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Abstract 38 

 39 

Automating the diagnostic process steps has been of interest for research grounds and to help 40 

manage the healthcare systems. Improved classification accuracies, provided by ever more 41 

sophisticated algorithms, were mirrored by the loss of interpretability on the criteria for 42 

achieving accuracy. In other words, the mechanisms responsible for generating the 43 

distinguishing features are typically not investigated. Furthermore, the vast majority of the 44 

classification studies focus on the classification of one disease as opposed to matched 45 

controls. While this scenario has internal validity, concerning the appropriateness toward 46 

answering scientific questions, it does not have external validity. In other words, differentiating 47 

multiple diseases at once is a classification problem closer to many real-world scenarios. In 48 
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this work, we test the hypothesis that specific data features hold most of the discriminative 49 

power across multiple neurodegenerative diseases. Furthermore, we perform an explorative 50 

analysis to compare metrics based on different assumptions (concerning the underlying 51 

mechanisms).  To test this hypothesis, we leverage a large Magnetoencephalography dataset 52 

(N=109) merging four cohorts, recorded in the same clinical setting, of patients affected by 53 

multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, and mild cognitive 54 

impairment. Our results show that it is possible to reach a balanced accuracy of 67,1% (chance 55 

level = 35%), based on a small set of (non-disease specific) features. We show that edge 56 

metrics (defined as statistical dependencies between pairs of brain signals) perform better 57 

than nodal metrics (considering region while disregarding the interactions. Moreover, phase-58 

based metrics slightly outperform amplitude-based metrics. In conclusion, our work shows that 59 

a small set of phase-based connectivity metrics applied to MEG data successfully 60 

distinguishes across multiple neurological diseases. 61 

 62 

  63 
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Introduction 64 

 65 

In the last twenty-five years, the widespread availability of large-scale brain functional data in 66 

health and disease has brought great hope toward discovering the mechanisms underpinning 67 

brain diseases and the appearance of neurological symptoms. Cognitive functions emerge 68 

from the coordinated interactions among brain regions, manifesting as statistical 69 

dependencies among the corresponding brain signals. The overall statistical dependencies 70 

between all pairs of signals are often referred to as “functional connectivity” (Friston, 1994). 71 

Functional connectivity  (FC) is subject-specific and allows subject identification (Finn & 72 

Rosenberg, 2021), is altered during the execution of tasks (Corsi et al., 2020), in different 73 

environmental conditions (Shine et al., 2016), as well as in neurological diseases (Sorrentino 74 

et al., n.d., 2018, 2019).  The commonest and most straightforward approach to assessing 75 

statistical dependencies has been using descriptive metrics (e.g., Pearson’s correlation). This 76 

approach has no underlying assumptions concerning the mechanism underlying the observed 77 

statistical dependencies. Other techniques take a more mechanisms-driven approach. As an 78 

example, the hypothesis of communication through coherence posits that the occurrence of 79 

communication between regions might occur via more or less synchronization (Fries, 2015). 80 

Then, metrics such as the Phase Locking value (PLV) were developed to quantify 81 

communication via the synchronization between brain signals  (such as 82 

electroencephalography-EEG and magnetoencephalography-MEG) (Bastos & Schoffelen, 83 

2016). These metrics have been classically used to characterize multiple neurodegenerative 84 

diseases (Stam, 2010). More recently, it was shown that large-scale brain activity is far from 85 

stationary, and instead, it is characterized by aperiodic, scale-free bursts of activity (Haldeman 86 

& Beggs, 2005; Shriki et al., 2013; Tagliazucchi et al., 2012). Then, borrowing from statistical 87 

mechanics, the dependencies among brain regions were understood as the presence of scale-88 

free bursts of activities, named “neuronal avalanches”, that describe the presence of aperiodic, 89 

non-linear bursts of activities spreading brain regions. Intriguingly, in several neurological 90 

diseases (such as Parkinson’s disease, Amyotrophic lateral sclerosis, and Mild Cognitive 91 

