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Abstract

Network meta-analysis, also known as mixed treatments comparison meta-analysis or multiple
treatments meta-analysis, extends conventional pairwise meta-analysis by simultaneously synthesizing
multiple interventions in a single integrated analysis. Despite the growing popularity of network meta-
analysis within comparative effectiveness research, it comes with potential challenges. For example,
within-study correlations among treatment comparisons are rarely reported in the published literature. Yet,
these correlations are pivotal for valid statistical inference. As demonstrated in earlier studies, ignoring
these correlations can inflate mean squared errors of the resulting point estimates and lead to inaccurate
standard error estimates. This paper introduces a composite likelihood-based approach that ensures
accurate statistical inference without requiring knowledge of the within-study correlations. The proposed
method is computationally robust and efficient, with substantially reduced computational time compared
to the state-of-the-science methods implemented in R packages. The proposed method was evaluated
through extensive simulations and applied to two important applications including a network meta-analysis
comparing interventions for primary open-angle glaucoma, and another comparing treatments for chronic
prostatitis and chronic pelvic pain syndrome.

Keywords: Composite likelihood; Indirect evidence; Meta-analysis; Network meta-analysis; Un-
known within-study correlations.
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Highlights

What is already known?

• Network meta-analysis extends conventional pairwise meta-analysis by simultaneously synthesizing
multiple interventions in a single integrated analysis.

• A significant challenge in network meta-analysis is the lack of reported within-study correlations
among treatment comparisons in the published studies.

What is new?

• We propose a new method for network meta-analysis that ensures vaild statistical inference without the
need for knowledge of within-study correlations.

• The proposed method employs a composite likelihood and a sandwich-type robust variance estimator,
offering a computationally efficient and scalable solution, particularly for network meta-analysis with
a large number of treatments and studies.

Potential impact for Research Synthesis Methods readers

• The proposed method can be easily applied to any univariate network meta-analysis project without
requiring knowledge of within-study correlations among treatment comparisons.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309163doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309163
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Meta-analysis is a widely used tool in systematic reviews for combining and contrasting multiple studies
to obtain overall estimates of the relative effects in the target population.1, 2 The methodology of the pairwise
meta-analysis, which only focuses on comparing an intervention with a reference (e.g., control or placebo),
has been well developed.3, 4 For many medical conditions, there are often more than two interventions of
interest. In such situations, performing isolated pairwise meta-analysis might not adequately represent the
comprehensive landscape of interventions nor guide the selection of optimal treatment to maximize patient
benefits.5, 6 Furthermore, it is often unrealistic to anticipate that there is at least a head-to-head trial comparing
any two interventions of interest.

Network meta-analysis (NMA), coined by Lumley back in 2002,7 also known as multiple treatments
meta-analysis or mixed treatments comparison, is a state-of-the-science technique for making inferences
with multiple treatments. This approach enables the comparison of diverse treatment subsets across various
trials. A notable application of NMA is the comparison of treatment options for depression conducted by
Cipriani and his colleagues,8 which provided a comprehensive summary of the relative efficacy and safety of
21 antidepressant drugs based on all available studies to date. Their insights have the potential to influence
clinical practices, impacting on millions of individuals who suffer from depression globally. Essentially, the
rationale of NMA is to expand pairwise meta-analysis to simultaneously compare multiple treatments and
produce consistent estimates of relative treatment effects by synthesizing both direct and indirect clinical
evidence in a single integrated analysis.6

Over the last two decades, the literature has seen a plethora of methodological developments in NMAs,
mostly focusing on meta-regression and Bayesian hierarchical models, among others.9–12 For instance, the
estimation of indirect evidence in NMAs was first derived through a meta-regression model,7, 13 wherein
various treatment comparisons were treated as covariates in a model. Yet, such an approach can be challenging
to estimate between-study variance, especially for sparse networks, so that the between-study heterogeneity
variance is often assumed to be common across all treatment comparisons in a network.7, 13, 14 On the other
hand, the assumption of common between-study heterogeneity variance can lead to inaccurate estimates.15 A
shift towards the Bayesian hierarchical model, championed by Lu and his colleagues,16, 17 has received signif-
icant interest. Their subsequent work18 further discussed how the consistency equations imposed restrictions
on between-study heterogeneity of each treatment comparison and used the spherical parameterization based
on Cholesky decomposition to implement the constraints.

In addition to the contrast-based NMA (CB-NMA), which focuses on the (weighted) average of study-
specific relative effects by assuming fixed study-specific intercepts, the arm-based NMA (AB-NMA) models
study-specific absolute effects and assumes random intercepts. This offers greater flexibility in estimands,
including both the population-averaged absolute and relative effects.19–23 Alternatively, NMAs can be
conceptualized as a multivariate meta-analysis.24 Other existing models for implementing NMAs include
electrical networks and graph-theoretical methods25, 26 under fixed-effects or random-effects models. In
addition to the classical framework of synthesizing point estimates, a novel confidence distribution framework
based on a sample-dependent distribution function has been proposed.27

Despite the popularity of NMAs, an important challenge has not been fully addressed, which is the
unknown or unreported within-study correlations. Specifically, estimates of contrasts between each pair
of treatment comparisons are correlated within a multi-arm study when these contrasts involve a common
comparator. On the other hand, within-study correlations are rarely reported in the published trials.28 When
conducting an NMA, ignoring within-study correlations can lead to biased estimates of relative treatment
effects; particularly, these estimates were also found to have increased mean-square errors and standard
errors.28, 29

When the impact of within-study correlations is non-ignorable, several methods have been proposed and
used to obtain estimates of within-study correlations. First, the availability of individual participant-level
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data allows to compute the within-study correlations directly between treatment comparisons in each trial;30

however, it is uncommon in meta-analysis to have the individual participant-level data for all trials. Study
investigators are often unable to provide information about within-study correlations even if we make requests
directly.31 Second, an alternative method, known as the Pearson correlation method, proposed by Kirkham et
al.,32 can be implemented in the formulation of multivariate meta-analysis. Third, Riley et al.33 proposed
a single correlation parameter to capture both within-study and between-study correlations in the setting
of multivariate meta-analysis. As pointed out by Riley et al.,28 the impact of within-study correlations is
relative to the magnitude of between-study variation. In other words, when total variation in estimated effect
sizes across studies, as the sum of within-study and between-study covariance, is dominated by within-study
variation, the impact of within-study correlations can be substantial and ignoring the unknown within-study
correlations can lead to misleading results.33 Other methods such as Bayesian approaches34 have also been
proposed.

