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Abstract 

We argue that biological risk for novel inhibitory drug targets can be minimized, almost eliminated, by a 
computational analysis of the healthcare records and DNA sequences in resources like UK Biobank or 
All-of-Us. The key insight is that an inhibitory drug is functionally equivalent to a loss-of-function (LOF) 
variant in the targeted gene. It is a special case of what has been called an “experiment of nature”. To 
demonstrate, we considered all available clinical trials (58 in total) and inhibitory drugs (15 in total) for 5 
cardiovascular drug targets: PCSK9, APOC3, ANGPTL3, LPA, and ASGR1. The results were shocking. 
Every biomarker assessed in these clinical trials was successfully predicted, i.e. directionality and 
proportionality of effect, but not the magnitude since that varies with dosage. This concept has not been 
widely adopted because geneticists believe that homozygous LOFs, which are exceedingly rare, would be 
needed to observe a significant phenotypic effect from most genetic knockouts. Our study shows that, to 
the contrary, given a sufficiently large biobank, counting both carriers and non-carriers, heterozygous 
LOFs alone can inform drug development. 
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Introduction 

The development of novel drug therapies is a resource-intensive process where a majority of the expenses 
are due to the amortized costs of attrition, with the total research and development cost per new drug in 
2016 being estimated to be $2.5 billion1,2. The primary contributor to this financial crisis is the high rate 
of failure, nominally 90%, and predominantly attributed to a lack of efficacy as opposed to safety3–7. 
Preclinical validation of drug targets has historically relied on animal models and/or cell lines. These 
approaches face inherent limitations when translating results to humans8,9. Retrospective analyses of drug 
development processes has highlighted that drug targets with human genetics evidence are more than 
twice as likely to reach approval as those without10–15, a reminder that the best model of human biology is 
a human subject, not an animal model or cell line. Here, we will demonstrate how DNA sequencing, 
combined with electronic health records, can de-risk the drug development process by reliably predicting 
clinical trial outcomes. 

Conceptually, our method is what Plenge et al. called an “experiment of nature” in which a naturally 
occurring human condition directly mimics the effect of the drug, as opposed to the traditional discovery 
process that focuses on understanding the mechanistic causes of disease10. We will consider the special 
case of an inhibitory drug, where the mode-of-action is to disrupt the function of a targeted gene/protein. 
Drugs of this nature include antisense oligonucleotides (ASO), monoclonal antibodies, small interfering 
RNAs (siRNAs), traditional small molecules, and in some instances small peptides. The corresponding 
human condition would be any number of naturally occurring loss-of-function (LOF) variants in the 
targeted gene. These LOFs are functionally equivalent to the inhibitory drug, insofar as they exert a 
qualitatively similar effect on biomarker changes associated with intermediate phenotypes and on disease 
progression. As such, they have been called “human knockouts as models of drug action” (HKMD)16. 
Quantitative differences between genetic and clinical studies are expected to stem from the zygosity of 
the LOF variants and from the dosage of the drug in question. 

Although ideal, preclinical models of this nature are only practical when we can identify sufficiently 
many human subjects with the requisite variants. This is primarily feasible for heterozygous LOFs (one 
knockout), because homozygous LOFs (two knockouts) are extremely rare17, at least in outbred 
populations. Such methods would be of limited utility if homozygous LOFs were required, as it has been 
shown that even if we were to sequence everybody worldwide, we would never get homozygous LOFs 
for many genes18–20. Conversely, relying on the plentiful heterozygous LOFs that can be found in 
currently available biobanks is problematic, because most genes are haplosufficient (Mendelian recessive) 
and there is little to no organismal phenotypic difference between the homozygous wild type and a 
heterozygous LOF21–24. This conception of recessiveness dates back to Mendel, and the mystery of how it 
works inspired two of the giants of early 20th century genetics to suggest compensatory mechanisms. 
Fisher’s 1928 proposal was based on evolutionary selection for genetic modifiers25. Wright’s 1934 
counterproposal was predicated on the redundancy of cellular functions26. Regardless of the explanation, 
it is the prevailing orthodoxy that heterozygous LOFs tend not to be informative, and this underlies the 
interest in specialized populations (e.g. consanguineous, bottlenecked) where homozygous LOFs are more 
common27,28. 

