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Abstract

Identifying genotype-guided drug combinations in cancer therapy represents an unmet medical need and is
important in enhancing efficacy and reducing toxicity. However, the exponential increase in combinatorial
possibilities constrains the ability to identify and validate effective drug combinations. In this context,
we have developed Onko_DrugCombScreen, an innovative tool aiming at advancing precision medicine
based on identifying significant drug combination candidates in a target cancer cohort compared to a
comparison cohort. Onko_DrugCombScreen, inspired by the Molecular Tumor Board (MTB) process,
synergizes drug knowledge-base analysis with various statistical methodologies and data visualization
techniques to pinpoint drug combination candidates. Validated through a TCGA-BRCA case study,
Onko_DrugCombScreen has demonstrated its proficiency in discerning established drug combinations
in a specific cancer type and in revealing potential novel drug combinations. By enhancing the capability
of drug combination discovery through drug knowledge bases, Onko_DrugCombScreen represents a
significant advancement in personalized cancer treatment by identifying promising drug combinations,
setting the stage for the development of more precise and potent combination treatments in cancer care.
Keywords: precision oncology, drug combination, bioinformatics, precision medicine, drug discovery.
Availability: https://rshiny.gwdg.de/apps/onko_drugcombscreen/
Git Repository: https://gitlab.gwdg.de/MedBioinf/mtb/onko_drugcombscreen
Contact: tim.beissbarth@bioinf.med.uni-goettingen.de

1 Introduction
Cancer treatment is an intricate field, with the ongoing quest to

develop therapies that effectively target the disease while minimizing side
effects. The application of synergistic drug combinations builds on the
idea of lowering the concentration of both drugs to archieve the same
effect with less side effects and represents an important advancement in
cancer therapy(Duarte and Vale, 2022) This approach aims to overcome
the limitations of single-agent treatments by improving efficacy and
reducing the likelihood of drug resistance (Delou et al., 2019) However,
the task of identifying optimal drug combinations is complicated by the
significant variability in tumor types and patient responses, along with
the complexities of cancer biology, the high dimensionality of data, and
the number of drug combinations far beyond what is possible for clinical
testing (Kong et al., 2022; Narayan et al., 2020) These challenges make it
difficult to predict which combinations will be most effective, necessitating
advanced computational models and extensive experimental validation

to navigate the vast landscape of potential drug combinations and tailor
treatments to cohort patients’ needs (Sarmah et al., 2023)

Molecular Tumor Boards (MTBs) are crucial in personalizing cancer
treatment, integrating multidisciplinary expertise to interpret genetic
data and guide treatment decisions based on a patient’s unique tumor
characteristics (Perera-Bel et al., 2018; Luchini et al., 2020; Kurz et al.,
2022) Drawing inspiration from the methodologies employed by MTBs,
the utilization of drug databases alongside detailed drug’s level of evidence
information emerges as a crucial strategy in advancing patient-specific
treatment recommendations (Perera-Bel et al., 2018; Luchini et al., 2020;
Kurz et al., 2022) This approach not only facilitates the identification of the
most suitable drugs for individual patients based on their genetic profiles
but also sets the foundation for drug combination prediction based on
patient cohorts. Applying statistical methods based on drug databases to
the set of recommended drugs for these patient cohorts enables researchers
and clinicians to predict more accurately effective drug combinations. This
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strategy underscores a significant shift towards a data-driven and evidence-
based framework to optimize combination therapy for cancer patients,
leveraging the increasingly available genetic and pharmacological data to
enhance treatment efficacy and patient outcomes.