Even though the within-study correlations could be estimated by the abovementioned methods, each of
them requires additional assumptions and constraints along with high computational complexity to ensure
that estimations of within-study variance-covariance matrices are valid and positive definite, particularly for
Bayesian methods using Markov chain Monte Carlo algorithms. One of the existing methods to resolve such
an issue is to restrict the range of correlation coefficients in each study from a truncated prior distribution so
that the positive definiteness of the variance-covariance matrix is guaranteed.35 Other alternatives, such as
Cholesky parameterization and spherical decomposition,36 have been employed to ensure positive-definite
variance-covariance matrices for meta-analysis and network meta-analysis under a Bayesian framework.
These methods, however, might be more difficult to implement in NMAs as the number of studies and
treatments in a network grows.

To overcome the aforementioned challenges, we propose a new method without imposing any additional
assumptions beyond those in a standard NMA. Compared to the conventional approach implementing NMAs
with the standard full likelihood, our proposed method does not require knowledge of the typically unreported
within-study correlations among treatment comparisons. Using composite likelihood37, 38 and the finite-
sample corrected variance estimator,39, 40 our proposed method can lead to valid estimated effect sizes with
coverage probabilities close to the nominal level. We also derived the corresponding algorithm which is
computationally efficient and scalable to a large number of treatments in NMAs. Unlike the state-of-the-art
methods whose computational time increases exponentially with respect to the number of treatments and
studies, the computational time of our algorithm increases linearly with respect to the number of treatments
and is nearly invariant with respect to the number of studies. Further, our algorithm avoids the issue of
singular covariance estimates, which is a known practical issue for conducting multivariate or network
meta-analysis.29, 31, 41–44

The rest of the paper is organized as follows. In Section 2 we give an overview of the two motivating
examples, namely, a network meta-analysis comparing interventions for primary open-angle glaucoma, and a
network meta-analysis comparing treatments for chronic prostatitis and chronic pelvic pain syndrome. In
Section 3 we formulate the proposed method and introduce a treatment ranking procedure, while in Section
4 we describe a series of simulation studies to illustrate the concerns of conventional NMA models, and
to examine the statistical properties of the proposed method. In Section 5 we present the applications of
the proposed method to the two motivating examples. We conclude with a discussion and key messages in
Section 6.
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2 Two Motivating Examples

2.1 Comparison of interventions for primary open-angle glaucoma

Li et al.45 and Wang et al.46 conducted a network meta-analysis to compare all first-line treatments
against primary open-angle glaucoma or ocular hypertension. Glaucoma is a disease of the optic nerve
characterized by optic nerve head changes and associated visual field defects.47 This NMA consisted of
125 trials comparing 14 active drugs and a placebo in subjects with primary open-angle glaucoma or ocular
hypertension. The studies were collected from 1983 to 2016 through the Cochran Register of Controlled
Trials, Drugs@FDA, and ClinicalTrials.gov;46 a total of 22,656 participants were included in these studies.

Figure 1(a) visualizes the data structure. Specifically, the 14 active drugs were divided into four major
drug classes, including α-2 adrenergic agonist, β-blocker, carbonic anhydrase inhibitor, and prostaglandin
analog. This network consisted of 114 two-arm studies, 10 three-arm studies, and 1 four-arm study. The
primary outcome of interest was the difference in mean increased intraocular pressure (IOP) measured by any
method at 3 months in continuous millimeters of mercury unit. The original NMA analysis45 employed a
Bayesian hierarchical model with the Markov chain Monte Carlo technique.16, 17 Their analysis focused on
modeling the between-study variance-covariance matrix, assuming either a homogeneous or heterogeneous
structure, rather than the within-study variance-covariance matrix. A ranking of treatments was produced
through the surface under the cumulative ranking curve.48 The study found all active drugs were clinically
effective compared with placebo in reducing IOP at 3 months, with bimatoprost, latanoprost, and travoprost
ranked as the first, second, and third most efficacious drugs, respectively, in lowering IOP at 3 months.

As described in the Introduction section, an important limitation of this motivating example is the
unknown or unreported within-study correlations. Specifically, contrast treatment estimates for the IOP
outcome may be potentially correlated within a trial; for example, the two drugs, bimatoprost and travoprost,
were both against latanoprost within the same trial in five studies.49–53 These within-study correlations
among treatment comparisons were not reported, and individual participant-level data were unavailable for
computing such correlations.

2.2 Comparison of treatments for the chronic prostatitis and chronic pelvic pain syndrome

Thakkinstian et al.54 performed a network meta-analysis to determine the effectiveness of multiple
pharmacological therapies in improving chronic prostatitis symptoms in patients with chronic prostatitis
and chronic pelvic pain syndrome (CP/CPPS). CP/CPPS is a common disorder characterized by two major
clinical manifestations, including pelvic pain and lower urinary tract symptoms.55 The identified studies were
collected from the Medicine and EMBASE databases up to 13 January 2011, and enrolled a total of 1,669
participants.