Impairment), brain dynamics spread differently with respect to healthy controls (Polverino et 92 

al., 2024; Romano et al., 2023; Sorrentino et al., 2019), and, more importantly, changes in the 93 

way aperiodic waves spread proved to be strongly predictive of individual clinical disability 94 

(Polverino et al., 2024; Romano et al., 2023).  95 

Despite extensive efforts, there has been a lack of replicability of the studies, regardless of 96 

the particular technique adopted to estimate functional connectivity (Kelly & Hoptman, 2022). 97 

In other words, the measurements and metrics devised to this day might fail to optimally 98 

capture disease-relevant mechanisms comprehensively. As a consequence, automatic 99 
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classification among multiple neurological diseases cannot be achieved with high accuracy 100 

based on functional data alone.  101 

In this paper, we take a different approach and start from the assumption that the way 102 

pathophysiological processes spread across the brain has some aspects to it that are specific 103 

to a given disease and can be best measured in a set of features that are (spatially) shared 104 

among multiple diseases. As a direct consequence, functional connectivity should show 105 

specific elements that distinguish various diseases. Hence, the first hypothesis of our study is 106 

that it is possible to identify a (small) set of features that can classify multiple neurological 107 

diseases.  108 

To test our hypothesis, we leveraged a vast cohort of source-reconstructed MEG data from 109 

patients affected by mild cognitive impairment (MCI), amyotrophic lateral sclerosis (ALS), 110 

Parkinson’s disease (PD), and Multiple Sclerosis (MS). 111 

First, we compared the classification performance of four FC metrics that capture different 112 

properties of the signals (AEC, PLV, Pearson’s correlation coefficient, and ATM) associated 113 

with a four-class problem (i.e. MCI, PD, MS, and ALS). We considered the features that can 114 

differentiate the considered neurological diseases for each FC metric taken separately. 115 

Furthermore, we compared nodal and edge metrics, under the hypothesis that edges, which 116 

more directly represented the interactions among brain regions, would outperform local (i.e.) 117 

metrics. We compared the classification performance using three different machine learning 118 

algorithms (i.e., XGBoost, Support Vector Machine (SVM), and Linear Discriminant Analysis 119 

(LDA), to demonstrate that the performance of a given feature-set is algorithm-independent.  120 

Finally, for each FC metric, we identified the most informative features used by the classifier, 121 

under the hypothesis that such relevant features were linked to the neurophysiology of the 122 

considered neurological diseases. Such a study would make the classification results more 123 

interpretable and would enable us to identify clusters of brain interactions sensitive to the 124 

neurophysiological mechanisms associated with the considered diseases. 125 

The purpose of this work is to explore a diverse set of connectivity metrics to propose an 126 

interpretable automated pipeline for differentiated diagnosis of neurodegenerative diseases.  127 

 128 

1. Materials and Methods 129 

2.1 Participants  130 

 131 

One hundred nine patients with different neurological diseases (ALS, MCI, PD, MS)  were 132 

recruited from Hermitage Capodimonte Clinic in Naples (Polverino et al., 2022; Romano et al., 133 

2023; Sorrentino et al., 2019, 2022). Specifically, Thirty-two MCI patients (18 males and 14 134 
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females; mean age 71.31; SD ± 6.83; mean education 10.54; SD ± 4.33) were recruited from 135 

the Center of Cognitive and Memory Disorders of the Hermitage Capodimonte Clinic in 136 

Naples, Italy. The MCI diagnosis was done according to the National Institute on Ageing-137 

Alzheimer’s Association criteria (Albert et al., 2011). Thirty-nine ALS patients (29 males and 138 

10 females; mean age 59.63; SD ± 12.87; mean education 10.38 years SD ± 4.3) were 139 

selected in collaboration with the ALS Center of the First Division of Neurology of the University 140 

of Campania “Luigi Vanvitelli” (Naples, Italy). The ALS diagnosis was performed according to 141 

the El-Escorial criteria (Brooks, 1994). Twenty patients (14 males and 6 females; mean age 142 