In recent decades, an increasing application of computational
approaches has been developed for the prediction of drug combinations
and their effects. Preuer et al. developed DeepSynergy, a deep learning-
based approach that accurately predicts drug combination synergies
for cancer treatments, significantly surpassing traditional performance
methods (Preuer et al., 2018) Similarly, Wang et al. introduced
DeepDDS, a deep learning model that employs graph neural networks
and attention mechanisms to precisely predict and prioritize synergistic
drug combinations for cancer treatments, achieving the advantage of
enhanced interpretability through chemical substructure analysis (Wang
et al., 2022) Cheng et al. demonstrated that a network-based methodology,
concentrating on the relative configuration of drug–target modules in
connection to disease modules, can effectively prioritize potentially
efficacious drug combinations for complex diseases such as cancer
(Cheng, Kovács, and Barabási, 2019) GAECDS, presented by Li et
al., is an innovative approach combining graph autoencoders and
convolutional neural networks to accurately predict drug synergy, showing
superior performance in identifying efficacious drug combinations (Li
et al., 2023) Concurrently, numerous classical machine learning models
have also exhibited performance comparable to deep learning methods,
demonstrating their robustness and utility in this complex domain. Gayvert
et al. showcased that a Random Forest model, utilizing single drug dose
responses as features, could accurately predict drug pair synergy and
effectiveness in mutant BRAF melanomas (Gayvert et al., 2017) Janizek et
al. introduced TreeCombo, an XGBoost-based approach that leverages the
power of gradient boosting to improve predictive accuracy, outperforming
DeepSynergy by using drug physiochemical features and cancer cell line
gene expression data. The use of XGBoost, which combines multiple
decision trees to make robust predictions, demonstrated comparable
efficacy to deep learning on medium-scale datasets, while offering the
additional benefits of reduced complexity in hyperparameter tuning and
enhanced interpretability through TreeSHAP, a feature attribution method
that identifies the contribution of each variable in a clear and consistent
manner (Janizek, Celik, and Lee, 2018) However, current pre-clinical
screenings primarily focus on the synergistic effects of drug combinations,
often overlooking key factors for clinical success such as potential toxicity
and selective efficacy against tumors (Kong et al., 2022) At the same
time, there is a clear lack of innovative computational solutions to
demonstrate their feasibility and benefits in translational applications,
especially in the field of cancer, where there is an urgent need to identify
combination therapies suitable for specific cancer group patients based on
patient-specific biomarkers (Cui et al., 2020; Tan et al., 2021)

In this paper, we present an Onko_DrugCombScreen Shinyapp
designed to address this gap in cancer therapy which could predict the
significant drug combination candidates based on the target patient cohort
statistical analysis against the comparison cohort. The primary goal
of Onko_DrugCombScreen extends beyond merely providing treatment
recommendations based on drug databases like GDKD(Dienstmann et
al., 2015) CiVIC(Griffith et al., 2017) and OncoKB(Chakravarty et al.,
2017) It integrates statistical methods and data visualization to analyze
target cancer type cohort and comparison cohort genetic data against
extensive drug databases, thereby uncovering potential drug combinations
and mapping them onto cell line data, providing a robust basis for clinical
drug screening. Based on the drug evidence levels in the knowledge
database for medications, one can directly ascertain whether the variant
mapping drugs are selective at the cancer types in the target patient cohort,
and the previous studies collected in the database can save workload on

drug toxicity analysis. This brings renewed hope for the clinical translation
of cancer-type-specific drug combination therapies.

Methods

Fisher’s exact test in subtype recommendations
Besides predicting single drugs, clinicians and researchers are interested
in determining whether two drugs are simultaneously recommended for
the target tumor type and exhibit significant differences compared to
the comparison tumor group. Here, we defined co-recommended drugs
as candidate drug combinations that are presented in the Drug_comb

column in the DrugComb analysis table. We then counted the number
of patients in the target tumor cohort in the comparison cohort for each
candidate drug combination. Subsequently, we used these four counts to
construct a contingency table (Table 1) and performed a Fisher’s exact
test for each candidate drug combination. By analyzing the p-value and
odds ratio that are circled with a red rectangle in Figure 1 results obtained
from Fisher’s exact test, we can determine if the occurrence of a candidate
drug combination is significantly different and assess the magnitude of
this difference. The p-values were adjusted using the Benjamini-Hochberg
method, as reflected in the adjust_p.value column, to account for
multiple hypothesis testing and control the false discovery rate (FDR).
Additionally, we report drug combination candidate recommendations for
cell line data in the final four columns in the DrugComb analysis table to
assist with wet-lab validation. (Fig. 1).

