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Capsule: 
Machine learning-based, center-specific models predicted higher IVF live birth probabilities and 
improved validation metrics compared to a national registry-based multicenter model for 6 
geographically distributed fertility centers in the US.  
 
 
Structured Abstract  
 
Objective: 
To compare the performance of machine learning based, center-specific (MLCS) models and the 
US national registry-based, multicenter model (SART model) in predicting IVF live birth probabilities 
(LBPs) for 6 unrelated, geographically diverse US fertility centers. 
 
Design: 
Retrospective observational design.  
 
Subjects: 
Test sets comprised first IVF cycle data (2013-2022) extracted from a retrospective cohort of 4,645 
patients at 6 fertility centers.  
 
Intervention or Exposure: 
The initial (MLCS1) and updated (MLCS2) models were compared against age control. MLSC2 and 
SART models were compared. 
 
Main Outcome Measures: 
Model validation metrics, reported in median and interquartile range (IQR), were compared using  
Wilcoxon signed-rank test: ROC AUC, posterior log-likelihood of odds ratio compared to age 
(PLORA), Precision-Recall (PR) AUC, F1 score and continuous net reclassification improvement 
(NRI).  
 
Results: 
MLCS1 and MLCS2 models showed improved AUC and PLORA compared to age control; MLCS1 
models were validated using out-of-time test data. MLCS2 models showed improved PLORA  23.9 
(IQR 10.2, 39.4) compared to 7.2 (IQR 3.6, 11.8) for MLCS1, p<0.05.  MLCS2 showed higher median 
PR AUC at 0.75 (IQR 0.73, 0.77) compared to 0.69 (IQR 0.68, 0.71) for SART, p<0.05. In addition, the 
median F1 Score was higher for MLCS2 compared to SART model across predicted live birth 
probability (LBP) thresholds sampled at deciles at ≥40%, ≥50%, ≥60%, ≥70%.  For example, at the 
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50% LBP threshold, MLCS2 had a median F1 score of 0.74 (IQR 0.72, 0.78) compared to 0.71 (IQR 
0.68, 0.73) for SART.  
 
At these six centers, using the LBP threshold of ≥ 50%, MLCS2 models can identify ~84% of 
patients who would go on to have IVF live births, while the SART model can only identify ~75%.  That 
means for every 100 patients who will have a first IVF cycle live birth, using LBR ≥ 50% as threshold, 
the MLCS2 model can identify 9 more such patients without overcalling or overestimating LBPs 
compared to the SART model.  
 
Conclusion: 
MLCS models accurately assign higher IVF LBPs to more patients compared to the SART model at 6 
US fertility centers. We recommend testing a larger sample of fertility centers to evaluate 
generalizability of MLCS model benefits.  
 
Keywords 
live birth probability, IVF live birth prediction, artificial intelligence, machine learning, SART, fertility 
prognosis  
 
 
 
Introduction 
 
Despite the proven safety and efficacy of assisted reproductive technology (ART), patients' 
navigation of fertility care continues to be met with barriers limiting ART's family-building potential 
for millions of people worldwide. Providers have an important responsibility in providing accurate 
and meaningful prognostic counseling to educate patients about the potential benefits and 
limitations of IVF and to consider a course of IVF treatments to maximize the probability of having a 
baby. (1-3) (IVF is used broadly to mean ART, including the use of ovarian stimulation, ICSI, freeze-
all, and fresh or frozen ETs.)  
 