Figure 1(b) visualizes the data structure. The primary outcome of interest was the symptom score
measured by the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI), especially
consisting of total symptoms, pain, voiding, and quality of life scores.56 The dataset consisted of 19 published
trials comparing five treatment regimens: including placebo, any α-blockers (terazosin, doxazosin, tamsulosin,
alfuzosin, silodosin), any antibiotics (ciprofloxacin, levofloxacin, tetracycline), anti-inflammatory/immune
modulatory agents (steroidal and non-steroidal anti-inflammatory drugs, glycosaminoglycans, phytotherapy,
and tanezumab), and a combination of antibiotics and α-blockers. Treatment comparisons among the five
treatments were conducted by Thakkinstian et al.54 using an NMA approach; their findings suggested
that α-blockers, antibiotics, and/or anti-inflammatory/immune modulatory agents were more efficacious
in improving the total NIH-CPSI symptom scores compared to placebo. In this example, within-study
correlations among treatment comparisons were not available for any of the included studies.
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3 Methods

In this section, we introduce the proposed composite likelihood-based method for conducting network
meta-analysis without the need for knowledge of within-study correlations. Throughout this paper, we
focus on the contrast-based model,13 although our method can be extended to arm-based models.11, 21–23

The contrast-based model employs a two-stage estimation approach; in the first stage, the estimated effects
comparing all possible intervention options in studies are computed, along with their associated standard
errors from the contrast-level data, and in the second stage, the effect estimates are analyzed using a normal
approximation likelihood.

3.1 Notations and model specification

Suppose that a network consists of m studies (i = 1, . . . ,m) comparing a set of treatment options
K = {0, 1, 2, . . . ,K} of (K + 1) treatments. Each design (d = 1, · · · , D) corresponds to a subset of Kd

treatments, i.e., Kd ∈ K, and let md be the number of studies in design d. Under the assumptions of
consistency, a network with (K+1) treatments contains K basic parameters. These parameters are frequently
taken to be the relative effects of each treatment versus a reference (or common comparator). In this paper, we
do not assume that all studies utilize the same reference treatment. Instead, our proposed method incorporates
all observed treatment comparisons, ensuring that reported treatment effects and standard errors contribute
to the estimation of objective parameters in the proposed composite likelihood function. Moreover, the
estimation does not depend on the choice of a common reference.

Suppose T = {jj′}j,j′∈K,j′ ̸=j = {01, 02, . . . , (K−1)K} is the set of N observed treatment comparisons.
Let yi,jj′ be an observed treatment effect comparing treatment j to treatment j′ in the ith study. Let
yi =

{
yi,jj′

}T

jj′∈T = (yi,01, yi,02, · · · , yi,(K−1)K)T be a vector of the observed contrast of treatments, along

with a vector of the associated standard errors si =
{
si,jj′

}T

jj′∈T = (si,01, si,02, · · · , si,(K−1)K)T . The
observed relative treatment effects in an NMA are modeled via a random-effects framework,

yi ∼ MVN(µ̃,Vi), (1)

Vi = Ωi +Σ,

Ωi =


s2i,01 ρw

i,12si,01si,02 · · · ρw
i,1Nsi,01si,(K−1)K

ρw
i,12si,01si,02 s2i,02 · · · ρw

i,2Nsi,02si,(K−1)K
...

...
. . .

...
ρw
i,1Nsi,01si,(K−1)K ρw

i,2Nsi,02si,(K−1)K · · · s2i,(K−1)K

 ,

Σ =


τ201 ρb

12τ01τ02 · · · ρb
1Nτ01τ(K−1)K

ρb
12τ01τ02 τ202 · · · ρb

2Nτ02τ(K−1)K
...

...
. . .

...
ρb
1Nτ01τ(K−1)K ρb

2Nτ02τ(K−1)K · · · τ2(K−1)K

 .

Here, µ̃ =
{
µjj′

}T

j,j′∈K = (µ01, µ02, · · · , µ(K−1)K)T represents a vector of true population relative treat-
ment effect sizes. The Vi matrix indicates that the total variability affecting summary measures in each
study is the sum of both within-study and between-study variance-covariance matrices. For the within-study
variance-covariance Ωi, ρw

i,st (with 1 ≤ s < t ≤ N ) refers to the within-study correlation, which is rarely
reported in published literature or even calculated in each study. We assume that Rw

i is the within-study
correlation matrix, where the diagonal elements are equal to 1 and the off-diagonal elements are ρw

i,st for
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1 ≤ s < t ≤ N . For the between-study variance-covariance matrix Σ, τ2jj′ represents the heterogeneity
variance of the outcome comparing treatment j and treatment j′, and ρb

st denotes the between-study correla-
tion for 1 ≤ s < t ≤ N . We assume that Rb is the between-study correlation matrix, where the diagonal
elements are equal to 1 and the off-diagonal elements are ρb

st for 1 ≤ s < t ≤ N .

3.2 Proposed method

Let Mjj′ be the subset of studies that report effect sizes and standard errors of the outcome for the
treatment comparison between j and j′. Let ℓ(η) be the log composite likelihood function of the model
defined in Equation (1) given the observed data (yi, si). We have

ℓ(η) =− 1

2

 ∑
jj′∈T

∑
i∈Mjj′

[
log

(
s2i,jj′ + τ2jj′

)
+

(
yi,jj′ − µjj′

)2
s2i,jj′ + τ2jj′

]. (2)

In order to fit an NMA, it is indispensable that the consistency equation is satisfied as follows, µjj′ =
µjk − µj′k, ∀k ̸= j, j′. Throughout this section, we choose treatment ‘0’ as a common reference. Then, in
Equation (2), we only need to estimate the parameters η = (µT , (τ 2)T )T , where µT = {µ0j}Tj∈K\{0} =