Table 1. Contingency table for Fisher exact test analysis. In this table,
a represents the number of patients in the target tumor cohort receiving
Drug1+Drug2 co-recommendation, b is the number of comparison cohort
patients receiving Drug1+Drug2 co-recommendation, c is the number
of patients in the target tumor cohort not receiving Drug1+Drug2 co-
recommendation, and d is the number of comparison cohort patients not
receiving Drug1+Drug2 co-recommendation.

Target Comparison Row Total
Drug1 + Drug2 a b a + b

Non Drug1 + Drug2 c d c + d
Column Total a + c b + d a + b + c + d (n)

Here, Fisher’s exact test serves as a robust statistical method to
determine the significance of the association between the candidate
drug combination and the tumor type. Fisher’s exact test is particularly
suitable for small sample sizes and for datasets where the assumptions of
chi-squared tests are not met.

The null hypothesis for Fisher’s exact test posits that there is no
association between the drug combination and the tumor type. Under
this assumption, the test calculates the p-value, which represents the
probability of observing the current distribution of patients, or a more
extreme distribution, if the null hypothesis were true. The p-value is
computed using the hypergeometric distribution formula:

P =

(a+b
a

)
×

(c+d
c

)( n
a+c

) (1)

Here, a, b, c, and d are the cell counts in the 2 × 2 table, and n is
the total sample size (a + b + c + d). The p-value is then the sum of
probabilities (P ) for all arrangements of the table where the association
between the rows and columns is as extreme as or more extreme than in
the observed table. A low p-value indicates that the observed distribution
is unlikely under the null hypothesis, suggesting a significant association
between candidate drug combinations and the tumor type.
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Table 2. Drugs obtained from the Drug knowledge database are classified into
clinically relevant categories using a system of six levels of evidence.

Approved Clinical Preclinical
Same

Cancer
A1 A2 A3

Other
Cancer

B1 B2 B3

The odds ratio is calculated as a/b
c/d

, representing the odds of the
target tumor group receiving Drug1+Drug2 compared to the odds of
the comparison group receiving the same. An odds ratio greater than
1 indicates a higher likelihood of the target cohort receiving the drug
combination compared to the comparison cohort, while an odds ratio less
than 1 suggests the opposite.

Drug Level of Evidence

Here, we adopted the MTB drug’s level of evidence category approach
proposed by Perera-Bel (Perera-Bel et al., 2018) As shown in Table 2. "A"
signifies evidence for the same cancer type, while "B" indicates evidence
for any other cancer type. Horizontally, Level 1 represents evidence
supported by regulatory agencies or clinical guidelines. Level 2 includes
evidence from clinical trials. Finally, Level 3 consists of preclinical trial
evidence. Therefore, based on the different target cancer types of drugs and
their respective clinical evidence, six levels of drug evidence are derived:
A1, A2, A3, B1, B2, B3. With this drug level of evidence, the selection
of recommended drugs for specific cancer types and their clinical strength
can be clearly defined, which can guide the clinical decision.