For over a decade, we have reported the development and clinical usage of ML-based, center-
specific (CS) or MLCS IVF prognostic models to support provider-patient counseling. (1, 4-6) This 
MLCS approach has been successfully applied to fertility centers in diverse geographies with and 
without IVF insurance coverage mandates (e.g. US) or a mix of self-pay and government-paid IVF 
(e.g. Ontario, Canada; UK and EU). MLCS models have supported providers with validated, 
localized and personalized pre-treatment counseling regarding first IVF treatment, repeat IVF after 
one or more failed IVF treatments (also called post-treatment), egg freezing, donor egg IVF 
treatment and elective single embryo transfer (eSET). (1, 4-8) We have reported methods and 
validation to demonstrate improved model performance of MLCS over control models including the 
ability to reclassify more patients to having higher live birth probabilities. Overall, the MLCS 
approach is expected to provide more locally relevant prognostic information as it is unaffected by 
inter-center variations in patients' attributes and clinical or embryology laboratory protocols. (1, 4-
5, 9-12) Further, conventional ML methods have remained comparable or even superior to deep 
learning methods when applied to train structured healthcare data. (13) 
 
Nonetheless, there is a perception that multicenter, registry-based IVF prognostics models as 
exemplified by the "McLernon models" -- US Society for Assisted Reproductive Technology (SART) 
pretreatment model (aka SART calculator or SART model) and the "UK McLernon 2022 model" -- are 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.20.24308970doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24308970


 4 

"sufficient". Both the SART calculator and UK McLernon 2022 model were developed using large 
data sets and are accessible to the public via online calculator websites. (14-18) 
 
The limited meaning of ROC-AUC notwithstanding, we have reported MLCS models with AUCs 
comparable to those of registry-based models. For example, we reported an external validation of 
pretreatment MLCS models showing AUCs of 0.80 (US center, 2010) and 0.72 (UK center, 2015), 
which compared favorably to the AUCs of 0.73 and 0.71 reported for the SART 2021 model training 
(non-external validation) with and without AMH as predictor, respectively and AUC of 0.67 reported 
for the external validation of the UK McLernon 2022 model. (4-5, 14-16)   
 
Using a single center's dataset comprising ~26K+ IVF cycles, Cai et al reported improved and more 
locally relevant model performance using the MLCS approach, refuting the recommendation by 
McLernon et al to develop center-specific models by recalibrating from the SART or UK McLernon 
models. (9)  Many US providers have asked us to show the differential prognostic information 
provided by the SART calculator and an MLCS model and whether MLCS is applicable to small-to-
midsize US fertility centers with much lower IVF volumes compared to the report by Cai et al.  
However, a head-to-head comparison between the MLCS and McLernon pretreatment models has 
not been performed for centers reporting to the US or UK registries.  Addressing these questions 
will help us to develop best practices for IVF prognostic counseling, which is critical for advancing 
and expanding fertility care in the US and globally. 
 
This retrospective cohort study aimed to compare the performance of the MLCS and SART 
pretreatment models for six unrelated, individual small-to-midsize fertility centers operating in 22 
locations across 9 states in 4 US regions (West, Southeast, Southwest and Midwest) with 
processed datasets comprising 4,645 IVF cycles in aggregate available for model evaluation.  
MLCS and SART models (with and without AMH as predictor, based on AMH availability) were 
evaluated using metrics including AUC-ROC, AUC improvement over age control, predictive power, 
precision, recall, F1 score, and precision-recall AUC. (19)  We also addressed data drift, a scenario 
in which changes in the distribution of clinical attributes, relationship between predictors and 
treatment outcomes and/or the relevant importance of predictors occurring after a model is 
deployed causes a previously validated model to have decreased clinical relevance. (20) Our goal 
was to focus on objective comparisons that would directly and practically inform clinical practice 
and patient experience.  
 
 
Materials and Methods 
 
Research data sources, de-identified data sets and prior reporting of methods 
De-identified IVF treatment clinical variables and outcomes data previously linked and processed 
as part of Univfy client services were entered into Univfy research database as per research 
protocol. The original data sources included electronic medical record (EMR) and SART CORS, the 
US national registry database managed by SART. (21) Univfy Inc. received an exempt status from 
institutional review board (IRB) to conduct this research.  
 