Despite the above concern, we set out to ascertain the feasibility of using currently available human 
genetic/medical data to perform preclinical validation of novel drug targets. Specifically, we utilized the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309116doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309116


UK Biobank to identify carriers of genetic variants that are predicted to cause LOF in five genes (PCSK9, 

APOC3, ANGPTL3, LPA, ASGR1) that have been reported to improve a cardiovascular biomarker and to 
be protective against ischemic heart disease. All have been targeted by drugs in clinical trials that are at 
various stages of completion. We contrasted the changes in biomarker distribution between predicted loss-
of-function (pLOF) variant carriers and the very large number of non-carriers in the UK Biobank. Then 
we compared our results to the differences in biomarker distribution observed in clinical trials between 
individuals undergoing inhibitory drug therapy versus those receiving a placebo. From our genetic study, 
we consistently observed the same directionality and proportionality of effect as was reported in the 
clinical trials, demonstrating the ability of human genetics to be used for preclinical validation. 

 

Methods 

The UK Biobank has approval from the North West Multi-Centre Research Ethics Committee as a 
Research Tissue Bank (RTB). This approval means that researchers do not require separate ethical 
clearance by their institution and can operate under the RTB approval. Our research was conducted under 
Application Number 85442. The UK Biobank is a prospective cohort study that over a four-year period 
successfully recruited over 500,000 volunteer participants in an effort to investigate the risk factors for 
major diseases of middle and old age. The UK Biobank was uniquely positioned for this research project 
as it offers access to both genomic data and blood biomarker measurements for a large number of 
participants. Following previous work utilizing the UK Biobank, we performed quality control on 
biobank participants by excluding individuals marked as having sex chromosome aneuploidy (Data-Field 
22019, UKB - 651 participants), a mismatch between self-reported and genetically determined sex (Data-
Field 31 – UKB, Data-Field 22001 – UKB, 372 subjects), outliers for heterozygosity or missing rate 
(Data-Field 22027, UKB - 968 participants), and those who were not used in the genetic principal 
component analysis performed by the UK Biobank to determine genetic ancestry (Data-Field 22020, 
UKB - 95,361 participants)29. 

We stratified patients by the presence of the flag ‘Caucasian’ in Data-Field 22006. This was done to 
reduce genetic variation noise and minimize the effects of population stratification, as a majority of the 
UK Biobank participants are Caucasian. This flag indicates samples who self-identified as ‘White British’ 
according to Data-Field 21000 and have similar genetic ancestry based on a principal components 
analysis of the genotypes. This resulted in a study population of 337,083 participants. 

We defined cases as individuals having the International Statistical Classification of Diseases and Related 
Health Problems, 10th edition (ICD-10), diagnostic codes for Ischemic Heart Diseases (I20-I25), which 
include: angina pectoris (I20), acute myocardial infarction (I21), subsequent myocardial infarction (I22), 
certain current complications following acute myocardial infarction (I23), other acute ischaemic heart 
diseases (IHD) (I24), and chronic ischemic heart disease (I25). Case participants were identified at the 
time of this analysis (July 2022) as those who had any of the above ICD-10 codes listed as a primary, 
secondary, or tertiary diagnoses or as a cause-of-death diagnosis. 

The UK Biobank provides blood biochemistry measures on 30 different blood biomarkers (a full list of 
biomarkers can be found at https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=17518). We performed 
our analysis on all 30 biomarkers for each gene and report on the significant associations observed. 
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When working with genetic variants the UK Biobank recommends that a single variant-level filter be 
applied requiring that at least 90% of all genotypes for a given variant — independent of variant allele 
zygosity — have a read depth of at least 10 (i.e., DP ≥ 10). When this filter is applied to the UKB whole 
exome sequence (WES) 200k data prior to association analysis, the results are largely devoid of the 
spurious hits. Variants from pVCF files were filtered through BCFtools following the procedure outlined 
by Ghouse et al., where in we filtered out variants with a genotype quality of less than 20, a genotype 
depth of less than 10, or that had missing genotype percentage over 10%30. Variants were functionally 
annotated using SnpEff version 5.0e (build 2021-03-09 06:01)31. 