Material

Analysis tools
Onko_DrugCombScreen was implemented using R (v.4.3.1) and R Shiny
(v.1.8.0). This shiny app integrated a variety of R programming language
packages for comprehensive bioinformatics analysis. For parsing and
generating data structures, we utilized readxl v1.4.1 (Wickham and
Bryan, 2023; Wickham et al., 2019) To facilitate data manipulation and
transformation, we employed packages like reshape2 v1.4.4 (Wickham,
2007) tidyr v1.2.1 (Wickham et al., 2019) and dplyr v1.0.10 (Wickham
et al., 2020) We applied packages such as maftools v2.12.0 (Mayakonda
et al., 2018) clusterProfiler v4.4.4 (Yu et al., 2012) and VariantAnnotation
v1.42.1 (Obenchain et al., 2014) for the analysis of somatic variants,
functional profiles of genes. For data visualization, we used packages such
as circlize v0.4.15 (Gu et al., 2014) for circular visualizations, ggalluvial
v0.12.3 (Brunson and Read, 2023; Brunson, 2020) for alluvial diagrams,
ggrepel v0.9.2 (Slowikowski, 2024) for label clarity, ComplexHeatmap
v2.12.1 (Gu, Eils, and Schlesner, 2016) for sophisticated heatmaps, and
ggplot2 v3.4.0 (Villanueva and Chen, 2019) for creating customizable
static plots.

Data Source
The harmonized drug database, is derived from open-source drug
knowledge databases including GDKD (Dienstmann et al., 2015) CiVIC
(Griffith et al., 2017) and OncoKB (Chakravarty et al., 2017) utilizes the
’DrugBank Vocabulary’ dataset from DrugBank(Wishart et al., 2018) to
standardize drug synonyms. TCGA-BRCA data and breast cancer cell
line data used in the case study were collected from UCSC Xena hubs
(Goldman et al., 2020)

Results
Case Study: Application and Validation Using
TCGA-BRCA Data
Dataset Selection and Processing

In this case study, the Onko_DrugCombScreen was applied to the
TCGA-BRCA dataset to validate its efficacy in identifying effective
drug combinations for breast cancer. The TCGA-BRCA dataset, derived
from the TCGA Pan-Cancer (PANCAN) initiative, was chosen for its
comprehensive genetic profiling, including extensive data on copy number
variations (CNVs), single nucleotide variations (SNVs), and molecular
subtype profiles (Weinstein et al., 2013) This dataset provides a broad
coverage of genetic variations, making it an ideal resource for this analysis.
Additionally, cell line data from the Cancer Cell Line Encyclopedia
(Breast) were incorporated to complement the analysis (Barretina et al.,
2012) All of the above data set are available in UCSC Xena hubs (Goldman
et al., 2020)

In the preprocessing phase, somatic mutation data from the TCGA
Pan-Cancer (PANCAN) was converted into a compatible CSV file for
analysis by the Onko_DrugCombScreen. This process involved filtering
the dataset to isolate BRCA cancer data and further stratifying it into
molecular subtypes - Luminal A/B, HER2, Normal-like, and Basal-
like. In this case study, we used Normal-like breast cancer as the
comparison cohort, and Luminal B, HER2, and Basal-like subtypes
as the target cohorts, respectively, to analyze and validate the efficacy
of Onko_DrugCombScreen. Additionally, by integrating cell line data,
Onko_DrugCombScreen provided guidance on suitable cell lines for
subsequent experimental validation.

Validation And Results
The drug co-recommendation comparison analysis revealed significant

disparities between the three BRCA subtypes (Luminal B, HER2+
and Basal-like) and the Normal-like BRCA data. Significant drug co-
recommendations extracted from Onko_DrugCombScreen were compared
with combinational therapies in Wang’s review (Wang and Minden, 2022)
as well as FDA-approved drug combinations to validate the effectiveness.
As the supplementary table 1 shows, the "adjust_p.value" and "OR" (odds
ratio), obtained from the Fisher’s exact test, indicate the significance
and magnitude of the drug combination in the target cohort compared
to the comparison cohort, the “Percentage” depicts the proportion of
the drug combination recommended in the target cohort. Setting the
threshold at adjust_p.value < 0.05, OR > 1, and Percentage >

50% retains around 30% of the significant candidate drug combinations
(28135/121928 in Luminal B vs Normal-like, 30250/111987 in HER2+
vs Normal-like and 48348/112069 in Basal-like vs Normal-like). Notably,
these stringent criteria preserved almost all approved and clinical trial
drug combinations, including the approved combinational therapy of
Pertuzumab + Trastuzumab for the HER2+ subtype and Pembrolizumab
+ Paclitaxel for Triple-Negative Breast Cancer (TNBC). These results
highlight Onko_DrugCombScreen’s accuracy in identifying clinically
relevant drug combinations, confirming its effectiveness. Besides, upon
comparison with the DrugComb.org database (Zheng et al., 2021) it
was found that none of the approved and currently in clinical trial drug
combinations of breast cancer had any recorded synergy scores.

