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Abstract 
Clinical variants of Alzheimer’s disease and frontotemporal lobar degeneration display a 

spectrum of cognitive-behavioural changes varying between individuals and over time. 

Understanding the landscape of these graded individual-/group-level longitudinal variations 

is critical for precise phenotyping; however, this remains challenging to model. Addressing 

this challenge, we leverage the National Alzheimer’s Coordinating Center database to derive 

a unified geometric framework of graded longitudinal phenotypic variation in Alzheimer’s 

disease and frontotemporal lobar degeneration. We included three time-point, cognitive-

behavioural and clinical data from 390 typical, atypical and intermediate Alzheimer’s disease 

and frontotemporal lobar degeneration variants (114 typical Alzheimer’s disease; 107 

behavioural variant frontotemporal dementia; 42 motor variants of frontotemporal lobar 

degeneration; and 103 primary progressive aphasia patients). On this data, we applied 

advanced data-science approaches to derive low-dimensional geometric spaces capturing core 

features underpinning clinical progression of Alzheimer’s disease and frontotemporal lobar 

degeneration syndromes. To do so, we first used principal component analysis to derive six 

axes of graded longitudinal phenotypic variation capturing patient-specific movement along 

and across these axes. Then, we distilled these axes into a visualisable 2D manifold of 

longitudinal phenotypic variation using Uniform Manifold Approximation and Projection. 

Both geometries together enabled the assimilation and inter-relation of paradigmatic and 

mixed cases, capturing dynamic individual trajectories, and linking syndromic variability to 

neuropathology and key clinical end-points such as survival. Through these low-dimensional 

geometries, we show that (i) specific syndromes (Alzheimer’s disease and primary 

progressive aphasia) converge over time into a de-differentiated pooled phenotype, while 

others (frontotemporal dementia variants) diverge to look different from this generic 

phenotype; (ii) phenotypic diversification is predicted by simultaneous progression along 

multiple axes, varying in a graded manner between individuals and syndromes; and (iii) 

movement along specific principal axes predicts survival at 36 months in a syndrome-specific 

manner and in individual pathological groupings. The resultant mapping of dynamics 

underlying cognitive-behavioural evolution potentially holds paradigm-changing implications 

to predicting phenotypic diversification and phenotype-neurobiological mapping in 

Alzheimer’s disease and frontotemporal lobar degeneration. 
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Introduction 
The challenges of correctly diagnosing, managing and treating Alzheimer’s disease (AD) and 

frontotemporal lobar degeneration (FTLD) syndromes are exacerbated by phenotypic 

heterogeneity. Clinically, individuals with AD or FTLD present with diverse cognitive-

behavioural profiles and variable disease progression patterns, posing a major challenge to 

clinical trials and to understanding the mechanisms of syndromic variability. Limited 

understanding of the landscape of clinical heterogeneity affects diagnostic, stratification and 

treatment design efforts.1 Tackling this challenge first requires mapping the full landscape of 

graded clinical variations and their dynamic evolution. That is, what are the range and nature 

of phenotypes present within/between AD and FTLD groups, and how do they change over 

time? In this work, we take the important step of reconceptualising clinical heterogeneity 

using a new transdiagnostic multidimensional framework, a large multi-centre dataset, and 

advanced analytic approaches to map out the first detailed longitudinal picture of graded 

phenotypic variations in AD/FTLD. 

Contextualising this challenge, AD/FTLD are not monomorphic entities; instead, they 

comprise clinical variants that, at least in early stages, differentially affect episodic memory 

(typical amnesic AD),2 language (primary progressive aphasia, PPA),3 motor function 

(Corticobasal Syndrome, CBS; Progressive Supranuclear Palsy, PSP),4,5 semantic cognition 

(semantic dementia/semantic variant PPA),6,7 behaviour and/or executive functions 

(behavioural variant frontotemporal dementia, bvFTD).8 Typically, variants are diagnosed as 

independent entities based on discrete symptoms and corresponding neural-biological 

dysfunction profiles. In the reality of everyday clinics, there are many exceptions to such 

‘textbook’ cases. Patients frequently present with, and evolve to show, mixed symptom 

profiles spanning multiple independent diagnostic categories, or display spared/fewer 

features leading them to miss key diagnostic criteria.9 This phenotypic variation can emerge 

independent of disease severity,10,11 is systematically present across variants,9,12-14 and relates 

to underlying brain structure-function integrity15,16 and genetic-pathological mechanisms.17-19 

Mapping these variations is of significant clinical and research importance as: (i) initial 

clinical diagnosis is predicated on cognitive-behavioural profiles; (ii) heterogeneous 

individuals challenge current nosology, risking exclusion from clinical trials;20 (iii) many 

dementia screening programmes probe for prototypical clinical profiles, leading to missed 

diagnosis/misdiagnosis of heterogeneous cases, in turn questioning their accuracy;21 (iv) 

insufficient understanding of phenotypic heterogeneity precludes confident prediction of 
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disease trajectories/endpoints and tailored management and care information provision;22 and 

(v) excluding heterogeneous cases from research studies represents a major missed 

opportunity to reveal systematic transdiagnostic variations or universal symptoms and their 

neurobiological bases, and to understand moderators of disease presentation or progression.23  

Considering clinical variations in terms of categorical distinctions (and inherent 

sources of data noise) is a common approach. Such frameworks are challenged, however, 

when there is considerable variation within as well as between categories, in the limit 

undermining the very presence of the categories themselves. Rather than solely 

conceptualising clinical variations as emerging from disease-linked categorical generators, 

modelling along continuous dimensions offers an additional robust explanatory framework of 

heterogeneity.24,25 Dimensional variations are commonly found both in the natural world 

(e.g., temperature, light, pressure) and in general medicine (e.g., blood pressure, glycaemic 

control, renal function, body mass index). In AD/FTLD, a colour analogy offers an intuitive 

explanation of modelling heterogeneity using dimensional frameworks.16 Consider two 

classic exemplar clinical conditions (e.g., semantic dementia vs. typical amnestic AD); these 

can be thought of as strongly contrastive, or even “complementary” colours (e.g., yellow vs. 

blue) within a continuous, multidimensional hue-space. Systematic shifts along one or more 

dimensions generate not only variations around these exemplar cases (e.g., lemon, mustard, 

Chartreuse), but also “mixed” cases reflecting combinations of the core dimensions (e.g., 

orange, lime). Dimensional frameworks have the potential to represent longitudinal changes 

in terms of movements along one or more disease-linked dimensions, that otherwise 

confusingly appear to be multiple changes in diagnosis (category; e.g., 

orange→coral→salmon→pink→fuchsia simply reflects a blue dimensional shift). Expanding 

this example to the wider range of AD/FTLD phenotypes – instead of defining an ever finer-

grained list of category subtypes (cf. the mesmerising array of names on a paint colour chart), 

dimensional approaches distil performance covariance patterns to unveil the fundamental 

phenotypic dimensions (cf. colour axes) on which patients differ, mapping graded clinical 

variations and multifaceted longitudinal changes (cf. fuzzy boundaries between hues/shades) 

to a unified multidimensional phenotypic geometry (cf. hue space). Of note, considering a 

dimensional approach does not mean discounting or abandoning categorical approaches to 

clinical labelling. Categorical labels do hold clinical utility and, while undeniably imperfect 

like any other approach, they are helpful for explaining the nature and the course of the 

disease to patients. Dimensional approaches offer a complementary fine-grained 
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underpinning framework that enables precision medicine, with precision not in terms of gene 

or molecule but in terms of the actual clinical syndrome. 

This perspective offers several potential advantages in linking transdiagnostic clinical 

variability to common and diverse neurocognitive, brain, molecular and pathological axes of 

changes, all within one unified framework. Accordingly, these approaches are increasingly 

popular within psychiatry,25 neurodevelopment,26,27 post-stroke aphasia28,29 and recently 

adopted in neurodegeneration research.10,16,30-32 When applied to AD/FTLD, we can better (i) 

understand key latent mechanistic drivers of structured phenotypic heterogeneity; (ii) co-

locate and inter-relate typical, intermediate and atypical clinical presentations; and (iii) 

visualise individual disease trajectories, revealing longitudinal phenotypic convergence or 

divergence of syndromes. Furthermore, these phenotype geometries readily relate to 

everyday clinic observations to explain variation across canonical presentations and clinical 

“chameleons”33 such as bvFTD with AD-like severe amnesia34,35 or FTLD-motor syndromes 

with aphasia,36 accommodate locations of broad categorical descriptors such as “mixed 

aphasia” or “atypical dementia”, and relate them to different neural-pathological 

mechanisms.31,32,37,38 In short, leveraging phenotypic heterogeneity to clinical advantage 

remedies limitations of categorical-only descriptive approaches, models fluid intersections 

and dynamic trajectories of syndromes, and reveals the large landscape of nuanced inter-

individual clinical variations in AD/FTLD. In turn, this approach may further help: to yield 

reliable markers identifying particular disease processes amid the wider phenotypic spectrum; 

to specify certain features (e.g., behavioural change) that are understated/emerge with time 

that may be otherwise overlooked; to aid prognosis of individual cases; and ultimately to 

guide the treatment of patients. 