The high confidence (HC) set of pLOF variants includes only variants annotated to be LOF according to 
SnpEff, based on the following criteria set out by MacArthur et al.: stop codon-introducing (nonsense), 
splice site-disrupting single-nucleotide variants (SNVs), insertion/deletion (indel) variants predicted to 
disrupt a transcript’s reading frame, or larger deletions removing either the first exon or more than 50% of 
the protein-coding sequence of the affected transcript17,32. Of note, the variants that meet these criteria but 
are within the first and last 5% of the gene region were excluded. Variants captured by our analysis can be 
seen in Supplementary Tables 3-7. 

Combined Multivariate and Collapsing (CMC) Burden association testing was done using the standalone 
RVTESTS package, a popular and flexible package due to its support for large-scale biobank data33,34. 
Burden tests were performed using gene regions as the grouping parameter under the assumption that all 
pLOF variants have the same directionality of effect. All models were adjusted for age at enrollment, sex, 
and genetic ancestry (as quantified by the first five principal components), and non-normally distributed 
variables were log-transformed (these being: alanine aminotransferase, c-reactive protein, direct bilirubin, 
gamma glutamyltransferase, lipoprotein A, oestradiol, rheumatoid factor, total bilirubin, and 
triglycerides). 

To compare our genetic results with the relevant clinical trials, we searched www.clinicaltrials.gov. The 
full list of what we found can be seen in Supplementary Tables 8-12. We believe this to be an exhaustive 
collection of all publicly available clinical trials for all inhibitory drugs created for our five targets. It 
includes 58 trials for 15 drug compounds broken down by target as 30 trials for 5 drugs consisting of 3 
modalities (monoclonal antibody, siRNA, and macrocyclic peptide) targeting PCSK9, 10 trials for 3 drugs 
consisting of 2 modalities (ASO and siRNA) targeting APOC3, 12 trials for 3 drugs consisting of 3 
modalities (ASO, monoclonal antibody, and siRNA) targeting ANGPTL3, 5 trials for 3 drugs consisting 
of 2 modalities (ASO and siRNA) targeting LPA, and the single available trial of a monoclonal antibody 
targeting ASGR1. 

 

Results 

We considered all 30 blood biomarkers available in the UK Biobank and reported on those observed to 
have statistically significant changes in distribution between carriers and non-carriers of pLOF alleles. For 
all observed distributions, see Supplementary Table 1. We also compared our results to those reported by 
previous genetic studies, as can be seen in Supplementary Table 2. Comparisons between our genetic 
studies and the published clinical studies for each gene can be seen in Table 1. 
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PCSK9 

We identified 489 carriers of 41 unique high-confidence PCSK9 pLOF variants, equating to a carrier 
frequency of 0.15%. Within this cohort, we observed one individual who was multi-allelic for pLOF 
variants, and no homozygous carriers at all. We observed that carriers of a LOF variant in the PCSK9 
gene had significant reductions compared to noncarriers in plasma levels of low-density lipoprotein 
cholesterol (LDL-C) (-19%, P=4.60x10−70), apolipoprotein B (apoB) (-18%, P=5.50x10-66), total 
cholesterol (-13%, P=5.20x10-53), and triglycerides (-9%, P=1.95x10-4), while having increases in plasma 
levels of high-density lipoprotein cholesterol (HDL-C) (+5%, P=5.01x10-4), and apolipoprotein A (apoA) 
(+3%, 2.50x10-4). Lastly, we observed a protective effect against IHD from the presence of a PCSK9 LOF 
allele, although the statistical significance is weak. 