(µ01, µ02, · · · , µ0K)T and τ 2 =
(
τjj′

)T
jj′∈T = (τ01, τ02, · · · , τ(K−1)K)T . We obtain the estimates of these

parameters by maximizing the log composite likelihood function,

η̂ = argmax
η

ℓ(η),

where the estimator η̂ is asymptotically normal as m → ∞. The asymptotic variance-covariance matrix of
η can be estimated by a sandwich-type estimator of form V = I−1ΛI−1, with I = −E

[
1
m

∂2ℓ(η)
∂η(∂η)T

]
and

Λ = E

[
1
m

∂ℓ(η)
∂η

(
∂ℓ(η)
∂η

)T
]
. Here, we opted for a sandwich-type variance estimator, which offers two key

advantages in network meta-analyses. First, it is robust to dependence. Even though the composite likelihood
method assumes independence between treatment effects within a study, the sandwich estimator can partially
account for this dependence. It achieves this by incorporating additional information during variance-
covariance estimation, leading to more accurate standard errors for treatment effects. Second, the sandwich-
type estimator is generally robust to model misspecification of covariance structures. This robustness is
particularly beneficial for handling the complex data structures often encountered in network meta-analyses.
However, it is important to note that the underlying marginal model itself cannot be misspecified. We also
note that the restricted maximum likelihood (REML) estimator produces the same asymptotic distribution as
the maximum likelihood estimator by incorporating the extra term of

−1

2
log

 ∑
jj′∈T

∑
i∈Mjj′

(
s2i,jj′ + τ2jj′

)−1


in Equation (2). Additionally, we notice that µ is information orthogonal to τ 2. Assuming the information

matrix is I =

(
Iµµ Iµτ

Iµτ Iττ

)
with Iµµ = −E

[
1
m

∂2ℓ(η)
∂µ(∂µ)T

]
, Iττ = −E

[
1
m

∂2ℓ(η)
∂τ2(∂τ2)T

]
, and Iµτ =

−E
[

1
m

∂2ℓ(η)
∂µ∂τ2

]
. The off-diagonal element of the information matrix, Iµτ , satisfies Iµτ = 0, implying

that µ and τ 2 are information orthogonal. Under this orthogonality property, the variance-covariance
matrix of µ̂ involves the information of µ alone and can be simplified as Vµ = I−1

µµΛµµI
−1
µµ, with Λµµ =
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E

[
1
m

∂ℓ(η)
∂µ

(
∂ℓ(η)
∂µ

)T
]
. The asymptomatic variance-covariance matrix is estimated by its empirical variance-

covariance matrix V̂µ = Î−1
µµΛ̂µµÎ

−1
µµ, where Îµµ and Λ̂µµ are the submatrices of Î and Λ̂, respectively. As

elucidated by Liang and Zeger,57 the orthogonality property implies that the between-study variance estimates
have a limited impact on the estimation of effect sizes µ. A detailed description of robust sandwich-type
variance estimation is provided in Appendices 1 and 2 of the Supplementary Materials.

The efficient and iterative algorithm for parameter estimation can be implemented by maximizing the log
composite likelihood function in Equation (2), as described in Algorithm 1. More specifically, when τ 2 is
fixed at some value of τ 2

jj′
(t), the parameters µ can be estimated by solving a system of linear equations. In

other words, maximizing ℓ(µ, τ 2
jj′

(t)
) over µ yields

H(t)µ = v(t),

where µ is the solution of the above system of linear equations, and

H(t) =


∑

j∈K\{1}
∑

i∈M1j
ω
(t)
i,1j −

∑
i∈M12

ω
(t)
i,12 · · · −

∑
i∈M1K

ω
(t)
i,1K

−
∑

i∈M12
ω
(t)
i,12

∑
j∈K\{2}

∑
i∈M2j

ω
(t)
i,2j · · · −

∑
i∈M2K

ω
(t)
i,2K

...
...

. . .
...

−
∑

i∈M1K
ω
(t)
i,1K −

∑
i∈M2K

ω
(t)
i,2K · · ·

∑
j∈K\{K}

∑
i∈MKj

ω
(t)
i,Kj

 ;

v(t) =


∑

j∈K\{1}
∑

i∈M1j
yi,j1ω

(t)
i,1j∑

j∈K\{2}
∑

i∈M2j
yi,j2ω

(t)
i,2j

...∑
j∈K\{K}

∑
i∈MK

yi,jKω
(t)
i,Kj

 ; and ω
(t)
i,jj′ =

(
si,jj′

2 + τ2jj′
(t)
)−1

.

The proof of convergence for Algorithm 1 is provided in Appendix 3 of the Supplementary Materi-
als. Additionally, a detailed description of testing for inconsistency can be found in Appendix 4 of
the Supplementary Materials. The R codes for the 3-arm study is publicly available on GitHub: https:
//github.com/Penncil/xmeta/tree/master/R/CLNMA.equal.tau.R.

Algorithm 1 An efficient and simple algorithm for univariate NMA

Results: µ(T ) and τ (T )

Initialize: τ (0), D = 1;
while t ≤ T or D > δ do

Step 1: Obtain µ(t+1) by solving

µ(t+1) =
(
H(t)

)−1
v(t);

Step 2: Obtain τ (t+1) by solving

τ (t+1) = argmaxτ ℓ
(
µ(t+1), τ 2

)
;

Step 3: Update D =
∣∣τ (t+1) − τ (t)

∣∣ and t = t+ 1

end while

3.3 Treatment ranking

The hierarchy of comparable interventions can be computed by incorporating the NMA estimates obtained
from the proposed composite likelihood-based method. Among various approaches to treatment ranking, the
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most commonly employed method relies on ranking probabilities; the probabilities for each treatment can be
placed at a specific ranking position, e.g., best, second best, third best treatment, and so forth, in comparison
to all other treatments in a network. These approaches for treatment ranking include the surface under the
cumulative ranking curve (SUCRA)48 and P-score techniques,58 among others. In this paper, we adopted
the surface under the cumulative ranking curve method.48 By incorporating the NMA estimates obtained
from our proposed method into the SUCRA, we can properly account for the uncertainty in the estimates of
relative treatment ranking. Specifically, for each treatment j out of the (K + 1) competing treatments, the
SUCRA is calculated as follows:

SUCRAj =

∑K
q=1 cumj,q

K
,

where cumj,q refers to the cumulative probability of being among the q best treatment (q = 1, 2, . . . ,K +1).
A SUCRA value of 1 indicates that the treatment is ranked as the best, while a value of 0 indicates the
treatment is ranked as the worst.