64.5; SD ± 12.18; mean education 11 years SD ± 3.9) with a confirmed diagnosis of 143 

Parkinson’s disease according to the United Kingdom Parkinson’s Disease Brain Bank criteria 144 

(Gibb & Lees, 1988) were recruited in collaboration with the Movement Disorder Unit of 145 

Cardarelli hospital in Naples. Finally, eighteen patients (6 males and 12 females; mean age 146 

45.05; SD ± 9.92; mean education 14-11 years SD ± 4.89) with Multiple Sclerosis were 147 

recruited in collaboration with University of Campania Luigi Vanvitelli.  The diagnosis was 148 

performed following the 2017 revision of the McDonald criteria (Thompson et al., 2018). Each 149 

participant underwent a specific motor and/or neuropsychological evaluation according to the 150 

clinical characteristics of each disease. A complete summary of the cohort description is 151 

available in Table 1. The study protocol was approved by the ‘‘Comitato Etico Campania 152 

Centro’’ (Prot.n.93C.E./Reg. n.14-17OSS) and all participants provided written informed 153 

consent in accordance with the Declaration of Helsinki. 154 

 155 

 156 

Type of disease  

Number of 

participants  

(109) 

Age  

(mean ± SD) 

Years of 

education 

(mean ± SD) 

Gender  

(ratio) 

Mild Cognitive Impairment 

(MCI) 
32 

71.31 

(SD ± 6.83) 

10.54  

(SD ± 4.33) 
18 m / 14 f  

Multiple Sclerosis (MS) 18 
45.05  

(SD ± 9.92) 

14.11 

(SD ± 4.89) 
6m /12 f 

Parkinson’s Disease (PD) 20 
64.5  

(SD ± 12.18) 

11  

(SD ± 3.9) 
14 m / 6 f 

Amyotrophic Lateral Sclerosis 

(ALS) 
39 

59.63 

(SD ± 12.87) 

10.38 

(SD ± 4.3) 
29 m/10 f 

Table 1: Demographic features of the cohort: m: males; f: females; SD: Standard 157 

Deviation 158 

 159 
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2.2 MEG and MRI acquisition, pre-processing, and source reconstruction  160 

 161 

MEG and MRI acquisition, preprocessing, and source reconstruction were performed similarly 162 

to previous studies (Cipriano et al., 2024, p. 20; Romano et al., 2022). Briefly, all patients 163 

underwent an MRI scan using a 3T Biograph mMR tomograph (Siemens HealthcareErlangen, 164 

Germany) equipped with a 12 channels head coil. Specifically, 3 dimensional T1-weighted 165 

images (gradient-echo sequence inversion recovery prepared fast spoiled gradient recalled-166 

echo, time repetition = 6,988 ms, inversion time = 1,100 ms, echo time = 3.9 ms, flip angle = 167 

10, voxel size = 1 × 1 × 1.2 mm3) were acquired. The MEG acquisition was performed using 168 

a 163-magnetometer system placed in a magnetically shielded room (AtB Biomag UG, Ulm, 169 

Germany). Fastrack (Polhemus®) was used to define the position of the head under the 170 

helmet and to digitalize the position of four anatomical landmarks (nasion, right, and left 171 

preauricular and apex) and four reference coils. Each patient performed two recordings of 3.5 172 

minutes each, with a one-minute break, during a resting state, with eyes closed.  173 

Electrocardiographic and electrooculographic signals were recorded to remove physiological 174 

artifacts. Data were acquired with a sampling frequency of 1024 Hz. A Principal component 175 

analysis (PCA) was used to reduce the environmental noise, and an independent component 176 

analysis (ICA) was used to remove physiological artifacts (namely ocular and cardiac 177 

artifacts). Finally, to obtain the source-reconstructed time series of the patients, according to 178 

the Automated Anatomical Labeling (AAL) atlas, we used a beamformer algorithm and the 179 

volume conduction model proposed by Nolte (Nolte, 2003). The time series were filtered 180 