Briefly, definitions of IVF treatments, live birth and methods used for data collection, exclusion 
criteria, use of center-specific variables, model training and testing, gradient boosted machines 
(GBM) on the Bernoulli distribution, and the use of model evaluation metrics ROC-AUC, AUC 
improvement over age control model ("AUC improvement") and the posterior log odds ratio 
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compared to age control model (PLORA) were substantially as previously reported. (4-5)  The 
training data were limited to IVF cycles using autologous oocytes and embryos with the female's 
age under 42.   
 
The MLCS model life cycle and evaluation steps are detailed in SI Methods and SI Figure 1.  
Consecutive years of data within the 2013-2022 period were used for training and testing varied 
slightly across centers. Each center's Univfy report usage period started in 2016-2019 with data 
collection ending in 2020-2022. (Table 1.) To assess the risk of data drift, we performed post-
deployment, live model validation (LMV) per center, using an out-of-time test set from a time period 
following and exclusive from the MLCS1 training and test data.  (20, 22). Using a larger, more 
recent, historical data set, each center's first model (MLCS1) was replaced by an updated model 
(MLCS2) in clinical usage at the start of this study.  
 
Adapting test sets to enable comparison of MLSC2 and SART models. 
The SART model responses were obtained by using the pre-treatment model formulae, with and 
without AMH predictor, reported by McLernon et al., 2021. (16)  De novo model validation (DNMV) 
was performed for each center using model responses from applying each center's own MLCS2 
model and the SART model to DNMV1. DNMV1, a test set modified to enable testing by both MLSC2 
and SART models, was limited to first IVF cycles with age under 40, BMI value, and male factor 
diagnosis value (true or false). The SART model with or without AMH predictor was used according 
to AMH availability. 
 
Intentional design difference between MLCS and SART methods resulted in clinical ongoing 
pregnancy (COP) being assigned live birth by MLCS and no live birth by SART, affecting ~4.8% of 
aggregate data. (16)  The DNMV2 test set was finalized after removing those differentially labeled 
cycles from DNMV1 test set. 
 
Comparing MLCS2 and SART models  
In addition to AUC and PLORA, we computed Precision, Recall and F1 scores for the MLCS2 and 
SART models using each center's DNMV1 and DNMV2. PR AUC was calculated for the MLCS2 vs 
SART LBP for all 6 centers in aggregate. (19)  We also tested the MLCS2 and SART models for 
reclassification, which measured the percentage of cases having different live birth probabilities 
from the two models. The age-based live birth rates stated in the finalized 2020 SART National 
Summary were used as age control because practically, that is the number that providers and 
patients could see if they were not using any prediction models. (23)  
 
Statistical analyses  
Model metrics were reported using median and interquartile range (IQR) across 6 centers. 
Wilcoxon signed-rank test, allowing for non-parametric paired-testing, was used to compare 
MLCS2 and SART model metrics paired by center. Continuous net reclassification improvement 
(NRI)  was used to measure the likelihood of correctly re-assigning a higher or lower IVF live birth 
probability with MLCS2 compared to SART models. (24, 25) 
 
The EQUATOR Reporting Guidelines including "TRIPOD + AI statement: updated guidance for 
reporting clinical prediction models that use regression or machine learning methods" were 
followed. (26, 27) 
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Results 
 
Six centers participated in this study. Table 1 shows for each model validation, the MLCS model 
tested, time period of each data set, IVF volume range represented by the data set, data set usage 
(e.g. used for both training and testing or testing only), and the validation type (in-time or out-of-
time).  For each center, the MLCS1 and MLCS2 model cross validation results showed positive AUC 
Improvement and PLORA, indicating they were superior to their respective age control models. (SI 
Table 1.) 
 
Next, we tested whether the AUC and PLORA of MLCS2 were improved over those of MLCS1. 
Across 6 centers, AUC was similar between MLCS1 & MLCS2, but PLORA of MLCS2 (23.9, IQR 10.2, 
39.4) was improved over those of MLCS1 (7.2, IQR 3.6, 11.8), p<0.05. Therefore, the model update 
process (i.e. using a larger data set including more recent years of data) resulted in improved 
model performance. (SI Table 1.) 
 