The validation analysis demonstrates that the Onko_DrugCombScreen
is adept at identifying established breast cancer drug combinations in the
BRCA subtypes like HER2+ and Basal-like when compared to Normal-
like BRCA subtype. This finding not only validates the tool’s effectiveness
but also highlights its potential in discovering novel drug combinations for
various cancer types. Consequently, the case study accentuates the utility
of the Onko_DrugCombScreen in providing targeted and efficacious drug
recommendations.
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Fig. 1. DrugComb analysis table and Fisher’s exact test analysis. The Drug_comb column lists the candidate drug combinations. The evidence levels for each drug are indicated
in the level1 and level2 columns. The counts of candidate drug combinations recommended in the target cohort and comparison cohort are provided in the next four columns:
Matched_Count, Non_Matched_Count, Side_Matched_Count, and Side_Non_Matched_Count. These counts are used to construct the contingency table for the Fisher’s
exact test. The percentage column shows the proportion of candidate drug combinations recommended for the target cancer subtype group. The results of the Fisher’s exact test, including
the p-value (p.value), odds ratio (oddsRatio), and adjusted p-value (adjust_p.value), are displayed in the subsequent columns. The last four columns provide integrated analysis
information from cell line data, indicating the proportion and count of candidate drug combinations recommended, as well as the matched cell line IDs (CelllineConfirmed(%),
Cellline_MatchCount, Cellline_UnmatchCount, individual_id).

Data Analysis Workflow of Onko_DrugCombScreen
The data analysis workflow of Onko_DrugCombScreen is depicted

in Figure 2: Variant data such as single nucleotide variants (SNV) and
copy number variants (CNV) from both the cancer subtype cohort and the
comparison cancer subtype cohort are preprocessed and converted into
variant tables compatible with Onko_DrugCombScreen. These patient
variant data are then mapped to public drug databases (CiVIC, GDKD,
OncoKb) after integration with variant interpretation annotations and
drug evidence levels for drug recommendations. The resulting drug
recommendations are subjected to statistical analysis, focusing on the
statistical differences in drug combination candidates observed between
the target cancer subtype group and the comparison cancer subtype
group. To identify drug combination candidates that are significantly and
frequently recommended in the target group compared to the comparison
group, Fisher’s exact test is applied. Subsequently, the selected drug
combination candidates undergo an integrated analysis with cell line data
to identify available cell line samples, facilitating wet-lab validation.
Additionally, all analysis results are visualized, making the findings
clearer and more intuitive. The integration of these processes is crucial
for confirming drug combination recommendations for the cancer type of
interest. The final validation stage may include conducting wet-lab drug
screenings to confirm the analysis results and deepen the understanding of
the underlying biological mechanisms (Fig. 2).

Data Preprocessing
SNVs and CNVs are typically stored in formats such as VCF, MAF,

TXT, or Excel. A preprocessing step is necessary to convert these various
formats into csv format (Fig 2). These dataframes are then suitable
for use in the knowledge-based drug recommendation analysis within
Onko_DrugCombScreen.

Matching Rule Between Variant Annotations in Patients’ data and
Database

Due to the different annotation descriptions of variants in the three-
drug databases (GDKDDienstmann et al., 2015, CiVICGriffith et al., 2017,
and OncoKBChakravarty et al., 2017) and original patients’ variants data,
we harmonized the three drug databases and designed a matching rule
based on the interpretation of biological significance (Table 3). All variant
classes or effects map to the biological interpretations of "loss", "gain", or
"mutation". We can then associate the original variants (Table 4) with the
information in the knowledge database based on biological interpretations
and obtain the relevant target drug information.

