex (MHC) region was excluded from the analyses due to their long-range LD. 731 

 732 
Gene set enrichment analyses with MAGMA 733 

MAGMA32 is a software designed for gene-set enrichment analysis using GWAS data. It 734 

provides enrichment results at the gene-level and at the gene-set level. In gene-level analysis, 735 
MAGMA employs GWAS P-values to compute gene test statistics, accounting for LD structure 736 

via a reference dataset. For gene-set analysis, gene-level association stats are transformed into 737 
Z-scores, reflecting the strength of gene-phenotype associations. MAGMA uses a competitive 738 
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pathway test formula: Z = β₀ + Iβₚ + Cβₖ + ϵ where I is an indicator (1 if a gene is in pathway p, 0 739 

if not), and C is a covariate matrix. The resulting P-value originates from a test on coefficient βₚ, 740 

evaluating if the phenotype shows a stronger association with genes included in the gene-set of 741 

interest versus other genes.  742 
 743 

Systematic Literature search 744 

Search queries utilizing Medical Subject Headings (MeSH) Terminology 745 

The Medical Subject Headings (MeSH) thesaurus is a curated collection of terms established by 746 

the National Library of Medicine. MeSH terms are valuable in recognizing content that uses 747 
different words but refers to the same concept, enhancing the accuracy and consistency of the 748 

literature search process. Leveraging MeSH terminology, we prioritized the list of 45 tissues 749 
from the GTEx dataset based on their frequency of occurrence within MeSH terms connected to 750 
scientific articles. For each pairing of tissue and disease, a search query in the format ‘<tissue 751 

name> [Mesh] AND <disease name> [Mesh]’ was used. 752 
 753 
Search queries utilizing Keyword-based Literature Search  754 
The list of tissues and cell types were ranked based on their citation frequency within the titles 755 

or abstracts of relevant scientific articles. The construction of search queries followed the format 756 
‘<tissue name> [Title/Abstract] AND <disease name> [Title/Abstract]’ for each unique tissue-757 
disease pair. 758 
 759 

PubMed literature Search 760 

To determine which tissues are associated with specific diseases based on previous knowledge, 761 
we interrogated how often a combination of tissue and disease terms appeared together in 762 

published articles found on PubMed. To count the PubMed occurrences of a tissue being 763 

mentioned in relation to a disease, we used the Python library Beautiful Soup81, taking the 764 
queries defined above as input. The script performs the following tasks: it generates 765 

combinations of tissue-disease pairs, constructs search queries, sends requests to the PubMed 766 

website based on these queries, and subsequently extracts the number of search results from 767 
the webpage. The resulting count shows how frequently the tissue-disease pair appears in the 768 

body of literature. Two types of PubMed scrapping analyses we conducted based on the type of 769 

query constructed. 770 

 771 
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Utilizing genes associated with other diseases as control group 772 

To generate a list of control genes associated with multiple traits and diseases, we extracted two 773 
lists of genes from the Open Targets resource52. The first group uses the Open Targets ‘Gold 774 

Standards’. The second group uses a list of genes prioritized via Open Targets Genetics 775 
evidence, using a machine learning method82 that calculates a disease-specific score to 776 

prioritize genes.  777 

 778 
- Open Targets Gold standards: This list of genes represents a repository of >400 published 779 

GWAS loci for which there is high confidence in the gene functionally implicated. The list of gold 780 

standard genes was downloaded from https://github.com/opentargets/genetics-gold-781 
standards/blob/master/gold_standards/processed/gwas_gold_standards.191108.tsv. The final 782 

set of genes was composed by 519 protein-coding genes from 284 traits were used as gold 783 
standard control gene list. The traits with the largest number of genes were 2 diabetes (44 784 

genes), breast carcinoma (43 genes) and prostate carcinoma (23 genes). 785 
 786 
- Open Targets Genetics evidence: This list of genes was extracted from the results of a 787 

machine-learning method used to identify the most likely causal genes82. This method integrates 788 
the results of 1) fine-mapping credible set analysis, 2) functional genomics data such as 789 
pathogenicity prediction, colocalization with molecular QTLs, genomic distance and chromatin 790 
interaction data to generate predictive features. The machine-learning model is supervised 791 

using the gold-standard positive GWAS loci, and a score is computed for each gene (named 792 
Locus to gene (L2G) score). The L2G score is calibrated so that a gene’s score indicates the 793 
fraction of genes at or above the score that would be expected to be true positives. Thus, we 794 

selected genes with a score >= 0.8, which assumes that 80% of the genes associated with a 795 
trait or disease in our list are causal.  796 

 797 

Data was downloaded from the publicly available website 798 

https://platform.opentargets.org/downloads/data, section “Target - Disease evidence / Integrated 799 

list of target - disease evidence from all data sources” (version 23/09), which provides several 800 

directories with different evidence sources for the target-disease associations. However, only 801 
the ones indicating ‘genetics evidence’ were used in our analyses. From those, 3,862 protein-802 

coding genes from 1,582 traits had L2G scores >= 0.8. The traits with the largest number of 803 

genes were height (580 genes), blood protein measurement (359 genes), and heel bone 804 
mineral density (286 genes). 805 
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 806 

Profiling the gene expression landscape of cancer-associated genes  807 
We applied the 'nearest-to-hit’ prioritization method to cancer traits by extracting genetic 808 

variants associated with eight common cancers through GWAS. These datasets are publicly 809 

available and included lists of independent, GWAS significant SNPs used to construct polygenic 810 

risk scores54. The SNP lists range from 22 SNPs for pancreatic cancer to 288 SNPs for breast 811 
cancer. Unlike the other diseases analysed in this study, for which we had the full summary 812 

statistics instead of only the top SNPs, we didn't perform clumping on these SNP lists. The 813 
procedure for assigning the closest gene to each GWAS hit was the same as for 'nearest-to-hit’ 814 

genes. 815 

 816 
Definition of disease-relevant tissues for removing genes in the top decile of expression 817 
To define the tissues that showed significant higher expression across all the tests, we defined a 818 
P-value threshold for association (threshold = 0.05/45x3x2, corresponding to 45 tissues, 3 lists 819 

of gene prioritization approaches, and 2 test statistics (t-test and Anderson-Darling test). Then, 820 
we identified the tissues for which the Anderson-Darling and the t-test showed P-values < 821 
threshold.  822 
 823 

To test whether our association results were driven by only a few genes, we removed the genes 824 
that are in the top decile of absolute or relative expression in the relevant tissues, and repeated 825 
the ‘GWAS to gene expression’ analyses. 826 

 827 

Calculating predictors of disease-associated gene expression  828 

To uncover the key contributors to the variability in gene expression among disease-associated 829 

genes, we performed variance partition analyses using the R package ‘variancePartition’64. This 830 

package assesses drivers of variation for each gene by fitting a linear fixed model to quantify 831 
the contribution of tissues, individuals, technical variables etc. in gene expression.  832 

 833 

We calculated the variance partition for each disease-associated and control gene. We used as 834 
predictors uncorrelated variables (r2 < 0.75) that explained the largest proportion of variance in 835 

gene expression, as calculated by the Canonical Correlation Analysis in the variancePartition 836 

package and reported in the original variancePartition publication64 (which also used the GTEx 837 
dataset). The variance partition analysis results in a data table where each row is a gene, and 838 
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each column is the predictor variable included in the model. The results show, for each gene, 839 

the percentage of variance explained for each predictor.  840 
 841 

 842 
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