We compared our findings on the effect of PCSK9 pLOF variants to thirty prior clinical studies 
investigating therapeutic inhibitors targeting PCSK9. These studies include notable trials such as the 2017 
trial on evolocumab by Sabatine et al.35, the 2018 trial on alirocumab by Schwartz et al.36, and the 2020 
trial on inclisiran by Ray et al.37 The strongest signal observed in our study was the reduction in plasma 
LDL-C, consistently aligning with outcomes from clinical trials where therapeutic inhibition of PCSK9 
demonstrated a decrease in mean plasma LDL-C levels across all trials. The proportionality of this result 
is also consistent as LDL-C saw the highest reported percent change of any biomarker in each clinical 
trial, with maximum observed reductions ranging from -56% to -83%. While the quantitative strength of 
our observed reduction is less than that of most trials, this is expected as our study focused on 
heterozygous carriers of PCSK9 pLOF variants. 

A promising aspect of our study is how our results align with changes in the distribution of all clinical 
variables. In all trials where they were reported, both total cholesterol and apolipoprotein B levels saw 
percent change decreases ranging from -6% to -45% and -11% to -53%, respectively, which is mirrored in 
our results as we observed reductions of -13% in mean total cholesterol levels and -18% in mean 
apolipoprotein B levels, both at high significance thresholds. 

Comparison of our results for HDL-C, triglycerides, and apolipoprotein A with previous clinical trials 
adds further confidence to our proof of concept. The prevailing trend in clinical trial results was that 
therapeutic inhibition of PCSK9 resulted in reductions in plasma triglyceride levels, and slight increases 
in HDL-C and apolipoprotein A levels. However, for each biomarker there was one trial that reported the 
alternative effect. Our analysis of pLOF variants resulted in reported directionality of biomarker changes 
in line with the majority of clinical trials for each of these biomarkers, showcasing a potential advantage 
that large scale genetic analysis can offer over the variability of clinical trials with a smaller sample 
population. The only deviation from this trend is that it has been reported in previous clinical trials that 
mean plasma lipoprotein A levels decreased in study participants who received therapeutic inhibition. We 
did not observe any significant change in the plasma levels of lipoprotein A between carriers and non-
carriers of pLOF variants. 

Our results highlight that, despite the quantitative strength of the change in biomarker distribution being 
generally lower than those reported in clinical trials, heterozygous carriers of pLOF variants can be used 
to observe the same directionality of effect as gene-specific inhibition in a clinical trial. 
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APOC3 

We identified 1,637 carriers of seven unique high-confidence APOC3 pLOF variants (equating to a carrier 
frequency of 0.49%), all of whom were heterozygous carriers. Our analyses revealed that carriers of a 
LOF variant in the APOC3 gene had significant increases in plasma levels of HDL-C (+22%, P=8.04x10-

283) and apolipoprotein A (+12%, P= 2.02x10-193), as well as significant reductions in plasma levels of 
LDL-cholesterol (-4%, P=9.32x10-12), triglycerides (-47%, P=1.10x10-236), and apolipoprotein B (-4%, 
P=2.91x10-14). Once again, we observed a protective effect against IHD from the presence of a APOC3 
LOF allele (-14%, P=0.02), but the statistical significance is weak. 

The largest change in biomarker distribution due to the presence of an APOC3 pLOF allele was in mean 
levels of plasma triglycerides, which is consistent with previous clinical investigations into APOC3 
inhibitors by Gouni-Berthold et al., Schwabe et al., and Alexander et al., on volanesorsen, ARO-APOC3, 
and olezarsen, respectively38–40. These trials reported reductions of mean plasma triglyceride levels by -
53% to -70%. We expanded our comparison to a total of ten clinical trials and noted that in all cases 
inhibition of APOC3 resulted in a reduction of plasma triglycerides ranging from -23% to -92%. Across 
all ten trials, where reported, therapeutic inhibition of APOC3 resulted in observed increases of plasma 
HDL-C levels ranging from +11% to +136%, which is mirrored in our genetic study, where we observed a 
significant increase in plasma HDL-C levels. Barring one study that reported a +2% increase in mean 
LDL-C levels after therapy, our observed reductions in LDL-C and apolipoprotein B levels are consistent 
with all major clinical trials for APOC3 inhibitors, and our observed increase in apolipoprotein A levels is 
consistent with clinical trials where reported. 