In this work, we apply such a data-driven approach to large-scale longitudinal 

AD/FTLD clinical and cognitive-behavioural data to unveil a multidimensional geometry of 

phenotypic variation. We constructed these geometries in a group of sporadic AD and FTLD 

typical, atypical and intermediate clinical variants (N=390) from the large National 

Alzheimer’s Coordinating Center (NACC) database. All patients were assessed at three 

consecutive time points on 39 clinical measures spanning behaviour, cognition, motor ability, 

personality, mood, and psychiatric changes. Given the range of measures and broad sampling 

of the AD-FTLD syndromes, the resultant space maps the large landscape of early-to-

moderate clinical symptoms, their varying severity, and transdiagnostic frequency. On these 

data, we applied new analytic approaches adopted from data-science, machine learning, 

contemporary applied mathematics, chemometrics, and geostatistics. Specifically, we first 
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used varimax-rotated principal component analysis (PCA), a long-established method to 

derive multiple intuitive orthogonal phenotypic axes linked to recognisable clinical 

variations, thereby capturing patient-specific movement along and across these dimensions. 

Then, we adopted more recent non-linear neighbour embedding methods (Uniform Manifold 

Approximation and Projection; UMAP) to distil the PCA axes and patient locations into a 

visualisable 2D manifold of longitudinal phenotypic variation. This step helped to map and 

visualise parallel and non-linear patterns of progression simultaneously along the multiple 

PCA dimensions, at the level of the individual and group. By projecting individual points into 

this geometry, we derived key insights such as homophily/heterophily with disease 

progression (i.e., within-group similarity/differentiation), convergence of syndromes into a 

“de-differentiated pooled phenotype”, clinical variations in those with unstable diagnoses, 

and associations with clinico-pathological endpoints such as survival and pathological status. 

This final step revealed phenotypic predictors of tissue pathology, with potential to inform 

treatment decision-making for patients based on clinical presentation. This unified 

visualisable framework of graded syndromic/symptomatic variations offers an unprecedented 

view into the dynamics of cognitive-behavioural evolution in AD/FTLD, concurrently at 

individual- and group-levels. 

 

Methods 

Participants 

We derived the sample from the December 2021 data freeze of the Uniform Data Set 

(UDS; for visits conducted between June 2005-November 2021) of the NACC dataset 

(https://naccdata.org/).39 Our analyses used data from 17 Alzheimer’s Disease Research 

Centers (ADRCs). We retained patients with either typical, intermediate, or atypical clinical 

diagnoses of AD or FTLD (all sporadic cases) whose clinical diagnosis was rated as the 

primary cause of their cognitive impairment (i.e., dementia). Participants were excluded if 

they had a clinical diagnosis of Dementia with Lewy Bodies, Motor Neurone Disease, Mild 

Cognitive Impairment or subjective cognitive complaints/worried well, any other primary or 

secondary neurological disorder contributing to their cognitive status, Down’s syndrome, 

substance abuse, primary psychiatric illnesses (e.g., depression, schizophrenia, bipolar 

disorder), delirium, traumatic brain injury, normal pressure hydrocephalus, vascular brain 

impairment, and/or multiple sclerosis. 
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 The final sample included 390 patients, all diagnosed as per current clinical diagnostic 

criteria: 114 AD,2 107 bvFTD,8 8 PSP5 and 34 CBS4 (grouped together and referred to as 

FTLD-motor), 24 FTLD not otherwise specified (NOS, comprising mixed clinical 

presentations of FTLD syndromes), and 103 PPA3 (7 semantic variant PPA, 18 logopenic 

variant PPA, 13 nonfluent variant PPA, 9 PPA-NOS and 57 “PPA”, with the latter two 

comprising mixed clinical presentations of PPA). For PPA, specifically, we note that the 

disproportionately greater number of mixed cases without subtype designation, as compared 

to canonical variants, is a characteristic of the database also reported by others40 (see 

Supplementary Methods, Supplementary Tables 1-3 and Supplementary Figure 1 for a 

breakdown of the PPA group by recruitment site, year of entry into the data cut, and, for the 

mixed PPA patients, their corresponding diagnostic label per the older criteria from 

Mesulam41). All clinical diagnostic labels were already provided for each patient in the 

NACC database. Following the first visit, 88 patients (2 AD, 38 bvFTD, 13 FTLD-motor, 2 

FTLD-NOS, and 33 PPA) had their initial clinical diagnosis changed over one of the two 

consecutive assessments (Supplementary Figure 2), shifting between diagnostic categories 

(e.g., bvFTD to FTLD-motor) or receiving a more specific diagnosis within a category (e.g., 

“PPA” to semantic variant PPA). These individuals were deliberately included in the full 

sample to model evolution between fuzzy syndrome boundaries. All selected patients had 

three consecutive time-point data (total data points = 1,170) including their first reported 

NACC entry (baseline/Visit 1) and two consecutive follow-ups (Visits 2 and 3) assessed 

every 1.2 years on average.   

 

Behavioural and cognitive measures 

We chose 39 performance and rating measures spanning a range of clinical, cognitive, 

behaviour and mood metrics, carefully selected to represent a broad range of measured 

functions and following checks for minimal missing data, distribution patterns and 

floor/ceiling effects. Final behavioural measures of interest that were entered into the main 

analyses included (i) select subdomains of the Neuropsychiatric Inventory42 (Motor, 

Irritability, Hallucinations, Elation, Disinhibition, Depression, Appetite, Apathy, Anxiety, 

and Agitation); (ii) select subscores of the Geriatric Depression Scale43 (Worthlessness, 

Hopelessness, Helplessness, and Emptiness in life); (iii) clinician rated scores on changes in 

motor function (tremors, slowing, gait, falls), behaviour (visual and auditory hallucinations, 

delusions, depression, disinhibition, irritability, personality changes) and cognitive status 
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(memory, judgment/planning/executive function), (iv) verbal fluency (animals, vegetables); 

and (v) subdomains of the Functional Activities Questionnaire44 (changes in capacity to 

travel, pay taxes, operate the stove, shop, remember dates, pay attention, prepare meals, play 

games, attend events, and pay bills). To validate the statistical structure of our UMAP 

analyses and relate it to clinical observations, we further selected three independent variables 

that were not used in any part of our the main analytic pipeline - clinician rated disease 

severity (Clinical Dementia Rating Plus NACC FTLD-Sum of Boxes, CDR-FTLD-SoB)45,46 

and measures of predominant changes in cognition (NACCOGF) and behaviour 

(NACCBEHF) at each visit. 

 

Pathology classification 

From the full patient group (N=390), N=209 (~53%) had reported deceased status. Of this 

sample, N=100 patients (47%) died within 3 years of their first recorded NACC visit 

(Supplementary Figure 3). Of the total sample with reported deceased status, N=139 (~66%; 

24 AD, 49 bvFTD, 26 FTLD-motor, 3 FTLD-NOS, 37 PPA) patients had available 

pathological information. For these individuals, we extracted their pathological information 

from the NACC Neuropathology Data Set and respective details from the Neuropathology 

Data Dictionary. It should be noted that, for many individuals, pathological information was 

coded and scored differently in previous versions of the NACC Neuropathology Data Set;47 

for these cases, primary pathological diagnosis is indicated with variables with the prefix NP 

and this information was used as the primary pathological diagnosis. For others, through 

discussions with an expert neuropathologist (K.A.) and neurologist (J.B.R.), we computed 

their primary pathological diagnosis using other relevant columns, described below. 

• Primary Alzheimer’s disease pathology was coded using the NPPAD variable and/or 

the NIA-AA Alzheimer’s disease neuropathologic change score (NPADNC variable) 

to categorise low, intermediate and high Alzheimer’s disease neuropathologic 

change.48 

• Primary cerebrovascular disease (primary vascular pathology) was coded using the 

NPPVASC variable. With inputs from an expert neuropathologist (K.A.) and 

neurologist (J.B.R.), we stratified co-occurring vascular changes into 4 categories 

(NACC codes for each of these variables are detailed in Supplementary Table 4): 

o amyloid angiopathy (cerebral amyloid angiopathy) 

o non-amyloid angiopathy 
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o vascular changes (large arterial infarcts, one/more lacunes, microinfarcts, 

arteriosclerosis, subcortical arteriosclerotic leukoencephalopathy, white matter 

rarefaction, other pathological changes related to ischemic or vascular disease 

not previously specified, laminar necrosis, mineralization of blood vessels, 

and/or other ischemic/vascular pathology) 

o acute injury (single/multiple haemorrhages, cerebral microbleeds, acute 

neuronal necrosis, and all acute/subacute gross infarcts, microinfarcts, gross 

haemorrhages and/or microhaemorrhages). 

o We excluded information on any type of aneurysm, vasculitis, vascular 

malformations, and cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy (CADASIL). 

• Lewy Body Disease pathology was coded using the NACCLEWY and NPLBOD 

variables. 

• Progressive Supranuclear Palsy pathology was coded using the NACCPROG variable. 

• Corticobasal Degeneration pathology was coded using the NACCCBD variable. 

• FTLD-Pick pathology was coded using the NACCPICK variable. 

• FTLD-Ubiquitin pathology was coded using the NPFTD variable. 