To test for the risk of data drift, we performed LMV testing on each center's MLCS1 model using a 
center-specific, out-of-time data set. There was no significant difference in the AUC and PLORA 
between the LMV and CV results for MLCS1 models; therefore, there was no detectable data drift 
based on LMV. (SI Table 1.) 
 
MLCS2 and SART models were evaluated for each center using the modified, center-specific test 
sets, DNMV1 and DNMV2, each comprising an aggregate of 4,645 and 4,421 unique patient-cycles 
across 6 centers. The overall rates of live birth labeling were 58.5% and 56.4% for DNMV1 and 
DNMV2, respectively. Further, only ~5% of patient-cycles did not have AMH value and they were 
tested by the SART model without AMH predictor. 
 
AUC and PLORA were not significantly different between the MLCS2 and SART models for either 
DNMV1 or DNMV2 (Table 2).  Further evaluation was performed using the model metrics F1 Score 
(the harmonic mean of precision and recall) and PR AUC, which are considered to be more 
sensitive in detecting improvements in predicting the positive class which is live birth prediction in 
the context of this study.  
 
The median F1 Score was higher for MLCS2 compared to SART model across predicted live birth 
probability (LBP) thresholds sampled at deciles at ≥40%, ≥50%, ≥60%, ≥70%. For example, at the 
50% LBP threshold, MLCS2 had a median  F1 Score of 0.74 (IQR=0.72, 0.78) compared to  0.71 
(IQR=0.68, 0.73) for SART using the DNMV1 test set. Similar findings were observed using the 
DNMV2 test set which showed median F1 Scores of 0.74 (IQR=0.71, 0.75)and 0.69 (IQR=0.67, 
0.72)for MLCS2 and SART, respectively, using the DNMV2 test set.  
  
PR AUC was significantly higher for MLCS2 using DNMV1. The median PR AUC was 0.75 (IQR=0.73, 
0.77) for MLCS2 and 0.69 (IQR=0.68, 0.71) for SART across the 6 centers, p<0.05 (Table 2). The 
findings were similar when tested using DNMV2 test set, p<0.05 (Table 2).  While overall precision 
was comparable between MLCS2 and SART, MLCS2 models showed higher rates of recall across 
most precision rates and more cycles with higher IVF live birth probabilities for both DNMV1 and 
DNMV2 across six centers (Figure 1).  
 
We constructed a 4x4 reclassification table to give the practical, clinical context of the 
improvement conferred by MLCS2. Table 3 showed the number of patients falling into one of 16 
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spots based on their LBPs as computed by MLCS2 and SART using these 4 LBP categories: <25%, 
25-49.9%, 50-74.9%, and ≥75%. For example, of 249 patients who would have received SART-LBPs 
< 25%, 168 (67%) had LBPs of 25-50% as validated by the MLCS2 model. This pattern of higher 
LBPs from MLCS2 is consistently seen over the entire LBP range.  The continuous net 
reclassification index (NRI) showed a net 18.3% (95% CI 13.3%, 23.2%) of patients were more 
correctly assigned a higher or lower probability with MLCS2 compared to SART when tested using 
the DNMV1 test set (p<0.001). Similar findings were obtained using the DNMV2 test set. (Table 3.) 
 
 
Discussion 
This study compared individual MLCS models and the SART model for pretreatment IVF live birth 
prognostics for six unrelated, geographically distributed US fertility centers that report to the SART 
registry. Here, the retrospective study design was appropriate because the prognostic models were 
previously trained, tested, already in clinical usage and evaluation of the models' technical 
performance were not biased by the retrospective design.  
 