4 Simulation Study

In this section, our objective is to assess the impact of within-study correlations on pooled estimates when
employing the proposed composite likelihood-based method. We conducted extensive simulation studies
to evaluate the performance of the proposed method across various scenarios, varying factors such as the
within-study correlations, the between-study heterogeneity variance, and the number of studies. Furthermore,
we compared the computational time of the proposed method with the existing NMA methods implemented
in the R packages.

4.1 Data-generating mechanisms

For the simulation study, we considered a contrast-based NMA consisting of a three-arm design (i.e., A,
B, and C; A is treated as a reference) with respect to a single continuous outcome of primary interest. The
simulated data was generated via the model as the form of(

yi,AB

yi,AC

)
∼ MVN

((
µAB

µAC

)
,DRbD +Ωi

)
, (3)

where D =

(
τAB 0
0 τAC

)
,Rb represents the 2× 2 between-study correlation matrix, and Ωi denotes the

2× 2 within-study variance-covariance matrix. Within the simulated network, we assumed the consistency
equation, in terms of µBC = µAC − µAB . As suggested by Lu and Ades,17 the between-study heterogeneity
variance τ2AB can be defined by the following relationship: τ2BC = τ2AB + τ2AC − 2Rb [1, 2] τABτAC , where
τ2AB and τ2AC are the variances of random quantities µAB and µAC , respectively. These variances are
interpreted as the random effects of treatment B and C relative to a common comparator A.

The model parameters described above varied during simulations and were as follows. Two scenarios
were considered. The first scenario used a common between-study heterogeneity variance for all treatment
comparisons with τAB = τAC = 0.5, and the off-diagonal elements of Rb were set to 0.1, in which Rb was
guaranteed to be positive semi-definite. Despite the assumption of a common between-study heterogeneity
variance is widely used in practice, it remains a strong assumption. Thus, we relaxed it in the second scenario,
where unequal between-study heterogeneity variance was considered with τAB = 0.7 and τAC = 0.5,
respectively, and the off-diagonal elements of Rb were again set to 0.1. Under both scenarios, within-study
correlations were set at small (0.2) and medium (0.5) magnitudes to explore their impact. Both scenarios
reflected a low-to-moderate level of heterogeneity, ranging between 20% and 35% of the total variance; in
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other words, between-study variance was not so large as to completely dominate the within-study variance.
We generated closed loops with equal two-arm and three-arm studies into the desired network of studies,
with mAB = mAC = mBC = mABC = m. The true treatment effects for AB and AC comparisons were
mimicked by the IOP data as described in Section 2 and set as µAB = −2 and µAC = −4, and µBC was
obtained through the equation µBC = µAB − µAC . The simulated sizes for studies in NMAs were set to
m = 5, 10, 15, 20, 25, and 50. For each simulation setting, 1, 000 NMA datasets were generated. Using the
model parameters described above, continuous data were generated from the multivariate normal distribution
in Equation (3). The simulation study was conducted using R software, version 4.2.1.

4.2 Simulation results

We evaluated the performance of our proposed method by examining treatment effect estimates, in terms
of bias, empirical standard error (ESE), model-based standard error (MBSE), as well as coverage of 95%
confidence intervals.

Figure 2 displays the computational time for various NMA approaches. The currently available R
packages include ‘gemtc’59 and ‘netmeta’,60 in which the ‘gemtc’ package employs the Bayesian NMA and
the Markov chain Monte Carlo (MCMC), while ‘netmeta’ is designed based on a frequentist random-effects
NMA model. We found that initial values could significantly impact the execution time of both ‘gemtc’
and the proposed method, whereas ‘netmeta’ was less affected by this issue. As the number of treatment
comparisons and studies increased, differences in computational time among the three methods became
more pronounced. Even though ‘gemtc’ and ‘netmeta’ could be done with minimal computational time for
the scenarios with fewer studies, their computational time could increase dramatically with an increasing
number of treatment comparisons and studies. Conversely, the proposed method generally yielded consistent
performance in computational time, irrespective of the number of treatment comparisons or studies. Detailed
computational time is summarized in Table S1 of the Supplementary Materials.

The upper panel of Table 1 summarizes simulation results for treatment comparisons AB and AC in
the scenario with common between-study heterogeneity. Overall, we observed that the proposed composite
likelihood-based method yielded approximately unbiased pooled estimates for AB and AC treatment
comparisons in most simulation settings. It did not exhibit discernible patterns in AB and AC treatment
estimates across different magnitudes of within-study correlations (i.e., 0.2 and 0.5); in other words, it
appeared that the magnitude of within-study correlations had a limited impact on the pooled estimates.
The confidence intervals computed by the robust sandwich-type variance method demonstrated acceptable
coverage probabilities ranging from 88% to 94%, relying on the number of studies. It was interesting to
note that the model-based standard errors appeared somewhat smaller than their empirical standard errors.
One of the possible explanations for this phenomenon was that the proposed method based on composite
likelihood provided more efficient inference in large sample settings. However, as widely acknowledged
in the literature,61–66 the variance based on the sandwich-type estimation may be underestimated when the
number of studies is below 50 for continuous outcomes.