• FTLD-Tau pathology was assigned based on “present” value for FTLD with tau 

pathology or other tauopathy (NPFTDTAU) or FTLD-tau subtypes including other 

3R/4R and 3R+4R tauopathies (NPFTDT2, NPFTDT6, NPFTDT10), argyrophilic 

grains (NPFTDT5), tangle dominant disease (NPFTDT9), frontotemporal dementia 

and parkinsonism with tau-positive or argyrophilic inclusions (NPFRONT), and other 

tauopathy (NPTAU). We excluded FTLD-tau subtype chronic traumatic 

encephalopathy and amyotrophic lateral sclerosis/parkinsonism-dementia pathologies. 

• FTLD-TDP-43 pathology was assigned based on “present” value for FTLD with 

TDP-43 pathology (NPFTDTDP) including TDP type A/B/C/D/E 

(NPTDPA/B/C/D/E). 

• FTLD-Other pathology was coded using the NPOFTD variable (other FTLD) and/or 

the NPOFTD5 (FTLD-NOS includes dementia lacking distinctive histology and 

FTLD with no inclusions detected by tau, TDP-43, or ubiquitin/ph62 

immunohistochemistry). We excluded atypical FTLD-U, neuronal intermediate 

filament inclusions disease, basophilic inclusion body disease, and FTLD-ubiquitin-

proteasome system pathologies. 
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• Other pathology was coded based on “present” value for pigment-spheroid 

degeneration/NBIA (NPPDXA), white matter disease – leukodystrophy (NPPDXG), 

and metastatic neoplasm (NPPDXL) and other pathologic diagnosis (NACCOTHP). 

 

We excluded primary pathologic labels of amyotrophic lateral sclerosis/motor neurone 

disease, prion disease, multiple system atrophy, cortical development malformation, 

metabolic/storage disorders, demyelinating white matter diseases (multiple sclerosis), 

traumatic brain injury/contusion, and infectious diseases. 

We also note that a significant percentage of individuals with available pathological data 

had co-occurring vascular changes. In two cases, there was clear indication of primary 

cerebrovascular pathology whereas for the others, information on the primacy of vascular 

contribution was unavailable. For brevity, we therefore (i) report the frequency and co-

occurrence of these vascular changes but do not focus on their magnitude or contributions, 

and (ii) do not focus on the frequency and contributions of other co-pathologies as it is 

beyond the scope and interest of this study. 

 

Statistical analyses 

Statistical analyses were conducted in RStudio v.4.2.049 and MATLAB.50 A full list 

of R packages, their primary uses, and associated references are listed in Supplementary 

Methods. 

 

Group differences on clinical and demographic performance 

For binomially-distributed variables (sex), chi-squared tests were used. For 

continuous variables (age, education, disease severity, duration between follow-ups), we 

conducted analyses of variance (ANOVA) with post-hoc Tukey’s Honest Significant 

Differences corrections for multiple comparisons, accompanied by effect sizes (eta-squared, 

η
2) and 95% confidence intervals. 

 

Principal component analysis 

Behavioural and cognitive measures were ordered in the same direction, scaled to 

percentages, and missing data (5.9% overall) were imputed using mice regression models 

with age, education, sex, diagnosis, visit number and disease severity (CDR-FTLD-SoB) as 

predictors, per previous protocols.51 A key interest of this study was to map covariance 
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structures over time; therefore, we determined the number of PCs underlying this dataset, 

both irrespective of and accounting for visit number. Scree plots, parallel analysis and 4-fold 

cross-validated PCA component selection (an approach used in chemometrics)52 were used to 

estimate the number of PCs underlying the dataset. It is noteworthy that all methods 

converged to suggest six PCs irrespective of time (Supplementary Figure 4), with the same 

factor structure emerging irrespective of/even when data were stratified by time.  

The full dataset (N=1,170) was entered into an orthogonally-rotated (varimax) PCA, 

which extracted six components, each representing a separate source of variation underlying 

the data. Orthogonal rotations allow for minimal inter-component shared variance by 

maximising loading dispersion, therefore promoting clear behavioural interpretability. 

Measures loading >|.5| were treated as important contributors and components were labelled 

for ease of reference; however, we note labels function as short-hands and may not fully 

capture all measures loading on a given component. PC scores across all six PCs were 

considered together to represent a “multidimensional PC space” where each patient’s location 

is a proxy for their overall cognitive-behavioural profile at that time point. 

 

Distance-based analysis within multidimensional PCA space 

The multidimensional PC space afforded the unique capacity to probe the direction, 

magnitude, and nature of symptom changes. These analyses were conducted in three steps. 

First, we probed the direction of movement to ask “how phenotypically similar do 

neurodegenerative disorders become over time?” We calculated a global dispersion index to 

quantify how much a person looks like/unlike other neurodegenerative dementia syndromes 

over time. Using this metric, we specifically tested if patients (i) irrespective of diagnosis, 

became increasingly similar to each other over time to converge globally ("de-differentiation" 

from pooled phenotype hypothesis), (ii) became more similar within-group but dissimilar 

between-groups ("differentiation" from pooled phenotype hypothesis); and/or (iii) 

displayed negligible changes between each other from baseline ("stable from baseline" 

hypothesis). For each data point, we calculated its distance from the centroid of the 

multidimensional PC space to form a global dispersion index. Over time, movement towards 

the centroid supports the “de-differentiation hypothesis” where syndromes converge towards 

a global amalgamate and eventual clustering of individuals around a de-differentiated 

pooled/generic dementia phenotype, whereas divergence from the centroid indicates 

differentiation from the group aggregate and syndromes remaining true-to-type with disease 
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progression. Changes on the global dispersion index were assessed using linear mixed-effect 

models with a fixed effect for group and follow-up time, a random effect for follow-up time, 

a random intercept for individual performance, and a random slope for follow-up time 

(hereon, referred to as the standard linear mixed-effect model pipeline for brevity). We 

repeated the global dispersion index analyses in individuals with stable vs. changing 

diagnostic labels with the same pipeline. For the analysis in those with changing diagnostic 

labels, we added an additional random effect of group. Finally, two-tailed Pearson’s 

correlations were used to examine strength of associations between global dispersion index 

and disease severity (CDR-FTLD-SoB). 

To quantify the magnitude of phenotypic change in each patient group, we asked 

“which groups show the greatest cognitive-behavioural changes over time?” To do so, we 

calculated the Euclidean distances between each individual’s baseline and follow-up data 

points and examined within-group differences using ANOVAs with planned Tukey’s 

comparisons. 

To explore the nature of phenotypic change in each patient group, we repeated the 

dispersion index calculation within each individual PC to derive a PC-specific dispersion 

index (i.e., distance from each PC’s centroid). On this value, we refitted our standard linear 

mixed-effect model pipeline. These PC-specific dispersion were used again in analyses of 

associations with survival patterns. 

 

Manifold learning with UMAP 

The multidimensional PC space had six independent linear phenotypic axes 

underpinning the cognitive-behavioural heterogeneity and longitudinal progression of 

AD/FTLD. However, this 6D space is challenging to visualise and to infer parallel and non-

linear progression patterns simultaneously across multiple dimensions. To address this, we 

used manifold machine-learning, specifically UMAP,53 to visualise and map longitudinal 

interdigitation and diversification of AD/FTLD. UMAP learnt the manifold structure of the 

6D PC space, reconstructed a high-fidelity 2D embedding,54 preserving the topological 

structure of the original high-dimensional space (through non-linear dimension reduction on a 

Riemannian manifold)55 whilst clustering or dispersing data points based on their similarities 

(irrespective of time).56,57 In learning the topographic structure of the data, UMAP can drive 

groups and individuals apart if they are fundamentally dissimilar, proving a way to map 

phenotypic similarity concurrently at the level of the individual and group (within a “UMAP 
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space”). The resultant curved manifold can be projected onto a flat plane, much like mapping 

a globe onto a flat map. Like geographical maps, this means that in central parts of the 2D 

plot, points which are closer to each other tend to be more similar (e.g., Portugal is closer to 

Spain than Greece). However, outer parts of the projection may appear far away from each 

other, but in fact may be actually closer (e.g., Canada and Russia). Together, in the “UMAP 

space”, inter-relation of distances and positions of data points provide a low-dimensional 

interpretable structure to longitudinal movement of patients.57-60 

Per standard recommendations, we initialised the UMAP using the PCA data.61,62 We 

tuned two key hyperparameters regulating the distance between points, position of points, 

and clusters in the data: number of neighbours (here, the default 15), and minimum distance 

(here, the default 0.1). Briefly, the ‘number of neighbours’ hyperparameter constrains the 

number of neighbouring points considered when analysing the data in low-dimensional 

space. Lower ‘number of neighbours’ values force the UMAP to concentrate on a highly 

local structure while larger values push points away from each other to focus on a global 

neighbourhood at the cost of giving up finer details, analogous to the community structure of 

a village street vs. a large residential community. The minimum distance parameter controls 

the minimum distance between the points in the low-dimensional space. Smaller values result 

in clumpier embeddings of smaller connected components, whereas larger values give an 

overarching view of the data at the cost of detailed topological structure.53 Both parameters 

together give a balanced view of global vs. local structure of the data. Returning to our colour 

analogy, larger ‘number of neighbours’ and ‘minimum distance’ values would capture the 

overall structure of colours (i.e., blues, greens, yellows, high vs. low luminance) but at the 

cost of finer local structure where individual colours may not be necessarily close to their 

nearest colour match. The hyperparameter values chosen in the current study provide a good 

balance of local and global structure relevant to the dataset and have been previously used in 

data of similar structure.58,63 Within the UMAP space, we mapped spatial locations and 

density of each group using 2D kernel density estimation (KDE) plots. We tested statistical 

differences between densities stratified by time and group using spatiotemporal 2D KDE 

statistics. 