We took the pragmatic realist approach to address "how are the predictions different for the 
patients seen in the centers today?" The MLCS2 models performed better than the SART model in 
terms of metrics considered more sensitive to improvements in predicting the positive class (i.e. 
live birth prediction in this study) -- the PR AUC, F1 score and Recall. (19) Taken together, providers 
at those six centers can expect the following practical difference at LBP ≥ 50%: the MLCS2 model 
identifies ~84% of patients who would go on to have an IVF live birth, whereas the SART model 
identifies only ~75%.  In other words, for every 100 patients who will have an IVF live birth, with LBR 
≥ 50%, the MLCS2 model can identify 9 more such patients than the SART model without 
overcalling or overestimating LBPs compared to the SART model. This example reflects MLCS2 
models' improved Recall over SART model. 
 
To provide a thorough comparison, we used PR AUC, a metric sensitive in detecting improvements 
in predicting the positive class (live birth) and can tolerate imbalanced dataset. Consistent with the 
above example, the MLSC2 models showed improved ability to make live birth prediction calls, 
with a higher PR AUC compared to SART model PR AUC for the DNMV1 and DNMV2 test data used 
in this study (p< 0.05).   
 
Although scientifically, the F1 score and PR AUC results were robust and definitive in showing the 
improved ability of MLCS2 models to provide appropriately higher LBPs, we also used several 
visuals -- a 4 x 4 reclassification table to illustrate differential LBPs and histograms showing 
differential frequency distribution of LBPs between the MLCS2 and SART models.  In the clinical 
context of IVF LBP counseling, the continuous NRI is useful in testing whether differential LBPs 
correlate with likelihoods of more or fewer actual live births. In contrast, using continuous or 
categorical NRI as a metric may not be as beneficial for clinical contexts where moving up or down 
more than one risk category can have very different clinical meaning (e.g. oncology).  (28) 
 
Compared to the SART model, we found MLCS2 models to have improved PR AUC and F1 score yet 
comparable ROC AUC despite the differential dataset sizes used for model creation. (The SART 
model used 121K+ IVF cycles whereas the MLCS models used a median dataset size of 547 IVF 
cycles.) We believe it is not a constructive use of time to dissect each aspect of model design for its 
impact on model performance. Instead, we take the view that many factors -- including ML, CS 
approach, data cleaning and modeling pipeline quality assurance, the use of expert human 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.20.24308970doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24308970


 8 

supervision, software automation and close collaboration with providers -- all contributed to 
improved MLCS2 model performance. One other difference that warrants mention is the greater 
number of consecutive years covered by the MLCS data sets, as that allowed for more freeze-all 
cycles to generate outcomes to reflect their more realistic and higher live birth probabilities. 
In other words, we accepted the comparison of two live models in toto, viewing any differences or 
constraints in the model design or data set construction to be intentional.  
 
Although the MLCS and SART model training sets were comparable in including female patient's 
age, BMI, clinical diagnoses, and reproductive history, the MLCS models used  
one or more ovarian reserve tests (e.g. AMH, D3 FSH, or AFC) reflecting each center's practice 
without being affected by inter-center laboratory differences irrelevant to each center. However, 
AMH value was available in ~95% of cycles. 
 
ROC AUC was not different between the MLCS2 and SART models, presumably because it was 
rather insensitive to improvements in positive class prediction. However, ROC AUC was lower for 
the SART model in this study compared to ROC AUC measured using a national dataset.   It is 
possible that the inclusion of patients up to age 50 in the SART model training data provided a 
larger proportion of true negative cases (such as having a high rate of IVF failure in older patients), 
resulting in a higher model-wide ROC AUC. (19) Cai et al eluded to the adapted McLernon models 
having better performance for patients over 35 compared to those under 35. (9) In our client 
services work, we typically train pretreatment models for under 40 and 40+ separately and we 
further perform subgroup validation for incremental age groups as the live birth rates for ages 41-42 
vary significantly from those for 43+, for example. The ability to discern patients with different IVF 
prognoses support the appropriate delivery of compassionate care (such as using prognosis-driven 
empathy in the words and tone) and validated optimism according to the validated IVF LBP, efforts 
that are important and not mutually exclusive. (29)    
 