To resolve this issue, several alternative bias-corrected sandwich estimators have been proposed to
improve such a small sample performance, such as KC-corrected sandwich estimator67 and MD-corrected
sandwich estimator,63 among others. As indicated by Li and Redden,66 no single bias-corrected sandwich
estimator is universally superior; however, a rule of thumb is to choose the KC-corrected method when the
coefficient of variation is less than 0.6. Through simulation studies, we evaluated whether the coverage
probabilities of 95% confidence intervals obtained by the proposed method were improved after corrections.
Figure 3 displays comparisons of coverage probabilities using the proposed method with and without the
KC-corrected and MD-corrected techniques for situations with the number of studies being 5, 10, 15, 20, 25
(or even 50). We found that the proposed method with corrections exhibited higher coverage probabilities
compared to the proposed method without any corrections, particularly when the number of studies was
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relatively small (e.g., 5, 10, and 15 studies). Detailed results with the KC-corrected and MD-corrected
methods are provided in Tables S2 and S3 of the Supplementary Materials, respectively.

On the other hand, results for the scenario with unequal between-study heterogeneity variance are
provided in the lower panel of Table 1. The pooled estimates for AB and AC treatment comparisons were
generally unbiased. As presented in the lower panel of Table 1, coverage probabilities were acceptable to
good across most configurations, yielding coverage probabilities close to the nominal level of 95% (ranging
from 89% to 94%). Similarly, variance estimates were adjusted using the KC-corrected and MD-corrected
sandwich estimator for smaller studies, as illustrated in Tables S4 and S5 of the Supplementary Materials,
respectively. As expected, coverage probabilities were slightly improved compared to results obtained from
the proposed method without any corrections. In summary, simulation results suggested that the proposed
method is robust to the magnitude of within-study correlations, regardless of whether the between-study
heterogeneity variance is equal or unequal.

5 Data Application

In this section, we present the results of applying the proposed method to the two published NMAs, the
primary open-angle glaucoma and the chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), as
introduced in Section 2.

5.1 Application to primary open-angle glaucoma

The primary outcome of interest, in terms of IOP, was reported in a total of 22,656 patients across 125
studies, evaluating 4 classes of interventions, including α-2 adrenergic agonist, β-blocker, carbonic anhydrase
inhibitor, and prostaglandin analogs (PAGs). For the IOP outcome, the within-study variances were generally
much larger than the between-study variances; the between-study variance was estimated at approximately
0.49 using placebo as a reference. This was reflected by an I2 value of 43%, indicating that the total variation
was not completely dominated by the between-study variation. Consequently, within-study correlations
might lead to overestimated standard errors of pooled estimates for treatment comparisons if they were not
properly accounted for in an NMA. The results of the standard NMA using the Lu and Ades’ approach
(shown in the lower triangular matrix) and the proposed method (shown in the upper triangular matrix)
without requiring knowledge of within-study correlations are presented in Figure S1 of the Supplementary
Materials. The results of pairwise meta-analysis are provided in Figure S2 of the Supplementary Materials.
As displayed in the upper triangular matrix of Figure S1, all active drugs were likely more effective in
lowering IOP at 3 months compared to placebo, with mean differences in 3-month IOP ranging from −1.79
mmHg (95% CI, −2.65 to −0.94) to −5.53 mmHg (95% CI, −6.24 to −4.82). Moreover, bimatoprost
showed the greatest reduction in 3-month IOP compared to placebo (mean difference = −5.53; 95% CI,
−6.24 to −4.82), followed by travoprost (mean difference = −4.82; 95% CI, −5.51 to −4.12), latanoprost
(mean difference = −4.61; 95% CI, −5.31 to −3.92), levobunolol (mean difference = −4.50; 95% CI,
−5.68 to −3.32), taflurpost (mean difference = −3.93; 95% CI, −5.04 to −2.81), and so on. We noted that
drugs within the PAGs class generally had similar effects on 3-month IOP reduction, except unoprostone
(mean difference = −1.79; 95% CI, −2.65 to −0.94). Inconsistent results were found in several treatment
comparisons when applying the standard NMA and the proposed method, including brinzolamide versus
betaxolol (the standard NMA: mean difference = −0.85 with 95% CI, −1.71 to 0.00; the proposed: mean
difference = −0.96 with 95% CI, −1.63 to −0.29), carteolol versus apraclonidine (the standard NMA: mean
difference = −1.43 with 95% CI, −3.36 to 0.49; the proposed: mean difference = −1.47 with 95% CI,
−2.69 to −0.24), tafluprost versus levobetaxolol (the standard NMA: mean difference = −1.47 with 95% CI,
−2.81 to −0.12; the proposed: mean difference = −1.16 with 95% CI, −2.40 to 0.08), brinzolamide versus
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dorzolamide (the standard NMA: mean difference = −0.74 with 95% CI, −1.51 to 0.04; the proposed: mean
difference = −0.73 with 95% CI, −1.30 to −0.16), and levobunolol versus carteolol (the standard NMA:
mean difference = −1.09 with 95% CI, −2.15 to −0.03; the proposed: mean difference = −1.08 with 95%
CI, −2.19 to 0.02).

Figure 4(a) illustrates the pooled estimates with corresponding 95% confidence intervals for all treatment
comparisons using three approaches, including the pairwise meta-analysis, the standard NMA based on the
Lu and Ades’ approach, as well as the proposed method. The pairwise meta-analysis showed the direct
estimates from all available head-to-head comparisons. Obviously, it yielded wider 95% confidence intervals
compared to the other two approaches due to that the indirect evidence was not borrowed into the analysis.
The proposed method produced narrower 95% confidence intervals than the standard NMA approach for
most of the treatment comparisons. Figure 5(a) displays a two-dimensional concordance plot of statistical
significance represented by the Z value for both the standard NMA approach and the proposed method,
where a Z value less than 1.96 equates to a p-value less than 0.05. A few points showed discordant evidence
of treatment comparisons between the proposed method and the standard NMA. This discrepancy may
be attributed to the fact that the proposed method took into account non-ignorable effects of within-study
correlations, which affected the standard errors of the estimated pooled treatment effects. Figure S3(a)
presents the treatment ranking based on the surface under the cumulative ranking curves (SUCRA)48 as
mentioned in Section 3.3. A higher SUCRA score indicates a superior ranking for 3-month IOP reduction.
Consequently, bimatoprost (SUCRA = 98.7%) had the highest SUCRA value for 3-month IOP reduction,
followed by travoprost (SUCRA = 66.5%), latanoprost (SUCRA = 51.5%), and levobunolol (SUCRA =
42.5%).