 Finally, we visualised animated movements of each individual point within the 

UMAP space (see 

https://github.com/siddharthramanan/NACC_UMAP/tree/main/UMAP_animate). 
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Testing the statistical structure of data distribution within the UMAP space 

It is important to understand whether the UMAP was able to understand the spread of 

data and pick out overlaps and differences. We tested the structure of the distribution to 

uncover whether the UMAP embedding was completely random or reflected meaningful 

graded co-location of individual data points and patient groups. We borrowed methods from 

geospatial statistics, namely spatial point pattern analysis, average nearest neighbours (ANN, 

computed in Euclidean distances) and Monte Carlo simulations. We then created a “null 

model” of 1,170 randomly distributed points (equivalent to the number of data points 

embedded within our UMAP space) embedded within the convex hull of our UMAP 

distribution. We then ran 1,000 simulations to extract mean ANN differences between null 

and observed data, computed p-values, and plotted distribution histograms. 

Respecting the location of individual data points and patterning within the UMAP 

space, we tested whether patient movements within this space was indicative of phenotypic 

convergence or dispersion to de-differentiate. Within groups, we stratified the data by time, 

and repeated our previous ANN pipeline with one critical difference in null model creation. 

Instead of simulating a truly random distribution as the null model, we created null models by 

randomly shuffling group labels within each time-stratified dataset (creating a null model 

equivalent to the N of each stratum). Such a null model respected patterning within the 

UMAP space (as tested in the aforementioned analyses) but simulated a null distribution 

where patient groups may locate at different points within the UMAP that are currently 

occupied by a member of a different clinical group. All null models were sampled equal to 

the observed distribution. We then repeated the ANN analyses (1,000 simulations), compared 

the ANN values from null and observed data, and plotted these histograms. 

 

Relating manifold spaces to clinical profiles 

The under-the-hood transformations of UMAP can create a ‘black box’ situation, 

where there is limited direct correspondence between each individual’s raw data and its 

expression as a coordinate in the UMAP space.56 To facilitate this interpretability, we derived 

clinically-meaningful information from the UMAP space by linking it back to our 

multidimensional PC space and other clinical data. We rank ordered each PC score from 

highest (best performance) to lowest (worst performance), divided these into tertiles, and 

projected both ranks (as size-varying dots with larger points=lower rank/worse performance) 

and tertiles (as 2D KDE contours) into the UMAP space. We also projected NACCCOGF and 
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NACCBEHF variables as dot plots into the UMAP space to understand the location of 

patients reporting specific cognitive and behavioural complaints, respectively. As these 

variables were not included in the computation of the PCA/UMAP, they also serve as 

independent validators of symptom-syndrome-location mapping within the embedding. We 

further created an interactive plot of key demographic and disease-related values for each 

individual at their given UMAP location over time (see attached Supplementary HTML 

UMAP Plotly file). 

 

Predicting survival status from location and movement in 

multidimensional phenotypic spaces 

Whether transdiagnostic or variant-specific features powerfully predict pathological 

status and key clinical endpoints such as survival remains less well understood. As ~53% 

(N=209) of the sample had reported deceased status, this study was uniquely placed to 

explore the relationships between clinical heterogeneity, survival and pathological status in 

AD/FTLD. 

First, we sought to understand whether the multidimensional PC and UMAP spaces 

could inform of key clinical end-points, namely survival at 36 months. In 209 patients who 

had reported deceased status, we classified these individuals as “deceased” if they had 

reported deceased status within the 36 months of their first recorded NACC visit (N=100), 

else “not deceased”. We then examined the associations with symptom severity between 

individuals who were deceased within 36 months, deceased after 36 months, and those who 

were not deceased. Next, focusing on global metrics (global dispersion index in the 

multidimensional PC space) and local metrics (PC-specific dispersion indices), we revisited 

our global and PC-specific dispersion indices and, for each metric, used the baseline values 

as “starting points” (indicating how impaired someone is to start with) and average dispersion 

values over all time points as “travelled distance” (indicating how much this impairment 

evolves with time). Distinguishing starting points and travelled distance respectively models 

effects of having a head-start in global cognitive-behavioural performance and subsequently 

variable patterns of decline, independent of baseline performance. 

For the multidimensional PC space, we used starting points and travelled distances 

from the global dispersion index and entered these into multivariate stepwise logistic 

regressions, with models with best fit evaluated using the Akaike Information Criterion (AIC) 

parameter. 
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For the UMAP space, we restricted the model to baseline data, treated each person’s 

UMAP location as a spatial coordinate, and used generalised linear models, and non-linear 

spatial regression models from geostatistics to predict survival at 36 months. For the linear 

model, we modelled the scaled interaction of x and y UMAP coordinates on survival at 36 

months. For the non-linear model, we used generalised additive models with a smoothed 

interaction of x and y UMAP coordinates predicting survival at 36 months. The generalised 

additive model included a thin plate spline, with smoothing done through Gaussian process 

model optimisation, and Restricted Maximum Likelihood parameters.  

For PC-specific dispersion indices, we built group-wise multivariate stepwise logistic 

regression models entering starting points and travelling distance values for all PCs as 

predictors of survival status at 36 months.  

Models with best fit were evaluated based on the AIC parameter, which inherently 

adds a penalty term for the complexity of the model. 

 

Associations between low dimensional spaces and pathological grouping 

Turning to pathology data, 139/209 (~66%) reported deceased patients had 

histopathological data that we grouped under 11 broad pathological brackets: primary AD 

pathology, seven different FTLD pathologies, cerebrovascular disease (CVD), Lewy Body 

Disease (LBD), and Other pathologies. Most patients with clinical AD, bvFTD, FTLD-motor 

and PPA diagnoses had co-occurring vascular changes (Supplementary Figures 5-6). For 

brevity and simplified interpretation, we focus on the 11 major pathological groupings and do 

not consider co-occurring vascular changes in the following analyses (except for 1 bvFTD 

and 1 PPA where CVD was the primary pathological diagnosis). 

We then projected primary pathology data into the UMAP space and tested whether, 

irrespective of time, pathological groups are situated in clusters or spread randomly. To test 

whether spatial embedding of pathological groups was random or patterned, we repeated the 

aforementioned spatial point pattern and ANN analysis by creating null models sampled 

equivalent to the N of each pathological group embedded within the convex hull of the 

UMAP space, running 1,000 simulations to quantify differences between null and observed 

data for each pathological group, computing p-values, and plotting distribution histograms. 

To examine longitudinal changes in PC scores between the 11 pathological grouping 

labels, we conducted simple linear regressions modelling the interaction of group and time on 

each PC score. We did not employ linear mixed-effect models as, for the standard linear 
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mixed-effect model pipeline, the number of observations was significantly lesser than the 

number of random effects making the random-effects parameters and the residual variance 

(or scale parameter) unidentifiable. 

 

Data and code availability 

The National Alzheimer’s Coordinating Center dataset are freely available through request on 

their official website (https://naccdata.org/). Code for all analyses from this study have been 

made available at: https://github.com/siddharthramanan/NACC_UMAP. 

 

Results 

Sample characteristics 

Baseline demographic and clinical variables information are displayed in Table 1. At 

baseline, group comparisons on demographic variables revealed a significant effect of sex 

(χ2=23.5; p<.001) with more females in AD group, and more males in the bvFTD and FTLD-

NOS groups (all p<.001). AD patients were significantly older and had fewer years of 

education compared to other groups (all p<.02). AD and bvFTD had significantly greater 

clinician-indexed disease severity (CDR-FTLD-SoB) compared to PPA (both p<.01). 

Additionally, the bvFTD group had significantly greater disease severity compared to FTLD-

motor patients (p<.01). These patterns mirror previously reported population statistics.64,65 

No significant group differences were noted for symptom duration (p>.1). Annual follow-ups 

occurred approximately every 1.2-1.4 years, with no statistical differences between groups on 

inter-assessment interval (all p>.08). 

 

AD and FTLD clinical heterogeneity vary along six principal axes 

In the full dataset (N=1,170), we first explored the landscape of longitudinal phenotypic 

heterogeneity by constructing a multidimensional geometry of transdiagnostic performance 

changes on test measures using varimax-rotated PCA. The feature:sample ratio was adequate 

(Kaiser-Meyer-Olkin statistic=.88; Supplementary Figure 7). Our component selection 

methods converged on a 6 PC solution (explaining 51% of overall variance; Supplementary 

Figures 4 and 8) with the same factor structure, irrespective of lumping or stratifying the 

dataset by time. PCA solutions and explained variance are direct reflections of the 

homogeneity of the sample and input variables. It is encouraging, therefore, that the PCA 
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resulted in six clinically-intuitive principal components and this solution explained over half 

of the overall variance, especially considering that the input features comprised 

heterogeneous assessments and a highly mixed sample of canonical and atypical variants 

evolving across three distinct time points with considerable individual differentiation. 