Drug Recommendation Annotation
After the matching rule is defined, the drug knowledge-based analysis

was performed to export the drug recommendation tables across all
target and comparison subtype data. However, due to discrepancies
in drug nomenclature across the three drug databases, we employed
the "DrugBank Vocabulary" dataset from DrugBank to standardize
synonymous drug names. Subsequently, each drug name was annotated
to its final drug class. This annotation is stored in the columns
"Origin_Drug_Name" and "Classified_Drug_Name" of the DrugComb
analysis table. Additionally, other useful information such as variant type
is annotated in the "mutType" column, and variant match status—which
indicates whether the amino acid change in the raw data exactly matches
the database records or not—is saved in the "Match_Sign" column.

Data visualization
Onko_DrugCombScreen provides a variety of charts for visual analysis

results, allowing users to understand data more intuitively. The application
integrates multiple plotting functions, including volcano plots, heatmaps,
circle plots, alluvial diagrams, upset plots, and bar charts. These
visualization tools help to easily identify recommended drugs or candidate
drug combinations for subsequent wet-lab analysis and validation. Users
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Fig. 2. The workflow for Onko_DrugCombScreen drug combination data analysis. After the recommendation process based on drug knowledge, SNVs and CNVs are merged into an
annotated drug table. Following statistical analysis and integration of cell line data, the final DrugComb analysis table will be used for visualization and wet lab validation.

Table 3. Biological interpretation of variant annotations in drug databases.

DB variant Interpretation
GDKD/CIVIC/OncoKB “splice” loss
GDKD/CIVIC/OncoKB “delins” loss
GDKD/CIVIC/OncoKB “ins” ins

GDKD/CIVIC “del” del
GDKD “indel” loss

GDKD/CIVIC “fs” loss
GDKD/CIVIC/OncoKB “deletion” loss
GDKD/CIVIC/OncoKB “amplification” gain

GDKD mut mutation
GDKD any mutation
CIVIC loss/loss-of-function loss
CIVIC “mutation” mutation
CIVIC “^expression” gain
CIVIC “Overexpression” gain
CIVIC “Underexpression” loss

OncoKB Truncating Mutations loss
OncoKB Oncogenic Mutations mutation
CIVIC “FRAMESHIFT” loss
CIVIC “FRAME SHIFT” loss

OncoKB/CIVIC Exon 17 mutations
mutation (exact

match)
CIVIC Exon 19 Deletion loss (exact match)

CIVIC
EXON 14 SKIPPING

MUTATION
mutation (exact

match)

can configure settings in the left panel of Onko_DrugCombScreen and
customize the resolution for PDF file export.

Discussion
Drug combinations are widely recognized for their benefits in

cancer therapy. Here, we developed the Onko_DrugCombScreen shiny
app integrated statistical analysis to identify the most significant

Table 4. Biological interpretation of variant annotations in patients’ variants.

variant Interpretation
In_Frame_Ins ins (exact match)
In_Frame_Del del (exact match)

Frame_Shift_Ins loss
Frame_Shift_Del loss

Splice_site loss
amplification gain

deletion loss
Missense_Mutation mutation
Nonsense_Mutation loss
Nonstop_Mutation exact match

Translation_Start_Site exact match

candidate drug combinations for a target tumor type cohort. We utilized
drug knowledge base recommendations derived from mutation data
of the targeted cancer patient cohort and the comparison cohort to
identify drug co-recommendations. This is complemented by integrating
cell line data to assist in the validation of biological experiments.
Onko_DrugCombScreen’s ability to identify effective drug combinations,
as demonstrated in the TCGA-BRCA case study, suggests a promising
way toward more tumor-type tailored and effective cancer combination
therapy.

