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Deep learning model training specifications 

The models explored in the architecture experimentation task included U-Net1 with 

deep supervision (DS)2, Swin UNETR3, and the nnU-Net framework4. U-Net with DS started 

with feature channels at 32, doubling up to a value of 512. Each level combined two 3x3x3 

convolutions, followed by instance normalization5 and Leaky Rectified Linear Unit (Leaky 

ReLU)6 activation with a slope of 0.01. A Stochastic Gradient Descent (SGD) optimizer with 

a learning rate of 3x10-2 and a Nesterov momentum7,8 of 0.99 was used, combined with a 

Dice loss function for training. The learning rate was decayed using a polynomial function 

scheduler. Training lasted 600 epochs with a batch size of 1. The original Swin UNETR 

implementation was configured with a feature size of 24. An AdamW9 optimizer was selected 

with a learning rate of 1x10-4, weight decay of 1x10-5, β1 = 0.9, β2 = 0.999, and ϵ = 1x10−8. 

For the loss function, we used the Dice loss. A cosine annealing learning rate scheduler was 

set. The network was trained for 1000 epochs and a batch size of 1. Finally, the nnU-Net 

framework was trained using the default settings for the 3D full resolution trainer. For both U-

Net with DS and Swin UNETR, a same set of augmentation techniques were selected. To 

replicate the nnU-Net augmentation pipeline, we incorporated random rotation, shear, 

scaling, translation, flipping, elastic deformation, and gamma contrast methods.
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External Validation 

Table S1. External validation datasets acquisition parameters. 

Dataset Scanner Sequence 
TR 

(ms) 
TE1 (ms) 

𝛥TE 

(ms) 

# of 

echoes 
FoV (mm) 

Image matrix 

(voxels) 
Voxel size (mm) 

Acquisition 

time 

TRACK-FA 

McGill 
3T Siemens Prisma GRE 27 3.7 6 4 220 x 220 x 176 208 x 256 x 176 0.86 iso 7' 22" 

Carlo Besta 3T Philips Achieva GRE 40 4.5 5 7 
240 x 180 

140 axial slices  
480 x 480 x 140 0.50 x 0.50 x 1.0 4’ 23” 

 3T Philips Achieva GRE 40 5.4 5.2 7 
224 x 224 

140 axial slices 
224 x 224 x 140 1.0 iso 8’ 12” 

Graz 
3T Siemens 

Magnetom Trio 
GRE 68 4.92 4.92 12 188 x 230 x 128 208 x 256 x 64 0.90 x 0.90 x 2.0 4’ 51” 

GRE: gradient recalled echo; iso: isotropic; TR: repetition time; TE: echo time; TE1: first echo time; FoV: field of view; iso: isotropic. 

 

Table S2. External validation datasets demographics. 

 McGill Carlo Besta Graz 

 Controls FRDA Controls MS 

Subjects 3 1 4 2 

Age 29.8±4.4 41 64.5±10.0 43.5±17.7 

Sex (M/F) 2/1 0/1 1/3 1/1 

FRDA: Friedreich's ataxia; MS: multiple sclerosis. 
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Ethics approval was obtained for the CMRR study: IRB 1210M22281 (University of Minnesota). 

 

Table S3. Acquisition protocols for CMRR dataset. 

Dataset Scanner Sequence TR (ms) TE (ms) 𝛥TE (ms) # of echoes FoV (mm) Image matrix (voxels) Voxel size (mm) 
Acquisition 

time 

CMRR 3T Siemens 

Magnetom 

Prisma Fit 

GRE 86 20.48/30/45 - 3 205 x 186 x 32 232 x 256 x 32 0.80 iso 6' 59" 

65 7.26 (TE1) 5.00 8 205 x 185 x (30-36) 232 x 256 x (30-36) 0.80 iso 4' 40" - 5' 50" 

65 7.26 (TE1) 5.00 8 174 x 192 x 36 174 x 192 x 36 1.0 iso 4' 38" 

54 9.84 (TE1) 9.84 5 230 x 230 x 32 256 x 256 x 32 0.90 iso 4' 34" 

MRI: magnetic resonance imaging; GRE: gradient recalled echo; iso: isotropic; TR: repetition time; TE: echo time; TE1: first echo time; FoV: field of view; iso: isotropic. 

 

Table S4. Subject demographics for CMRR dataset. 

 CMRR 

 Controls FRDA 

Subjects 3 16 

Age 25.0±11.1 23.6±9.0 

Sex (M/F) 2/1 6/10 

FRDA: Friedreich's ataxia.
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Segmentation Model Architectures Comparison 

 

 

Figure S1. Bar plots of trained segmentation models. nnU-Net Dice score is statistically 

significantly higher than U-Net, and no significance was found when compared to Swin 

UNETR. ns: non-significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 
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DN Volume versus Mean Magnetic Susceptibility 

 
Figure S2. Manual segmentation results. Pearson’s correlation coefficients and p-values for 

each group of individuals and DN side. Correlation coefficients with p<0.05 are emphasized 

with a gray background. Children: subjects under 18 years of age. The volume estimations 

were corrected for age and head size (eTIV). FRDA: Friedreich’s ataxia; DN: dentate 

nucleus; LDN: left DN; RDN: right DN; Vol: volume. 

 

 



 

7 
 

References 

1 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. in Medical 
Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th 
International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 
19.  424-432 (Springer). 

2 Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z. & Tu, Z. in Artificial intelligence and 
statistics.  562-570 (Pmlr). 

3 Hatamizadeh, A. et al. in International MICCAI Brainlesion Workshop.  272-284 
(Springer). 

4 Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a 
self-configuring method for deep learning-based biomedical image segmentation. Nat 
Methods 18, 203-211 (2021). https://doi.org/10.1038/s41592-020-01008-z 

5 Ulyanov, D., Vedaldi, A. & Lempitsky, V. Instance normalization: The missing 
ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016).  

6 Maas, A. L., Hannun, A. Y. & Ng, A. Y. in Proc. icml.  3 (Atlanta, GA). 
7 Sutskever, I., Martens, J., Dahl, G. & Hinton, G. in International conference on machine 

learning.  1139-1147 (PMLR). 
8 Nesterov, Y. A method of solving a convex programming problem with convergence 

rate O (1/k** 2). Doklady Akademii Nauk SSSR 269, 543 (1983).  
9 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint 

arXiv:1711.05101 (2017).  
 

https://doi.org/10.1038/s41592-020-01008-z