 PC1 (labelled “Functional status”) explained 19% of this variance, loading positively 

on measures of functional activities, clinician-indexed memory and executive performance, 

and verbal fluency (Figure 1A). PC2 (“Apathy/impulsivity”) explained 9% of overall 

variance and loaded positively on Elation, Apathy, Disinhibition, Motor, Appetite 

subdomains of the Neuropsychiatric Inventory (NPI), and clinician-indexed disinhibition and 

personality change scores. PC3 (“Motor function”) explained 7% of overall variance and 

loaded positively on clinician-indexed changes in gait, falls, tremors and slowing of 

movement. PC4 (“Psychosis”) explained 6% variance and loaded positively on NPI 

Hallucinations subdomain and clinician-rated scores on auditory/visual hallucinations and 

delusions. PC5 (“Affective changes”) explained 5% of variance and loaded positively on NPI 

Agitation, Depression, Anxiety and Irritability subdomains, and clinician-scored Depression 

and Irritability. PC6 (“Depression”) loaded on Geriatric Depression Scale and explained 5% 

of overall variance (Figure 1A). 

 

[INSERT FIGURE 1 HERE] 
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Figure 1. Axes, direction, nature, and magnitude of longitudinal phenotypic variation in 

patient groups within the multidimensional PC space. Panel A) Component loadings for 

clinical, cognitive and behavioural measures in the combined patient group (N=1,170, all 

time points included) on a varimax-rotated 6 component PCA solution. Panels indicate 

emerging components in the order of amount of overall variance explained. Red dotted lines 

represent component loading cut-offs (>|.5|). The 6 component solution explained 51% of the 

overall variance (PC1=19%, PC2=9%, PC3=7%, PC4=6%, PC5=5%, PC6=5%). Panel B) 

Global dispersion index where gold lines indicate the centroid of the multidimensional PC 

space. Convergence towards the centroid indicates progression of syndromes towards a de-

differentiated pooled phenotype, whereas divergence from the centroid suggests that the 

syndrome differentiates from the others. Negative and positive values indicate direction of 

movement in the multidimensional PC space, relative to the centroid. For box-and-whisker 

plots, upper and lower bound of box correspond to upper and lower quartiles, black central 

line corresponds to median, and upper and lower end of whiskers correspond to maximum 

and minimum values, with data outside of whiskers indicating outliers. Panel C) Magnitude 

of phenotypic change for each individual in the multidimensional PC space calculated as the 

average Euclidean distance between their baseline and follow-up scores. Box-and-whisker 

characteristics same as aforementioned description. Panel D) Nature of PC-specific change in 
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each group, with gold lines indicating the centroid of each PC. Error bars indicate standard 

error of the mean. PC=principal component; NPI=Neuropsychiatric Inventory; 

GDS=Geriatric Depression Scale; FAQ=Functional Activities Questionnaire; Clin=Clinical; 

Beh=Behavioural; Cog=Cognitive; Flu=Fluency; Func. Stat.=Functional Status; 

Apat./impuls.=Apathy/Impulsivity; AD=Alzheimer’s disease; bvFTD=behavioural variant 

frontotemporal dementia; FTLD=frontotemporal lobar degeneration; NOS=not otherwise 

specified; PPA=primary progressive aphasia. 

 

 

Some syndromes de-differentiate towards a pooled phenotype 

over time 

Next, all PCs were considered together within a 6D “multidimensional PC space”, where 

each patient’s location is a proxy for their overall cognitive-behavioural profile at that given 

time point.  

Using the global dispersion index, we first probed the direction of movement to ask 

“how phenotypically similar do neurodegenerative disorders become over time?” In all 

patient groups, the global dispersion index was correlated modestly (all r>.-22) to strongly 

(all r<-.58) with an independent disease severity measure (CDR-FTLD-SoB) (all p<.001; 

Supplementary Table 5), meaning that as individuals converged towards this de-differentiated 

average phenotype, their disease severity increased, assuring of its use as a data-driven proxy 

of phenotypic changes over time. Linear mixed-effect models fitted on the global dispersion 

index revealed all groups to change with time (t=-6.1; p<.001) with the largest time*group 

interactions in PPA (t=-2.4; p=.015). This pattern replicated when analyses were run 

including only individuals with stable diagnoses over time (Supplementary Results). On 

boxplots, PPA, as well as AD, gravitated towards the centroid (gold line) progressing towards 

a de-differentiated pooled phenotype, while bvFTD and FTLD-motor groups appeared to 

diverge to look different from this generic phenotype (Figure 1B). 

Next, we asked “which groups show the greatest cognitive-behavioural changes over 

time?” (Figure 1C). Significant main effects for AD [F(2,371)=178.9; p<.001; η2=.49[.43-1]], 

bvFTD [F(2,263)=230; p<.001; η
2=.64[.58-1]], FTLD-motor [F(2,113)=138.4; p<.001; 

η
2=.71[.64-1]], FTLD-NOS [F(2,99)=51.1; p<.001; η

2=.51[.39-1]] and PPA groups 

[F(2,309)=187.2; p<.001; η2=.55[.49-1]] emerged, with largest changes noted between 

baseline (Visit 1) and both follow-ups (all p<.001). Between-group comparisons at each time 
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point revealed significant differences at the first follow-up [F(4,385)=2.9; p=.019; η2=.03[0-

1]] with FTLD-NOS group showing greater changes than PPA (p=.007) and AD (p=.029). 

Third, we investigated the nature of phenotypic change in each group using linear 

mixed-effect models on PC-specific dispersion indices (Figure 1D). On PC1 (Functional 

status), largest changes over time were noted in PPA (t=-3.2; p=.001) and FTLD-motor (t=-

2.2; p=.02) groups. On PC2 (Apathy/impulsivity), marked changes were noted in FTLD 

syndromes, including bvFTD (t=2.5; p=.01), FTLD-motor (t=2; p=.40) and FTLD-NOS 

groups (t=2.3; p=.019). For PC3 (Motor function), only main effects for Visit (t=-4.2; 

p<.001) and FTLD-motor group (t=-8; p<.001) were significant. On PC4 (Psychosis), a main 

effect of time was found (t=-2.5; p=.011) with no significant interactions. Turning to PC5 

(Affective changes), the PPA group demonstrated the largest changes over time (t=-2.5; 

p=.010). Finally, on PC6 (Depression), the largest changes with time were found in the 

bvFTD (t=-3.2; p=.001) and FTLD-motor groups (t=-2.1; p=.031). 

In summary, on inspection of the 6D multidimensional PC space, we found that AD 

and PPA tend to gravitate more towards a de-differentiated pooled phenotype over time. 

Across all syndromes, there are large phenotypic changes that occur from baseline, but the 

specific nature of this change depends on where each patient lies on the underlying 

dimensions present.  

 

Visualising phenotypic interdigitation and diversification in AD 

and FTLD 

Using UMAP, we visualised and map longitudinal phenotypic interdigitation and 

diversification of AD/FTLD. In the “UMAP space”, inter-relation of distances and positions 

of data points provide a low-dimensional interpretable structure to longitudinal movement of 

patients.57-60 UMAP “snap-shots” of phenotypic convergence and divergence at the 

individual- and group-level are shown in Figures 2A-D. Animated plots displaying patient-

specific trajectories of movement within the UMAP space can be viewed via this link: 

https://github.com/siddharthramanan/NACC_UMAP/tree/main/UMAP_animate. 

 

[INSERT FIGURE 2 HERE] 
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Figure 2. Low-dimensional UMAP embedding of patient groups. Panel A) UMAP 

embedding for all time points combined where V1 and V2 are the two UMAP axes. Panels B, 

C, D) UMAP embedding stratified by each visit. Panel E) Spatial kernel density estimation 

plots indicating the “movement” of each patient group within the UMAP space over time. 

Warm colours indicate the greatest density scaled to sample size. UMAP embedding 

initialised using the multidimensional PC space. UMAP=Uniform Manifold Approximation 

and Projection; PC=principal component; AD=Alzheimer’s disease; bvFTD=behavioural 

variant frontotemporal dementia; FTLD=frontotemporal lobar degeneration; NOS=not 

otherwise specified; PPA=primary progressive aphasia. 

 

 

As a first step, we validated the statistical structure of the UMAP space to determine 

whether the embedding patterns were random or non-random (Supplementary Figure 9). The 

observed ANN values were far smaller than expected under the null hypothesis (observed 

ANN=.07 vs. mean null ANN=.125; p<.001), suggesting the UMAP embedding followed a 

non-random spatial distribution carrying information on graded group-level differences. 

Next, we visualised the longitudinal movement patterns of each group in the UMAP 

space to understand dispersion vs. clustering over time (Figure 2E). All groups showed 

significant movement between baseline (Visit 1) and second follow-up (Visit 3) (all z>=1.8; 

all p<=.03; Supplementary Table 6) and this was most marked in the PPA group (baseline vs. 

first follow-up, z=7.2 and p<.001; baseline vs. second follow-up, z=13.3 and p<.001). 

Longitudinally within the PPA taxonomy, visualisations revealed that logopenic PPA patients 

moved into the AD space, semantic PPA moved to become tightly clustered in the bvFTD 

space, nonfluent PPA group either remained in the PPA space or gravitated to the FTLD-

motor space intermingling with the mixed PPA group (patients originally labelled as “PPA”), 

and PPA-NOS gravitated into the FTLD-NOS space (Supplementary Figure 10). Taken 

together, there was striking and eventual visual convergence of many patients into the part of 

the UMAP space perennially occupied by the FTLD-motor group, with AD and PPA 

showing marked spatial diversification to spread across the UMAP space. 