5.2 Application to chronic prostatitis and chronic pelvic pain syndrome

In this example, within-study variances are larger than between-study variances for the outcome of
NIH-CPSI scores, and thus the effect of within-study correlations cannot be neglected. Due to the limited
number of studies, we chose the KC-corrected and MD-corrected methods to adjust the sandwich-type
variance estimations, following the rule of coefficient of variation ≤ 0.6. The NMA results using Lu and
Ades’ approach and the proposed method without knowing within-study correlations are presented in Figure
S4 of the Supplementary Materials. Upon re-analysis, in terms of NIH-CPSI scores, all active drugs appeared
to be statistically significantly more effective than placebo, with mean differences of NIH-CPSI scores
ranged from −7.75 (95% CI, −12.40 to −3.10) to −3.11 (95% CI, −4.48 to −1.74), as shown in Figure
S4 of the Supplementary Materials. We found inconsistent results between the proposed method and the
standard NMA method; α-blockers plus antibiotics (mean difference = −4.58, 95% CI: −9.82 to 0.67) and
anti-inflammatory agents (mean difference = −3.15, 95% CI: −6.57 to 0.26) did not exhibit significantly
greater efficacy than placebo with respect to NIH-CPSI scores when the standard NMA method was applied.
Moreover, the proposed method indicated that antibiotics alone was significantly more efficacious than
α-blockers plus antibiotics (mean difference = −3.44; 95% CI, −6.08 to −0.80), a result not observed with
the standard NMA method.

Figure 4(b) illustrates the overall relative estimates with 95% confidence intervals for all treatment
comparisons using five different approaches, including the pairwise meta-analysis, the standard NMA method,
and the proposed method with and without corrections. The results obtained from pairwise meta-analysis
yielded wider 95% confidence intervals compared to all other NMA approaches. As expected, the proposed
method had narrower 95% confidence intervals in contrast to the standard NMA using Lu and Ades’ approach.
Furthermore, the proposed method without any corrections reported narrower 95% confidence intervals
than the standard NMA approach. Corrections for the sandwich-type variance estimations using the KC-
corrected and MD-corrected procedures resulted in slightly wider 95% confidence intervals than the proposed
method without any corrections for some treatment comparisons. Figure 5(b) displays the concordance
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plot between the standard NMA approach and the proposed method with or without corrections. Several
points showed discordant evidence of treatment comparisons between the proposed method and the standard
NMA approach. This discrepancy may arise because the proposed method accounts for the unavailability of
within-study correlations, which can affect the standard errors of estimated pooled treatment effects. Figure
S3(b) displays treatment ranking with SUCRA. Overall, antibiotics (SUCRA = 94.6%) was ranked highest
for the improvement of NIH-CPSI scores, followed by α-blockers plus antibiotics (SUCRA = 41.3%) and
α-blockers (SUCRA = 42.4%).

6 Discussion

We proposed a composite likelihood-based approach to model univariate outcomes in NMAs. The
proposed method helps obtain overall relative treatment effects in NMAs, even when within-study correlations
are unavailable in the original articles. To the best of our knowledge, existing NMA approaches often make
assumption about within-study correlations (known or zero), which can introduce bias if the true within-study
correlations are non-negligible. Obtaining within-study correlations typically necessitates a joint analysis of
individual participant-level data, often using bootstrapping methods.68, 69 However, this is seldom done unless
specific questions about correlations between treatment comparisons are of interest in the included studies.
Our proposed method has two key advantages. The first advantage is that the estimation and statistical
inference of treatment effects are valid even if the correlation structure is misspecified. Simulation studies
have shown that the proposed method provides nearly unbiased estimates and maintains reasonable coverage
rates for 95% confidence intervals across scenarios with common or unequal between-study heterogeneity
variances for treatment comparisons. Additionally, as illustrated in two applications, the proposed method
is less prone to variance estimation issues than the standard NMA approach when total variation is not
dominated by the between-study variation. The second advantage of the proposed method is its ability to
reduce computational time by circumventing the need to estimate correlation parameters. This improvement
is particularly evident when compared to currently available methods for NMAs, such as those implemented
in the R packages ‘gemtc’ and ‘netmeta’ (see Figure 2 and Table S1 of the Supplementary Materials).

Nevertheless, there are two potential limitations to the proposed method. First, the proposed method
focuses on contrast-based models in NMAs. While NMAs can also be performed using an arm-based
approach, there are controversies in the literature regarding the differences between contrast-based and
arm-based models.20 The arm-based approach offers a promising direction for future NMA modeling. It can
potentially alleviate concerns about correlations among contrasts, especially in cases where treatment arm
summaries are independent. Under these conditions, the arm-based approach yields the results consistent with
the contrast-based method, requiring solely the standard errors of independent treatment summaries along
with the inclusion of a fixed study main effect. Piepho and Madden70 demonstrated the practical application
of an arm-based meta-analysis using SAS procedures GLIMMIX and BGLMM. Their work highlighted
the effectiveness of this approach in circumventing the complexities associated with correlations among
contrasts and maintaining concurrent control. However, a key criticism of the arm-based approach is that it
might not fully preserve randomization within trials. This could potentially introduce bias in the estimated
relative effects under certain scenarios, particularly if the assumption of transportable relative treatment
effects is violated.71 Further research is needed to explore detailed formulations that can mitigate this issue
and optimize the arm-based approach for NMAs.