In contrast to current computational methods that mainly focus on
synergy and dose-response matrices, Onko_DrugCombScreen is a drug
knowledge-based analysis approach. It not only provides therapeutic
recommendations but also offers guidance for clinical research, thereby
integrating more closely with clinical applications. Moreover, all drug
recommendations can be traced back to patient genetics and variants
through the visual alluvial diagram of Onko_DrugCombScreen. Utilizing
the drug database which is also employed by the MTB report, each
recommended drug’s level of evidence and response is explicitly defined.
This clarity effectively aids in addressing issues of selectivity in the
recommended drug combinations, issues that are often overlooked in
previous methods. Moreover, the utilization of drug databases for
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Fig. 3. Visualization of the Onko_DrugCombScreen. (A) Volcano plot identifying significant drug combinations. (B) Circle plot depicting the most proportional drug co-recommendations.
(C) Alluvial diagram tracing mutations back to recommended single drugs. (D) UpSet plot showing the top-recommended single drugs and their intersections.

the recommendation of candidate drug combinations based on patient
gene mutation profiles can potentially reduce the effort required for
toxicity analysis (Vo et al., 2019; Galletti et al., 2021) These databases
provide valuable information on the relationships between individual
drugs and specific gene mutations or molecular targets, which can guide
the selection of drug combinations with potentially favorable efficacy
profiles. Furthermore, the drugs included in these databases are often
approved or under clinical trials, meaning that their toxicity profiles have
been extensively studied and characterized (Guengerich, 2011; Toropov
et al., 2014) This existing safety data can serve as a foundation for
assessing the toxicity of drug combinations, as it provides insights into
the common adverse events, dose-limiting toxicities, and recommended
dosing schedules of the individual drugs. By leveraging this information,
researchers can streamline the toxicity assessment process and make more
informed decisions when designing drug combination studies. However,
it is crucial to acknowledge that the toxicity of a drug combination may
not be a simple sum of the individual drug toxicities and thorough safety
assessments of the specific combination, considering factors such as drug-
drug interactions, dosing, scheduling, and special patient populations, are
still necessary to ensure a comprehensive understanding of the toxicity
profile.

Looking forward, the potential for further development of the
Onko_DrugCombScreen is substantial. Due to the lack of data on synergy
and dose specificity in the drug database, Onko_DrugCombScreen is
currently unable to provide such information. In future iterations, it
is feasible to incorporate synergy and dose specificity data. Moreover,
advancements in artificial intelligence and machine learning can be
leveraged to enhance data analysis based on drug knowledge, thereby
continuously improving the predictive accuracy and relevance of the tool.

Conclusion
In conclusion, the Onko_DrugCombScreen Shiny app represents

an innovative tool in the field of precision cancer therapy, offering a

novel drug knowledge-based approach to drug combination screening.
Harnessing the power of drug knowledge database analysis, this
application integrates advanced statistical analysis and data visualization
techniques to explore and identify effective drug combinations. It
effectively utilizes drug recommendations from targeted cancer cohort
and comparison group, combined with cell line data, to provide prominent
drug co-recommendations for targeted cancer type. Validated through a
TCGA-BRCA case study, the application has demonstrated its potential
in accurately identifying both existing and novel drug combinations,
aligning with the evolving field of precision oncology. Looking ahead,
the integration of artificial intelligence and machine learning technologies
holds the promise of further enhancing its predictive capabilities, making it
a valuable tool in the quest for more targeted and effective cancer treatment
approaches.

Supporting information
Supplementary File S1: Sample data files for Onko_DrugCombScreen

testing This file includes three CSV files:

• Primary_Her2_mutationSNVCNV_DF.csv: Target cancer
subtype data.

• Comparison_Normallike_BRCA_mutation_DF.csv: comparison
cancer subtype data.

• Cellline_CCLEBRCA_Mutation_DF.csv: Cell line data.

Supplementary Table S1. Comparison of Current Approved
Therapies and Clinical Trial Combinations for Breast Cancer
Treatment with Onko_DrugCombScreen Based Screening result
(Wang and Minden, 2022)
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