We then tested whether group-wise patterns of movement informed of convergence 

towards a de-differentiated pooled phenotype (de-differentiation hypothesis) or continuing 

differentiation (Supplementary Figure 11 and Supplementary Table 7). In these findings, 

clustering indicates homophily and within-group similarity, while overlap with the null 

suggests a profile de-differentiated from other syndromes (i.e., general phenotypic 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2023.10.11.23296861doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.11.23296861
http://creativecommons.org/licenses/by/4.0/


Ramanan et al. 

 
 

diversification). ANN findings were concordant with its counterpart global dispersion index, 

adding an important layer of spatiotemporal granularity. The AD group spatially clustered at 

baseline (p=.029) but dispersed over time to overlap with the null distribution (both p>.1) 

suggesting phenotypic divergence within a year from first assessment. BvFTD patients 

clustered at baseline and first follow-up (both p<.005) but diverged at second follow-up 

(Visit 3) to overlap with the null distribution (p>.1). In contrast, the FTLD-motor group 

continued to cluster at every time point, significantly different from the null hypothesis (all 

p<.005). The FTLD-NOS group was largely dispersed, although, at the first follow-up (Visit 

2) there was some evidence for clustering compared to the null distribution (p<.005). The 

PPA group was dispersed at all time points, overlapping with the null (all p>.08), indicating 

inherent heterogeneity across assessments. Together, these analyses bring clear evidence for 

some groups (AD, bvFTD) to become less homogeneous with time, others (FTLD-motor) to 

remain homogeneous through longitudinal evaluations, and yet others (PPA, FTLD-NOS) to 

present heterogeneously across assessments. 

 

Linking AD-FTLD syndrome spaces to symptom prevalence and 

severity 

Rank ordered performance for each PC within the UMAP space is displayed in Figure 

3 (corresponding tertiles in Supplementary Figure 12). PC1 (Functional status) ranking 

contoured along the UMAP y-axis with the most impaired individuals in FTLD space. For 

PC2 (Apathy/impulsivity), the lowest ranks were again in the FTLD space, whereas for PC3 

(Motor function), these were concentrated in the FTLD-motor space. Lowest performers on 

PC4 (Psychosis) were spread out and occupied by regions predominated by AD, PPA, and 

FTLD patients. PC5 (Affective changes) scores were lowest in the space occupied by 

individuals with FTLD syndromes. Finally, the lowest scorers on PC6 (Depression) were 

spread across the y-axis of the UMAP. 

 

[INSERT FIGURE 3 HERE] 
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Figure 3. Rank dot plot for all PCs projected into the UMAP space. V1 and V2 are the 

two UMAP axes. Ranks are scaled by size. PC=principal component; UMAP=Uniform 

Manifold Approximation and Projection; Func. Stat.=Functional Status; 

Apat./impuls.=Apathy/Impulsivity. 

 

 

Projecting the predominant symptom first recognised as a decline in a patient’s 

behaviour into the UMAP space, apathy was the most frequent transdiagnostic feature across 

time (Supplementary Figure 13). Disinhibition was most common in bvFTD and FTLD-

motor groups, irritability in AD, and personality changes in bvFTD patients. Turning to 

cognitive changes, executive dysfunction was most common in FTLD syndromes, language 

changes in PPA and FTLD-motor conditions, and memory impairment in AD and bvFTD 

groups (Supplementary Figure 14). 

 

Predicting clinico-pathological endpoints from low-dimensional 

spaces 

Focusing on survival, 100/209 patients (47%) died within 3 years of their first 

recorded NACC visit. Individuals who died within the first 3-years had significantly longer 
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symptom duration (mean (SD): 5.4 (4.6) years) than those who died after the 3-year cutoff 

(mean (SD): 4.6 (2.9) years) and those who were not deceased (mean (SD): 4.2 (2.6) years) 

[F(2,384)=3.9; p=.019; η
2=.02[0-1]]. We then conducted three independent analyses 

exploring associations between survival status and cognitive-behavioural heterogeneity using 

global (UMAP coordinates and global dispersion scores) and local measures (PC-specific 

scores). For global metrics, we found no significant associations between survival at 36 

months and baseline location in the UMAP space with linear models (z=.3, p=.7; main 

effects: all z<.3, p>.1) or non-linear spatial regressions (z=-.6, p>.1). Examining this 

association in the multidimensional PC space, we found no significant statistical associations 

(all z <|.5|, all p>.1), even when models were run within individual patient groups. 

Focusing on local indices, in AD, survival at 36 months was significantly predicted by 

starting level of impairment on PC1 (Functional status; z=-1.9, p=.04) and PC4 (Psychosis; 

z=-2, p=.04) (Supplementary Table 8). In FTLD-motor patients, starting level of impairment 

on PC1 (Functional status; z=-2.3, p=.01), and starting point and travelled distances on PC3 

(Motor function; starting point z=2.5, p=.01; travelled distance z=-2.2, p=.02) significantly 

predicted survival at 36 months. In PPA, the starting level of impairment on PC5 (Affective 

changes; z=2.6, p=.008) and travelled distances on PC1 (Functional status; z=-2.4, p=.01) and 

PC3 (Motor function; z=-2.2, p=.02) significantly predicted survival at 36 months. No 

significant associations emerged in the bvFTD group and model convergence failed in 

FTLD-NOS due to small numbers. These findings suggest baseline levels and accrual of PC-

specific deficits, rather than global cognitive-behavioural performance, differentially predict 

survival in AD, FTLD-motor and PPA syndromes. 

Turning to pathology, we found evidence for spatial clustering of pathological groups 

significantly differently from the null in AD pathology, Corticobasal Degeneration (CBD), 

FTLD-Tau, LBD, PSP pathology (all p<.001), FTLD-Pick (p=.019), FTLD-Tar DNA binding 

protein-43 (TDP-43; p=.002) and Other pathological groups (p=.015) (Figure 4).  

 

[INSERT FIGURE 4 HERE] 
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Figure 4. Average Nearest Neighbours analyses testing the statistical structure of group-

wise embedding in the UMAP space in each pathological group. Histogram of null 

distribution of average nearest neighbours analysis compared to our observed average nearest 

neighbour value from the UMAP embedding (black bar). ANN=average nearest neighbours; 

AD=Alzheimer’s disease; FTLD=frontotemporal lobar degeneration; TDP-43=Tar DNA 

binding protein-43; LBD=Lewy Body Disease; CBD=Corticobasal Degeneration; 

CVD=cardiovascular disease; Ubiq=ubiquitin; PSP=Progressive Supranuclear Palsy; 

UMAP=Uniform Manifold Approximation and Projection. 

 

 

These groups displayed non-random, local spatial clustering patterns (Figure 5A-B); 

however, we found no clear one-to-one mapping between clinical and pathological labels, 

with the exception of pathological PSP label (corresponding largely to FTLD-motor clinical 

label) and FTLD-Pick pathology (corresponding to either bvFTD or PPA clinical groups).  

 

[INSERT FIGURE 5 HERE] 
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Figure 5. Frequency count and UMAP locations for pathological diagnoses. Panel A) 

frequency counts where facets display the five clinical diagnoses considered here with x-axis 

displaying the major pathological diagnoses reported in each clinical group; Panel B) 

clinicopathological mapping of AD and FTLD patients in the UMAP space faceted by 

pathological groups. Facets display 11 primary pathological brackets under which patients 

were classified. AD=Alzheimer’s disease; FTLD=frontotemporal lobar degeneration; TDP-

43=Tar DNA binding protein-43; LBD=Lewy Body Disease; CBD=Corticobasal 

Degeneration; CVD=cerebrovascular disease; Ubiq=ubiquitin; PSP=Progressive 

Supranuclear Palsy; bvFTD=behavioural variant frontotemporal dementia; 

FTLD=frontotemporal lobar degeneration; NOS=not otherwise specified; PPA=primary 

progressive aphasia. 
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All clinical syndromes located across multiple pathologies (Figure 6). No significant 

differences from the null hypothesis were noted for pathological groups of CVD (p=.45), 

FTLD-Other (p=.15), and FTLD-Ubiquitin (p=.2) suggesting random spatial location in the 

UMAP; however, extremely small sample sizes in CVD and FTLD-Other may underpin these 

results. 