The initial and ongoing motivation for our research group is to improve access to fertility care and 
IVF treatment to help more people succeed in building a family.  The SART model, in the format of a 
free online calculator, is a valuable patient education tool that encourages patients to seek care. 
However, at the point when patients have completed their diagnostic workup and are being 
counseled by providers to start IVF treatment, patients are interested to know their center-specific 
IVF live birth probabilities.   
 
As with the adoption of any new technology especially in the post-pandemic era, quantifying care 
navigation and improved workflow efficiency are critical. We have reported results from a 
retrospective study measuring patients' treatment utilization after receiving MLCS-counseling, the 
results of which informed the design of a  prospective trial (in progress).  (30)  In the context of 
clinical workflow, MLCS models can support an evolving, more diverse range of healthcare 
providers -- such as advanced practice providers (APPs), nurse practitioners and general 
obstetrician-gynecologists -- to perform patient counseling, further improving scalability and 
accessibility of IVF treatments. (31, 32)  
 
With IVF access as our north star, we take the view that improving model metrics such as F1 Score 
and PR AUC is urgently needed for several reasons. First, IVF success predictability directly affects 
the extent to which IVF can be financially de-risked for payers including patients as consumers and 
enterprise payers such as health plans and employers. Further, we should correct the erroneous 
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perceptions that IVF treatments are prone to failure or not predictable, which continue to 
discourage patients and payers. 
 
As the use of ML gains maturity in healthcare, the emphasis shifts to delivering highly scalable, 
secured pipelines for model pre-processing, model training and model deployment. (33). We have 
established a globally applicable framework for analyzing IVF data to inform locally relevant, 
practical clinical decisions. We welcome collaboration to scale research tackling crucial questions 
related to race/ethnicity, other social determinants of health, molecular mechanisms of clinical 
infertility, IVF usage and IVF outcomes for research.  (34) We hope this study will help to advance 
reproductive medicine beyond dichotomies of multicenter versus center-specific or ML versus 
non-ML. Ultimately, the multicenter-scaling of the MLCS approach is expected to maximize benefit 
to individuals and society by addressing health inequities, supporting provider-patients 
prognostics counseling, de-risking financial support for IVF care and advancing precision medicine 
in reproductive health.   
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Table 1. This table shows the time period, number of years and IVF volume represented by each 
data set matched against the MLCS model being tested. We also indicated whether (i) the dataset 
was used for both training and testing or testing only and (ii) the model validation was cross 
validation (CV) using in-time data or live model validation (LMV) using out-of-time data. 
 

Clinic 

MLCS-based 
PreIVF Model 
tested 

Attributes of IVF outcomes dataset 
used Data use: 

both (train 
and test) or 
test only 

Model Validation Type 

Time period 
Number 
of years 

Number of 
IVF cycles 
(range) CV or LMV 

In-time or 
out-of-time 

916 
MLCS 1 2014-2016 3 501-1000 both CV in-time 
MLCS 2 2014-2020 7 1001-2000 both CV in-time 
MLCS 1 2017-2020 4 501-1000 test only LMV out-of-time 

552 
MLCS 1 2014-2016 2.5 101-200 both CV in-time 
MLCS 2 2014-2020 7 301-500 both CV in-time 
MLCS 1 2016-2020 4.5 101-200 test only LMV out-of-time 

635 
MLCS 1 2013-2016 4 501-1000 both CV in-time 
MLCS 2 2013-2020 8 1001-2000 both CV in-time 
MLCS 1 2017-2020 4 501-1000 test only LMV out-of-time 

189 
MLCS 1 2014-2018 5 301-500 both CV in-time 
MLCS 2 2014-2020 7 501-1000 both CV in-time 
MLCS 1 2019-2020 2 201-300 test only LMV out-of-time 