When compared to the results of previous clinical trials, our genetic results from the UK Biobank align 
across every biomarker in terms of predicting not only the directionality of the change in blood biomarker 
distribution caused by inhibition, but also the proportionality of the relative effect on each specific 
biomarker. As with our results for PCSK9, we were able to clearly demonstrate the effect of gene specific 
inhibition without having to do a clinical trial. 

 

ANGPTL3 

We identified 623 carriers of 33 unique high-confidence ANGPTL3 pLOF variants, equating to a carrier 
frequency of 0.18%. We found one individual homozygous for a pLOF variant, with the rest being 
heterozygous carriers. Our analyses revealed that carriers of a LOF variant in the ANGPTL3 gene had 
significant reductions in plasma levels of total cholesterol (-10%, P=6.81x10-41), LDL-C (-9%, 
P=1.54x10−21), HDL-C (-7%, P=1.06x10-14), triglycerides (-30%, P=< 7.43x10−57), apolipoprotein A (-8%, 
P=< 7.00x10−39), and apolipoprotein B (-5%, P=3.49x10-9). Furthermore, we observed a protective effect 
against IHD from the presence of an ANGPTL3 LOF allele, although this effect was not statistically 
significant. 

We compared our results to those reported by twelve prior clinical trials on the monoclonal antibody 
evinacumab, the ASO vupanorsen, and the siRNA ARO-ANG3. This includes, but is not limited to, a 
2020 trial on vupanorsen by Bergmark et al.41, and a 2020 trial on evinacumab by Harada-Shiba et al.42 
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Across all trials, plasma levels of triglycerides and total cholesterol saw the largest reductions, which is 
consistent with our observed results. Every clinical trial for ANGPTL3 inhibitors reported reductions in 
plasma levels of LDL-C, HDL-C, apoA, and apoB as a result of therapeutic intervention. This trend is 
mirrored in our genetic results. Once again, we were able to successfully observe the directionality of the 
change in biomarker distribution that arises due to therapeutically induced LOF. 

 

LPA 

We identified 26,747 carriers of 111 unique high-confidence LPA pLOF, equating to a carrier frequency of 
7.93%. Unique among our 5 targeted gene, we observed 485 carriers who were homozygous for a pLOF 
variant. Our analyses revealed that carriers of a LOF variant in the LPA gene had a significant reduction in 
plasma levels of lipoprotein A (-25%, P=2.42x10-164); however, we did not observe a significant or high 
impact change for any other blood biomarker that we analyzed. We did observe a protective effect against 
IHD from the presence of an LPA LOF allele (-5%, P=9.71x10-4). 

A recent clinical trial on the siRNA lepodisiran targeting LPA by Nissen et al. reported reductions of 
plasma levels of lipoprotein A by -41% to -97%43. Clinical trials on the antisense oligonucleotide ISIS-

APO(a)Rx and the siRNA olpasiran have reported similar ranges of plasma lipoprotein A reductions, 

ranging from -39% to -97%44,45. The key takeaway from the two latter studies was that both Tsimikas et 

al.44 and Koren et al.45 reported that none of the other lipid concentrations that we assessed, aside from 
lipoprotein A, saw significant change in their distribution when compared to the placebo group. This is 
entirely consistent with our results. 

We investigated the distributions of homozygous carriers independently but found that only 6 individuals 
who were homozygous for a pLOF variant had associated plasma Lp(a) measurement. This is in contrast 
to 15,324 of the 26,747 heterozygous carriers and 240,203 of the 310,336 noncarriers who had an 
associated Lp(a) measurement. As biomarkers go, Lp(a) is an outlier with a history of being inconsistently 
measured, and this has other implications that will be raised in the discussions. 