[INSERT FIGURE 6 HERE] 

 

 

Figure 6. Clinicopathological mapping of AD and FTLD patients in the UMAP space 

faceted by clinical groups. Each panel represents a clinical group. AD=Alzheimer’s disease; 

FTLD=frontotemporal lobar degeneration; TDP-43=Tar DNA binding protein-43; 

LBD=Lewy Body Disease; CBD=Corticobasal Degeneration; CVD=cardiovascular disease; 

Ubiq=ubiquitin; PSP=Progressive Supranuclear Palsy; bvFTD=behavioural variant 

frontotemporal dementia; FTLD=frontotemporal lobar degeneration; NOS=not otherwise 

specified; PPA=primary progressive aphasia. 
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Finally, we examined whether pathological labels predicted PC-specific decline. For PC1 

(Functional Status), no significant interactions emerged, however, significant main effects of 

time (Visit 2: t=-2.2; p=.025; Visit 3: t=-3.9; p=.001) and group for pathological labels of 

CBD (t=3.2; p=.001), FTLD TDP-43 (t=2.1; p=.03), FTLD-Ubiquitin (t=2.4; p=.01), and 

PSP (t=2.2; p=.023) were noted. For PC2 (Apathy/impulsivity), the FTLD-Other pathology 

group displayed significant performance changes at the third visit (t=2.3; p=.02). For PC3 

(Motor function), a significant main effect for the PSP pathology group was noted (t=-5.9; 

p<.001), however, no interaction terms emerged to be significant. For PC4 (Psychosis), 

largest performance changes over time were noted in LBD pathology patients (Visit 2: t=2.2; 

p=.02; Visit 3: t=3.4; p<.001), and at the final visit for patients with pathological labels of 

FTLD TDP-43 (t=2.8; p=.004) and PSP (t=2.6; p=.008). For PC5 (Affective changes), a 

significant main effect emerged for the FTLD-Ubiquitin pathology group (t=2.2; p=.02). For 

PC6 (Depression), patients with CBD pathology displayed marked performance changes 

between first and second visit (t=-2.2; p=.02).  

Together, the findings show that despite evidence for the de-differentiation 

hypothesis, the extent to which this occurs globally across diagnoses itself does not seem to 

predict mortality at 3 years following baseline. Instead, Functional Status (PC1 score) is a 

significant predictor of survival across most diagnoses, with other PCs holding predictive 

power for survival in a diagnosis-specific manner, such as psychosis in AD, motor function 

in FTLD and affective status in PPA. While pathological groups do cluster within the UMAP 

space, there does not appear to be a clear one-to-one mapping between pathology and 

outcomes, and no strong predictive power of pathological substrates for cognitive-

behavioural devolution, with the exception of associations between apathy/impulsivity (PC2) 

and FTLD-Other pathologies, psychosis (PC4) and LBD, and depression (PC6) and CBD 

pathology. 

 

Discussion 

Untangling the graded, dynamic and longitudinal phenotypic variations in AD/FTLD 

has remained a continuing clinical and analytical challenge, with implications for diagnosis, 

management, and prognostication.66 To address this issue, we combined three scientific 

pillars to revisit longitudinal clinical variations through a new lens: large longitudinal data 

sampling a range of AD/FTLD presentations and symptoms, advanced analytics, and graded 

multidimensional geometries. The structured longitudinal variability in AD/FTLD, as 
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revealed by our PCA, was underpinned by six fundamental dimensions (approximating 

Functional changes, Apathy/impulsivity, Motor function, Psychosis, Affective changes, and 

Depression). Most patients did not demonstrate features along a single axis; rather, clinical 

groups located in graded multidimensionally-defined subregions of the space. Dimensions 

were inherently transdiagnostic in nature. At this stage, a clear advantage of using PCA as an 

analytic step was that dimensions emerged as linear combinations of input variables; 

therefore, they could be readily back-translated to clinical features. Specifically, we could 

locate and inter-relate individuals on each dimension, knowing well what specific measures 

likely predicated this phenotypic variation. Further, by selecting key tests loading heavily on 

particular PCs as assessment proxies for those dimensions, we could understand which key 

measures held potential to be most sensitive to transdiagnostic phenotypic variations in 

neurodegeneration. This understanding could inform future steps such as improving tests for 

neuropsychological assessment and reducing the length of test batteries.67 However, a 

subsequent challenge that emerged was the difficulty associated with interpreting changes 

along all six PCs in parallel. We therefore complemented PCA with strengths of advanced 

neighbour embedding methods, namely UMAP. Through the UMAP space, we reinforced the 

key idea that, with the exception of FTLD-motor syndromes, separate AD/FTLD variants do 

not tightly or consistently cluster over time. They display high within as well as between-

group variance, magnifying with time. Thus, some individuals diversify to resemble different 

clinical groups while others remain true-to-type, irrespective of their original diagnostic label. 

Projecting well-described clinical labels into our multidimensional PCA and UMAP 

spaces and linking to clinico-pathological endpoints added important layers of clinical 

interpretability. For example, AD patients exhibited homophily (i.e., self-similarity) at 

baseline but progressed over time to resemble other neurodegenerative syndromes. 

Longitudinal dispersion of AD cases into specific parts of the UMAP space (which were 

occupied by PPA and FTLD patients) was not predicated by their pathological label; rather, it 

reflected increasing psychosis and functional decline – two variables that further predicted 

their survival status at 3 years. These findings form an important visualisable addition to the 

literature of AD cognitive-behavioural progression dynamics, in line with extant evidence for 

increasing disease severity and accrual of additional cognitive complaints to contribute to 

phenotypic resemblance of AD with other dementia syndromes.68,69 Turning to PPA, these 

patients displayed inherent heterogeneity and phenotypic de-differentiation at every time 

point. The visual movement of well-described PPA nosological entities matched previously 

described patterns,70 where logopenic PPA moved into the AD space, semantic PPA 
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progressed to resemble bvFTD, and nonfluent PPA mirrored FTLD-motor syndromes over 

time. Importantly, the heterogeneity in this group largely arises from a number of 

intermediate patients, who have been poorly described in the literature yet have often formed 

the majority of the PPA group. These individuals progressed over time to straddle the AD 

and FTLD syndrome spaces. PPA patients further went on to accumulate functional and 

affective deficits with time,71 and the accrual of functional and motor impairments predicted 

their survival status at 3 years post-baseline.72 In the context of ongoing debates, the current 

findings concur with a growing literature in PPA supporting the emergence of non-linguistic 

and functional changes which (i) are sometimes notable in early stages of the disease, when 

assessed appropriately;73-75 (ii) are present systematically in most variants, irrespective of the 

type and severity of their language disorder;30,32,76 and (iii) may not directly relate to specific 

pathological substrates.77 As functional decline and motor changes hold prognostic 

importance in predicting mortality in PPA and other neurodegenerative syndromes,78 these 

features must be considered as important targets of symptomatic and underlying disease 

interventions in these syndromes. 

 In contrast to phenotypic de-differentiation in AD and PPA, FTLD syndromes did 

not converge towards a de-differentiated pooled phenotype, instead displayed magnification 

of specific cognitive-behavioural changes.79 For example, apathy/impulsivity emerged as a 

longitudinal transdiagnostic marker of all FTLD syndromes, as has been noted before.80 

Depression was prominent in bvFTD and FTLD-motor groups, and functional changes in 

FTLD-motor patients. FTLD syndromes can be extremely challenging to diagnose, with 

recent recommendations for the principled search and adoption of phenotypic markers, such 

as apathy and socioemotional cognition (closely reflecting specific micro-/macro-level neural 

network alterations) that could help in its accurate diagnosis.81,82 Profound neuropsychiatric 

changes, amidst relatively preserved cognitive performance, can be noted in the earliest 

stages of some FTD syndromes.83 Our magnification results extend this finding to show that 

features such as apathy, depression and functional changes significantly magnify with time in 

FTLD syndromes, suggesting the importance of examining the value of these markers in 

predicting diagnosis at early stages and predicting important clinical end-points such as 

institutionalisation and death. In the UMAP space, the locations of different FTLD variants 

appeared to reflect their relative rates of phenotypic diversification. For example, on the one 

end of the space lay FTLD-motor cases, who displayed homophily, clustered tightly over 

time and largely continued to have motor symptoms. In another part of the space were FTLD-

NOS, longitudinally interdigitating with FTLD, PPA and AD variants. BvFTD were 
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somewhere midway, progressing to show features of other syndromes but only by their third 

annual assessment, suggesting relatively faster phenotypic diversification in this group as 

compared to motor variants of FTLD. More generally, the broader FTLD space was 

uniformly underpinned by marked apathy/impulsivity, disinhibition, executive dysfunction, 

psychosis and affective disturbances, all of which are increasingly suggested to be 

transdiagnostic features closely tied to degeneration of frontal and striatal brain circuitry 

noted across FTLD variants.84,85 Motor dysfunction on the other hand, was largely restricted 

to the quadrant of the UMAP occupied mainly by FTLD-motor patients, indicating the 

segregation of this symptom and its resulting phenotypes from other FTLD variants. 