869 
MLCS 1 2014-2018 5 501-1000 both CV in-time 
MLCS 2 2016-2020 5 501-1000 both CV in-time 
MLCS 1 2019-2020 2 201-300 test only LMV out-of-time 

395 
MLCS 1 2013-2018 6 501-1000 both CV in-time 
MLCS 2 2013-2021 9 1001-2000 both CV in-time 
MLCS 1 2019-2021 2 501-1000 test only LMV out-of-time 
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Table 2. This table shows the median and IQR for model cross validation metrics -- AUC and PLORA 
-- measured by testing each center's MLCS2 and SART models using each center's modified test 
sets (DNMV1 and DNMV2) and using the SART 2020 age group-based live birth rate as the age 
control "model".   *MLCS2 models showed significantly higher PR AUC score than SART, p<0.05.  
 
Test set for cross validation Model validation results: median and IQR (in parenthesis) 

Test set 
In-time or 
out-of-
time data 

Model AUC PLORA 
F1 at 50% LBP 
threshold* 

PR AUC* 

DNMV1 test set 
includes IVF 
cycles with 
COP outcomes 
(N=4,645) 

in-time MLCS2 
0.64  
(0.62, 0.66) 

28.1  
(15.2, 49.4) 

0.74 
(0.72, 0.78) 

0.75  
(0.73, 0.77) 

out-of-
time 

SART 0.65  
(0.63, 0.66) 

22.5  
(15.8, 46,5) 

0.71 
(0.68, 0.73) 

0.69 
(0.68, 0.71) 

DNMV2 test set 
excluding IVF 
cycles with 
COP outcomes 
(N=4,421) 

in-time MLCS2 
0.64  
(0.62, 0.66) 

23.5  
(13.3, 33.9) 

0.74 
(0.71, 0.75) 

0.73 
(0.73, 0.75) 

out-of-
time 

SART 
0.65  
(0.62, 0.66) 

20.2  
(14.9, 40.9) 

0.69 
(0.67, 0.72) 

0.68 
(0.66, 0.69) 

 
 
Table 3. Reclassification table comparing IVF live birth predicted probability models MLCS2 and 
SART across centers for (A) DNMV1 and (B) DNMV2. The continuous NRI was 18.3% (95% CI 13%, 
23%) for DNMV1 and 15.8% (95% CI 10.7%, 20.8%) for DNMV2; p<0.001.  
 
A.  

DNMV1 MLCS2  

SART Model < 25% 25% ≥ x > 50% 50% ≥ x > 75% ≥ 75% Total 

< 25% 79 168 2 0 249 
25% ≥ x > 50% 12 735 566 7 1320 

50% ≥ x > 75% 0 144 2445 487 3076 

≥ 75% 0 0 0 0 0 

Total 91 1047 3013 494 4645 

 
 
B. 

 
 
 
 

DNMV2 MLCS2  

SART Model < 25% 25% ≥ x > 50% 50% ≥ x > 75% ≥ 75% Total 

< 25% 78 163 1 0 242 

25% ≥ x > 50% 12 726 525 7 1270 

50% ≥ x > 75% 0 143 2336 430 2909 
≥ 75% 0 0 0 0 0 

Total 90 1032 2862 437 4421 
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Figure 1. Comparison of MLCS2 and SART models using (A) Precision-Recall curves for each of 
the 6 clinics using each center's modified test sets, DNMV1 and DNMV2, for MLCS2 (labeled 
Univfy) and SART models; (B) frequency distributions of live birth probabilities using MLCS2 and 
the SART models for modified test sets DNMV1 and DNMV2.
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Supplementary Information (SI) 
Predicting IVF live birth probabilities using machine learning, center-specific and national registry-
based models.  Nguyen et al.  
 