 

ASGR1 

We identified 121 carriers of 21 unique high-confidence ASGR1 pLOF variants, equating to a carrier 
frequency of 0.04%, all of which were heterozygous carriers. Our analyses revealed that carriers of a LOF 
variant in the ASGR1 gene had reductions in plasma levels of total cholesterol (-4%, P=0.02), LDL-C (-
5%, P=0.02) and apolipoprotein B (-4%, P=0.01), as well as a significant increase in plasma alkaline 
phosphatase (+32%, P=1.87x10−30). It should be noted how weak the p-value significances of the first two 
changes are, when compared to the other biomarkers and genes in our study. Lastly, we did not observe a 
statistically significant protective effect against IHD from the presence of an ASGR1 LOF allele; if 
anything, it made things worse. 

While the statistical interpretation of our results for ASGR1 is limited by a smaller sample size, it does 
indicate that inhibition of ASGR1 might not have as consistent of a cholesterol lowering effect as 
hypothesised. Interestingly, while we did not observe a strong relationship regarding the cholesterol 
reducing effect of ASGR1 inhibition, we did observe a 32% (P=1.87x10−30) increase in plasma levels of 
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alkaline phosphatase. A phase 1 study of monoclonal antibody AMG 529 by Janiszewski et al. reported 
that, while the therapy was tolerated, it resulted in dose related increases in alkaline phosphatase (+251%) 
but, notably, no dose related effect on lipid or apolipoprotein measurements46. ASGR1 stands apart from 
the previous target genes we investigated as it has limited clinical data to compare against; even so, the 
same directionality of change on biomarker distribution due to clinical inhibition can be observed in the 
prospective cohort population using pLOF variants, specifically the marked increase in liver enzymes but 
limited change in lipid levels. 

 

Discussion 

To demonstrate how to de-risk the drug development process for inhibitory targets, we analyzed the 
phenotypic effects that pLOF in five target genes had on distributions of cardiovascular blood biomarkers. 
It should be noted that, for many common diseases, and on the time-scale of a clinical trial that is 
conducted for initial regulatory approval, biomarkers are the only practical measurables. There is never 
enough time to assess a long-term disease outcome. Our study was based on a Caucasian population of 
337,083 UK Biobank participants. We identified pLOF variant carriers for each target gene and performed 
multivariate and collapsing burden tests to evaluate the association between LOF and phenotypic 
expression. Our study validated previously reported genetic associations between LOF carrier status and 
cardiovascular biomarker levels. Significant associations included reduced levels of LDL-C (PCSK9, 
APOC3, ANGPTL3), reduced levels of plasma triglycerides (PCSK9, APOC3, ANGPTL3), and reduced 
levels of lipoprotein A (LPA). We compared our genetic results to relevant clinical trials of inhibitory 
drugs and demonstrated that, for each target gene, we were able to successfully mirror the directionality 
and proportionality of change in blood biomarker distributions caused by therapeutic inhibition. Our 
analyses predicted not just one biomarker but the whole spectrum of biomarkers associated with the 
various intermediate phenotypes. The consistency of this approach is remarkable, given that between the 
clinical trials and our genetic studies, and across all target genes, there was not one significant deviation 
of the reported directionality of change for any biomarker that was considered. No false positives and no 
false negatives, to the extent that the same biomarker was assessed in both the clinical trial and our 
genetic study. This result is strengthened by the fact that our conclusions hold irrespective of the 
inhibition mechanism used in the clinical trial, whether that mechanism is ASO, monoclonal antibodies, 
siRNA, or small peptides. The only perceived exception to this assertion was that some clinical trials of 
PCSK9 inhibitors reported therapy induced reductions in mean levels of lipoprotein A, whereas we 
observed no significant change. However, it should be noted that Lp(a) levels are highly variable in terms 
of size and concentration, with a more than 1000-fold variation between individuals47. There exists the 
potential that, unless the observed change is very large, it will be challenging to detect a signal in the 
distribution of Lp(a) between carriers and non-carriers of pLOF variants. 