Furthermore, longitudinal accrual of motor symptoms, along with functional changes, closely 

predicted survival in FTLD-motor patients.78 Apathy/impulsivity, despite its established 

prognostic importance in FTLD,86 did not emerge as a significant predictor of mortality in 

these clinical data, potentially due to floor effects and thus a lack of variance. Turning to 

symptom-syndrome-pathology mapping in FTLD, we found relatively specific links only 

between PSP pathology and a clinical diagnosis of FTLD-motor conditions. Symptoms such 

as apathy in patients with FTLD-Other pathology and psychosis in FTLD-TDP-43 and PSP 

pathological groups magnified three years post-baseline assessment, while depression in 

those with CBD pathologies accentuated within two years post-baseline.84 All other FTLD 

pathologies were found to be present across a range of clinical diagnoses,87 including AD and 

PPA. Overall, the geometries revealed that, despite the presence of different pathologies and 

a complex relationship between symptoms and underlying pathological contributors, many 

FTLD cases became more alike over time.16 An important implication of this finding is the 

need for better trans-syndromic functional markers of molecular pathologies, as instantiated 

at both the macro- and micro-circuit level.85,88 Specifically, it is the conjunction of 

pathological protein changes, neurotransmitter and cell-level aberrations, and intrinsic 

structural/functional network-level breakdowns that, when modelled with a coherent 

framework, could shed light on the specific mechanisms underpinning phenotypic signatures 

of neurodegenerative syndromes. It is, therefore, important for future work to complement 

transdiagnostic phenotypic studies with micro/macro-level circuit modelling, via structural 

and functional neuroimaging tools, to unravel the “molecular nexopathies” that contribute to 

phenotypic diversity.88,89 

This study had a number of limitations that warrant discussion. The power of large 

samples from multi-centre retrospective data is tempered by missing data or missing 

available measures and samples. The historic focus of the NACC database has been the AD 
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pathological continuum. Therefore, issues arise with regards to the presence of sufficient 

non-AD cases and sampling of rare, atypical presentations of AD/FTLD (e.g., dysexecutive 

AD, behavioural variant AD, Posterior Cortical Atrophy, PPA with apraxia of speech). 

Moreover, a significant proportion of our study sample that came to post-mortem had an 

advanced disease duration and may have biased our de-differentiated phenotypic analyses. It 

is, therefore, important for future work to sample individuals at earlier disease stages. Like 

with any large multi-centre consortium dataset, there are also limitations of missing data and 

assessments. The current study aimed to address some of these issues by selecting a sample 

that was representative of the wider AD/FTLD typical, atypical and intermediate phenotypic 

space, yet had minimal missing data (5.9% missing data in the current study). However, in an 

effort to balance missing data across available assessments, a number of measures that are 

important to expand on our understanding of FTLD phenotypic presentations (e.g., detailed 

language, social cognitive, and other multi-domain neuropsychological assessments) were 

either not available/complete or could not be included in the current study. As a result, the 

output of our PCA and UMAP analyses and their capacity for phenotype differentiation are 

limited to the measures included in the current study. Specifically, the inclusion of AD, 

FTLD and PPA groups, assessed over multiple time points, resulted in a preponderance of 

neuropsychiatric and functional assessments, over cognitive and language tests, that were 

common and uniformly available across all individuals. This pattern of data availability has 

implications to future work examining longitudinal phenotyping in AD/FTLD, where (i) the 

use of the NACC dataset in FTD and PPA may be more suitable to examine functional and 

neuropsychiatric markers of disease presentation and evolution, and (ii) certain major 

syndromes of high diagnostic specificity (such as primary progressive apraxia of speech) may 

be represented to a limited extent and/or have limited data in the NACC dataset. Future 

studies sampling a larger symptom/syndrome space with a broader battery of multi-domain 

cognitive-behavioural tests will be important to draw out greater variations across multiple 

neurodegenerative syndromes. While the longitudinal element was a novel analysis in this 

study, the dispersion metrics over three years may not be sensitive to slowly progressive 

conditions such as semantic variant PPA.90 Furthermore, we benefitted from being able to 

link clinical, cognitive and pathological levels of heterogeneity; however, additional data on 

fluid biomarkers, brain changes, and genetic mutations will be the key to understanding other 

disease mechanisms underpinning the emergence of clinical heterogeneity in these 

syndromes. While the current study did benefit from the addition of pathological data, we 

were only able to consider contributions of singular pathologies in explaining phenotypic 
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changes. It is important for future work to account for mixed/concurrent neurodegenerative 

and vascular pathologies, and their relative contributions to clinical presentation, progression 

and end-points such as survival. Extension of our framework to presymptomatic patients and 

Mild Cognitive Impairment, will be pivotal to revealing the emergence and evolution of 

clinical heterogeneity in the pathological ageing spectrum. 

This work has important clinical and research implications, some of which are listed 

here. First, the decision to ‘lump’ or ‘split’ disorders into subtypes may advance disease 

nosology. Yet, without insights into common mechanisms and systematic graded variations 

cutting across disease boundaries, we cannot develop, validate and apply disease-modifying 

treatments benefitting the entire clinical dementia spectrum. Second and relatedly, embracing 

the systematic patient variations within a coherent multidimensional space offers the chance 

to explain why many individual patients do not confirm perfectly to paradigmatic exemplars 

of categorical labels and why these labels change between clinic visits over time. Third, it is 

also important to recognise the dynamic evolution of progressive degenerative conditions, 

and that such dynamism is a major feature of all progressive disorders, not simply unique to 

rare conditions. In turn, the gradual de-differentiation over time is consistent with current 

efforts to capture and diagnose neurodegenerative syndromes at earlier stages, which in turn 

could help with predicting possible trajectories of phenotypic diversification. Fourth, 

understanding this longitudinal dynamism is also important for patients and families. 

Specifically, in the earliest stages of disease or at initial diagnosis, an understanding of this 

phenotypic diversification and longitudinal dynamism could help in explaining what clinical 

features the patients and families may observe as time goes by, and help to leverage the early 

emergence of some features in future prognostic decision making, such as the relationship 

between the emergence of apathy and early death in FTLD syndromes.86 Fifth, by 

constructing multidimensional phenotypic geometries, our approach further elucidates the 

transdiagnostic pathogenesis of cognitive-behavioural heterogeneity to accommodate a range 

of clinical characterisations and permit a granular examination of graded within/between-

group variations.91 This variation, is sometimes treated as ‘noise’ in a diagnostic category, 

thus precluding observation of effects in category-based analyses. However, these variations 

can be systematic and carry important information on individual-level mechanisms of 

phenotypic diversification, over-and-above what is explained by over-general labels such as 

“atypical presentation” or categorical stages of disease progression (e.g., mild vs. severe 

disease). Sixth, embracing the variation in a low-dimensional phenotypic landscape enables 

new approaches to precision medicine and personalised care planning rather than Procrustean 
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management. Accordingly, the key axes of phenotypic variation also offer an opportunity to 

revise and update training material for clinicians outside of neurodegenerative specialist 

centres. Seventh, decoding the structure and dynamics of such variation within a manifold 

potentially supports new descriptive research frameworks of the architecture of phenotypic 

heterogeneity in dementia syndromes,59 in turn, informing design of targeted diagnostic 

markers and symptomatic treatments potentially titrated to reflect inter-individual positioning 

on dimensions, irrespective of clinical category. This holds significant potential to provide 

tailored disease-management information for clinicians, patients, families, and carers. 
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Table 1. Baseline demographic and clinical characteristics of participant groups 

 AD bvFTD FTLD-

motor 

FTLD-

NOS 

PPA Magnitude of 

group effect 

Direction 

of post-hoc 

effect 

N 114 107 42 24 103   

Sex (M:F) 38:76 66:41 18:24 17:7 51:52 χ
2(4)=23.5; 

p<.001 

 

Age (years) 70.6 

(2.2) 

63.4 (9.8) 66.6 (7.5) 63.7 (6.7) 65.3 (8) F(4,388)=15.4; 

p<.001; 

η
2=.14[.08-1] 

bvFTD, 

FTLD-

motor, 

FTLD-

NOS, PPA 

< AD 

Education 

(years) 

11.9 

(2.3) 

15.3 (3.3) 15.5 (3.3) 16.1 (3.2) 15.8 (2.5) F(4,388)=35.9; 

p<.001; 

η
2=.27[.21-1] 

bvFTD, 

FTLD-

motor, 

FTLD-

NOS, PPA 

< AD 

Disease 

severity 

(CDR-FTLD-

SoB) 

6.1 (4) 6.9 (3.7) 4.7 (3.5) 5.5 (3.8) 3.4 (3.5) F(4,388)=12.3; 

p<.001; 

η
2=.11[.06-1] 

PPA, 

FTLD-

motor < 

bvFTD; 

PPA < AD 

Symptom 

duration 

(years) 

4.4 (3.1) 5 (3.4) 5.4 (4.4) 4.5 (4.3) 4.1 (2.5) F(4,382)=1.5; 

p=0.18; 

η
2=.02[0-1] 

- 

Time between 

Visit 1 and 2 

(days) 

448.8 

(201.1) 

468.4 

(305) 

419.3 

(157.8) 

478.4 

(193.9) 

441.6 

(175.9)  

F(4,388)=.5; 

p=.7; η2=0[0-1] 

- 

Time between 

Visit 1 and 3 

(days) 

952.5 

(368.5) 

918.9 

(385.3) 

859.6 

(227.2) 

1035.6 

(458.2) 

874.3 

(290.1) 

F(4,388)=2; 

p=.08; 

η
2=.02[0-1] 
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Note. All clinical labels are baseline diagnosis, as 88 individuals changed their diagnosis at a 

consecutive follow-up. Symptom duration was calculated by subtracting the DECAGE 

variable (corresponding to the NACC question “Based on the clinician’s assessment, at what 

age did the cognitive decline begin?”) from age at initial visit. AD=Alzheimer’s disease; 

bvFTD=behavioural variant frontotemporal dementia; FTLD=frontotemporal lobar 

degeneration; NOS=not otherwise specified; PPA=primary progressive aphasia; CDR-FTLD-

SoB=Clinical Dementia Rating Plus NACC FTLD Sum of Boxes. 
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