Second, because the proposed method is constructed using a composite likelihood-based approach, the
variance is estimated through a sandwich-type estimator. This estimator tends to underestimate the true
variance, especially when the number of studies is small. This underestimation exacerbates the issue of
under-coverage of confidence intervals and inflated type I error rates.67 To improve finite-sample variance
estimation, we have applied the KC-corrected and MD-corrected sandwich variance estimators63, 67 in our
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simulation studies and the CP/CPPS application. As a result, the confidence intervals became slightly wider
after applying these corrections, leading to improved coverage probabilities compared to the uncorrected
method.

In conclusion, this work highlights the importance of considering non-ignorable within-study correlations
in network meta-analyses. Ignoring these correlations, particularly when they are non-negligible, can lead to
inaccurate standard errors for treatment effect estimates. The proposed composite likelihood-based approach
offers an alternative for univariate NMAs when within-study correlation data is not available from original
research articles. This method avoids the need for complex individual participant-level data analysis and
maintains valid treatment effect estimation even with misspecified correlation structures. Additionally, it
delivers significant computational efficiency gains compared to existing NMA methods.
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Figures

Figure 1: Illustration of evidence network diagrams. The size of each node is proportional to the number of
participants assigned to each treatment. Solid lines represent direct comparisons between treatments in trials,
with line thickness proportional to the number of trials directly comparing each pair of treatments.

Figure 2: Comparisons of computational time for the proposed method and two existing methods implemented
in the R packages ‘gemtc’ and ‘netmeta’, with varying numbers of treatments and studies.
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Figure 3: Coverage probabilities of estimated pooled treatment effects for comparisons between treatments
AB and AC using the proposed method with and without the KC-corrected and MD-corrected sandwich
variance estiamtors under (a) within-study correlation of 0.2; and (b) within-study correlation of 0.5.
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Figure 4: Comparisons of overall relative treatment estimates with 95% confidence intervals using the
pairwise meta-analysis approach, the standard NMA based on the Lu and Ades’ approach, the proposed
method without any corrections, and the proposed method with KC-corrected or MD-corrected sandwich
variance estimators. Each node represents the pooled mean difference for the outcomes of interest.
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Figure 5: Comparisons of Z values using the standard NMA based on the Lu and Ades’ approach, the
proposed method without any corrections, and the proposed method with KC-corrected or MD-corrected
sandwich variance estimators, respectively
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Tables

Table 1: Summary of 1,000 simulations with m = 5, 10, 15, 20, 25 and 50: bias (Bias), empirical standard
error (ESE), model-based standard error (MBSE), and coverage probability (CP) of pooled estimates of AB
and AC treatment comparisons. Upper panel (Scenario 1): the data-generation mechanism was through
common between-study heterogeneity variance. Lower panel (Scenario 2): the data-generation mechanism
was through unequal between-study heterogeneity variance. All results were based on the proposed method
without any corrections.

Within-study Number AB comparison AC comparison
correlation of studies Bias ESE MBSE CP Bias ESE MBSE CP

Scenario 1: τAB = τAC = 0.5, µAB = −2, and µAC = −4
0.2 5 0.0118 0.3102 0.2860 0.908 -0.0038 0.3261 0.2872 0.900

10 0.0044 0.2361 0.2074 0.909 0.0037 0.2468 0.2102 0.890
15 -0.0002 0.1925 0.1713 0.905 -0.0010 0.1932 0.1714 0.914
20 -0.0018 0.1646 0.1484 0.911 -0.0012 0.1647 0.1487 0.922
25 0.0008 0.1428 0.1333 0.937 -0.0003 0.1456 0.1332 0.920
50 0.0012 0.1030 0.0945 0.930 0.0025 0.1059 0.0946 0.924

0.5 5 -0.0079 0.3456 0.2778 0.876 -0.0026 0.3284 0.2794 0.883
10 0.0218 0.2347 0.2010 0.890 0.0130 0.2279 0.2007 0.903
15 0.0013 0.1817 0.1668 0.923 -0.0015 0.1948 0.1657 0.896
20 -0.0011 0.1594 0.1445 0.921 -0.0087 0.1572 0.1443 0.925
25 -0.0033 0.1386 0.1292 0.939 -0.0073 0.1410 0.1293 0.926
50 0.0064 0.1007 0.0917 0.928 0.0031 0.0998 0.0917 0.928
Scenario 2: τAB = 0.7, τAC = 0.5, µAB = −2, and µAC = −4

0.2 5 -0.0100 0.3473 0.3082 0.892 0.0077 0.3393 0.2967 0.896
10 0.0108 0.2487 0.2223 0.915 -0.0074 0.2396 0.2138 0.911
15 -0.0003 0.2032 0.1843 0.925 0.0012 0.1888 0.1762 0.927
20 -0.0059 0.1744 0.1589 0.930 -0.0064 0.1691 0.1522 0.918
25 -0.0019 0.1565 0.1429 0.917 0.0021 0.1484 0.1363 0.915
50 -0.0017 0.1146 0.1017 0.919 -0.0016 0.0996 0.0973 0.942

0.5 5 0.0057 0.3550 0.3022 0.891 0.0066 0.3210 0.2883 0.910
10 -0.0024 0.2454 0.2175 0.910 -0.0013 0.2265 0.2088 0.923
15 0.0081 0.2086 0.1786 0.898 0.0134 0.1932 0.1711 0.911
20 0.0061 0.1786 0.1545 0.904 0.0050 0.1660 0.1480 0.913
25 0.0001 0.1610 0.1394 0.904 0.0011 0.1447 0.1332 0.911
50 0.0057 0.1092 0.0987 0.915 0.0076 0.1012 0.0946 0.933
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