The agreement reported here is a testament to how well these particular drugs inhibit the target 
gene/protein, without off-target binding, and the fact they are delivered to the target site at the appropriate 
concentrations. In other words, these molecules satisfy the binding and delivery requirements of any good 
drug. LOF-based validation addresses a different issue. Is the target itself a good choice? Our method 
addresses the biological risk of a novel inhibitory target, not the technological risk of the drug molecule 
itself. Because the assessment uses human data (not animal models or cell lines) that directly implicates a 
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particular target with the desired phenotype, there is every reason to believe that it will be reliable. So, 
while LOF-based validation is not by itself sufficient to ensure clinical trial success, it should perhaps be 
a necessary condition for a decision to proceed onto the earliest stages of clinical development. This 
would help avoid wasted efforts on a molecule that is destined to fail. Lastly, since our analysis on the UK 
Biobank was restricted to Caucasians, the predicted outcomes may not be relevant for another population. 
Such concerns can be allayed by repeating the analysis on more genetically diverse resources like the All-
of-Us48 databank. 

To better understand why this approach works, consider the remarkably small p-values for the 
significance of the differences in the distribution of blood biomarkers between carriers and non-carriers of 
pLOF variants. This is especially notable when compared to the clinical trials. It is not an artifact of our 
method. A previous investigation by Ghouse et al. into the impact of PCSK9 LOF variants on the 
distribution of glycemic biomarkers reported signals of similar strength using a subset of our UK Biobank 
data30. It has previously been highlighted that, with a sufficiently large sample size (and notice how the 
non-carriers in our study number in the many hundreds of thousands), a significant p-value is likely to be 
found even when the difference between groups is small49. The result to focus on is not just the statistical 
significance of the change observed, but also the magnitude of that change. For example, the primary 
biomarkers targeted by inhibitory drugs for PCSK9 and APOC3 are LDL-C and triglycerides, 
respectively. Our genetic studies found reductions of (-19%, P=4.60x10−70) and (-47%, P=1.10x10-236), 
respectively. With the magnitude and statistical significance of these genetic results, the likelihood that 
similar results would be observed in a clinical trial is very high. Conversely, for our weaker genetic 
findings, inconsistent results were occasionally seen among the clinical trials. 

What is especially noteworthy is the fact that all of the targets we considered are haplosufficient 
(Mendelian recessive) genes, with estimated LOEUF (LOF observed / expected upper bound fraction, as 
reported in gnomAD) of 1.01, 0.97, 0.91, 1.05 and 0.76 for PCSK9, APOC3, ANGPTL3, LPA, and 
ASGR1, respectively50. Given how organismal phenotypic differences are expected to be small for 
heterozygous LOFs in recessive genes, this is probably why the magnitude of the biomarker changes in 
our genetic studies were generally smaller than what was reported in the clinical trials. Nonetheless, a 
reliable signal was detected in all instances. It is also important to distinguish between organismal 
phenotypes that are inevitably impacted by many other genes and environmental factors versus chemical 
biomarkers that are more directly impacted by the targeted gene/protein. This is almost certainly why our 
p-values for the changes in disease incidence were much larger than our p-values for the biomarkers. No 
genetic or environmental factor can ever fully account for a complex multifactorial trait like IHD. 
Additional support for these conclusions can be found in recent studies of recessive disease variants that 
demonstrated subtle clinical manifestations in heterozygous carriers51–55. 

While larger and more comprehensive biobanks of linked genomic-phenotypic data can only enhance the 
functionality of this approach, we have shown that, even with currently available resources like the UK 
Biobank, it is possible to rely on heterozygous pLOF variants to mimic drug action and thereby predict 
clinical trial outcomes. One knockout is all you need. The future we have been waiting for – drug targets 
firmly grounded in human genetics – is already here. 
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Table 1 | Comparison between predicted loss-of-function variants and clinically reported effects of 

inhibitory drugs on the distribution of blood biomarkers for Ischemic Heart Disease 

 