SI Methods 
Cross validation (CV).  Our standard model evaluation procedure required k-fold cross validation on 
an in-time test set (the test and training data sources were contemporaneous) to compute the 
ROC-AUC, AUC improvement over age control model ("AUC improvement") and the posterior log 
odds ratio compared to age control model (PLORA) as previously reported. In layman terms, PLORA 
describes "given a certain LBP prediction, how much more likely will the MLCS model be correct 
compared to age control?" PLORA, expressed in the log scale with log base e, can also be 
translated to the linear scale (ePLORA) to facilitate communications with non-statisticians. (1, 4-5) CV 
of both MLCS1and MLCS2 was reported using median and interquartile range (IQR) across 6 
centers for ROC-AUC, ROC-AUC improvement and PLORA.  
 
 
SI Table 1. This table shows the median and interquartile range (IQR) for cross validation and live 
model validation metrics -- AUC, AUC Improvement over Age model and PLORA -- for MLCS1 and 
MLCS2 models across 6 centers. 
 

  Model validation results: median and IQR 
Model Validation AUC PLORA 
MLCS 1 CV, in-time 0.66 (IQR = 0.61, 0.68)   7.2 (IQR = 3.6, 11.8) 
MLCS 2 CV, in-time 0.67 (IQR = 0.66, 0.68) 23.9 (IQR = 10.2, 39.4) 
MLCS 1 LMV, out-of-time 0.65 (IQR = 0.63, 0.66)   6.7 (IQR = 2.2, 12.0) 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.20.24308970doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24308970


SI Figure 1. The development-to-deployment life cycle of the machine learning-based, center-specific, prognostic model for use at point-of-care to support patient counseling*. (A) The MLCS-
based, PreIVF model (MLCS model) product life cycle comprises the steps of data pre-processing, model training and validation, deployment and post-deployment validation (or live model 
validation). (B) Model pipeline supports feature testing, model training, validation analysis, deployment to production and quality testing. (C) Point-of-care deliverable as illustrated by the first page 
of the sample provider-patient counseling report showing how the MLSC model’s predicted IVF live birth probabilities are communicated. (The identifiers including Report ID, MRN, DOB, Name, 
Age and Report Date, on the report are fictitious and are generated using a “demo” clinic that uses only dummy, fictitious data for illustration only.)

Data use agreement in compliance with applicable data 
privacy laws (e.g. HIPAA, GDPR, etc.)

MLSC1 (PreIVF model 1)
Model Training & Validation

Customization of PreIVF patient 
counselling report

Medical Director’s & clinical 
team’s review & feedback

Deployment of Univfy® PreIVF Report which shows predicted 
live birth probabilities (LBP) from MLSC1 model

• Train fertility center users
• Go Live
• Start clinical counseling usage at point-of-care

18-30 months after Go Live

Model Update
1. Data and Model Pipeline
2. Production model validation 

(PMV) of MLSC2 model
3. Finalize MLCS2 model

Live Model Validation (LMV)
Test MLCS1 model using data 
from 1st IVF cycles performed 

since Go Live.

Ongoing patient care and service utilization analytics

A B C

Center’s Name

Data pre-processing
Apply inclusions & exclusions

1. Feature Testing and Selection:
• Train models using different 

feature sets, evaluate using 
model metrics (e.g. AUC, log 
likelihood, dynamic range, 
reclassification, etc.) over age 
control model.

• Select the optimal feature set.
2. Production Model Validation 

(PMV):
• Evaluate MLCS1 or MLCS2 

production model
• k-fold cross validation (CV)
• model performance metrics 

(e.g. AUC, log likelihood, 
dynamic range, reclassification, 
etc.)

3. Implementation:
• Integrate production model, 

user interface, report content 
customized to each fertility 
center

4. Quality Assurance Testing
Deployment of MLCS1 or MLCS2 
production model and the 
Univfy® PreIVF Report 

MLSC1 or MLSC2
Model Training, Validation, Deployment
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