Sub-Table A: PCSK9 
 Our Study Alirocumab Evolocumab. Inclisiran 

 Carriers Noncarriers Monoclonal Antibody Monoclonal Antibody siRNA 

 489 336,594 Trials: 5 Trials: 17 Trials: 5 

Variable Change P-Value Change Change Change 

Total Cholesterol (mmol/L) -13% 5.20x10−53 -6% to -43% -28% to -45% -17% to -33% 

LDL Cholesterol (mmol/L) -19% 4.60x10−70 -10% to -68% -16% to -83% -20% to -56% 

HDL Cholesterol (mmol/L) +5% 5.01x10-4 +6% to +12% +4% to +12% -20% to +10% 

Triglycerides (mmol/L) -9% 1.95x10-4 +5% to -17% -2% to -15% -17% to -33% 

Apolipoprotein A (g/L) +3% 2.50x10-5 +1% to +14% - +8% to -14% 

Apolipoprotein B (g/L) -18% 5.50x10-66 -11% to -53% -25% to -44% -22% to -40% 

Lipoprotein A (nmol/L) -1% 0.81 -7% to -29% 0% to -37% -11% to -25% 

Ischemic heart disease -30% 0.02      

Sub-table B: APOC3 
 Our Study Volanesorsen. Olezarsen ARO-APOC3 

 Carriers Noncarriers Antisense 
Oligonucleotide 

Antisense Oligonucleotide siRNA 

 1,637 334,446 Trials: 5 Trials: 2 Trials: 3 

Variable Change P-Value Change Change Change 

LDL Cholesterol (mmol/L) -4% 9.32x10−12 0% to -21% -2% to -21% +2% to -25% 

HDL Cholesterol (mmol/L) +22% 8.04x10−283 +26% to +61% +11% to +75% +28% to +136% 

Triglycerides (mmol/L) -47% 1.10x10-236 -31% to -76% -23% to -70% -41% to -92% 

Apolipoprotein A (g/L) +12% 2.02x10-193 - +5% to +18% - 

Apolipoprotein B (g/L) -4% 2.91x10-14 -20% 0% to -30% - 

Ischemic heart disease -14% 0.02    

Sub-table C: ANGPTL3 
 Our Study Evinacumab Vupanorsen ARO-ANG3 

 Carriers Noncarriers Monoclonal Antibody Antisense Oligonucleotide siRNA 

 623 336,460 Trials: 5 Trials: 4 Trials: 3 

Variable Change P-Value Change Change Change 

Total Cholesterol (mmol/L) -10% 6.81x10-41 -7% to -60% -21% to -41% -35% to -43% 

LDL Cholesterol (mmol/L) -9% 1.54x10-21 -9% to -52% +5% to -17% -23% to -44% 

HDL Cholesterol (mmol/L) -7% 1.06x10-14 -18% 0% to -15% -14% to -37% 

Triglycerides (mmol/L) -30% 7.43x10-57 -19% to -52% -32% to -59% -25% to -79% 

Apolipoprotein A (g/L) -8% 7.00x10-39 -19% -11% to -30% -23% to -38%  

Apolipoprotein B (g/L) -5% 3.49x10-9 -2% to -45% -5% to -14% -28% to -39% 

Ischemic heart disease -19% 0.11    

Sub-table D: LPA 
 Our Study Lepodisiran ISIS-APO(a)Rx Olpasiran 

 Carriers Noncarriers siRNA Antisense Oligonucleotide siRNA 

 26,747 310,336 Trials 1: Trials: 2 Trials: 2 

Variable Change P-Value Change Change Change 

Lipoprotein A (nmol/L) -25% 2.42x10-164 -41% to -97% -39% to -77% -64% to -97% 
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Ischemic heart disease -5% 9.71x10-4     

Sub-table E: ASGR1 
 Our Study AMG 529   

 Carriers Noncarriers Monoclonal Antibody     

 121 336,962 Trials: 1     

Variable Change P-Value Changes     

Total Cholesterol (mmol/L) -4% 0.02 +2% to -3%     

LDL Cholesterol (mmol/L) -5% 0.02 +1% to -5%     

Alkaline phosphatase (U/L) +32% 1.87x10-30 +251%     

Ischemic heart disease +19% 0.49      
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