between 0.5 and 48 Hz.  181 

2.3 Connectivity Metrics 182 

 183 

Phase Locking Value (PLV) 184 

 185 

The PLV measures the phase synchronization between two narrowband signals, and it is 186 

computed as : (Lachaux et al., 1999). 187 

𝑃𝐿𝑉 =  |𝐸 [ 𝑒⬚𝑗𝛥𝛷𝑥𝑦(𝑡)]|,  188 

 189 

where ∆Φxy(t) represents the difference between Φx(t) - ∆Φy(t), [E ] is the statistical 190 

expectation, and ∆Φx, y(t) are the instantaneous phases of the analytical signals.  191 

 192 

Correlation Coefficient (CC)  193 

 194 

We computed Pearson's correlation coefficient to estimate the pairwise synchronization 195 

between signals of different brain regions.  196 

 197 

Avalanche Transition Matrix (ATM) 198 

 199 
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The ATM describes the probability that after the activation of region i at the time t , the region 200 

j will be active at the time t +δ (Sorrentino et al., 2021). The ATMs are computed starting from 201 

neuronal avalanches, which are defined as events that start when at least one region is above 202 

the threshold and end when all the regions return to their baseline activity. Hence, there is one 203 

ATM for each avalanche. More specifically, the ATM contains, in the ijth position, the 204 

probability that region j is active at time t+1 given that region t is active at time t.ATMs were 205 

then averaged element-wise over all the avalanches for a subject,  and finally symmetrized.  206 

 207 

 208 

Amplitude Envelope Correlation (AEC) 209 

 210 

The amplitude envelope is used to estimate the statistical interdependencies between brain 211 

regions. It is computed as the correlation coefficient between the analytical amplitude of two 212 

signals.  High values of amplitude correlation between the envelopes indicate that two brain 213 

regions display a coordinated behavior (Brookes et al., 2011, 2012).    214 

  215 

Nodal analysis 216 

 217 

Each of the connectivity metrics yields an adjacency matrix. We have compared directly a 218 

subset of the entries of the matrices (see section 3.2), that is “edge-metrics” or nodal metrics. 219 

Three different edge-specific metrics were used: betweenness centrality, eigenvector 220 

centrality, and the degree. Betweenness centrality is a centrality measure that is equal to the 221 

number of the shortest paths passing through a given node. Another centrality measure is 222 

eigenvector centrality, which determines a node's relative importance within a network. Lastly, 223 

the degree of a node is the sum of the weights of the edges incident upon the node. 224 

 225 

2.4 Classification Algorithms 226 

 227 

To evaluate the discriminative ability of different feature sets (PLV, CC, ATM, AEC) and 228 

compare them with each other, we applied three different Machine Learning (ML) algorithms. 229 

Balanced accuracy was used as an evaluation metric, since we have imbalanced classes. ML 230 

algorithms include Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and 231 

Extreme Gradient Boosting (XGBoost). The general modelling workflow is summarized in Fig. 232 

1  233 

 234 

Linear Discriminant Analysis 235 

 236 

LDA is a widely used approach for solving multi-class classification problems. The algorithm 237 

separates multiple classes (in our study - 4 classes) with multiple features through a data 238 

dimensionality reduction approach. LDA aims to find a hyperplane that best separates the 239 

classes while minimizing the overlap within each class. Related work has revealed that LDA 240 

performs well with multiclass diagnosis problems (Lin et al., 2021).  241 

 242 

 243 

 244 

 245 
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246 
Figure 1 The general workflow of modeling 247 

 248 

Support Vector Machines 249 

 250 

SVM is another widely used technique for solving supervised tasks with multiple classes. 251 

Several studies identified SVM as an outstanding algorithm for solving tasks with multiple 252 

classes (Maqsood et al., 2022). SVM performs complex data transformations (according to 253 

the selected kernel function) and maximizes the separation boundaries between the data 254 

points depending on the classes.  255 

 256 

Extreme Gradient Boosting  257 

 258 

Recent studies showed that XGBoost is a state-of-the-art tree-based machine learning model 259 

that outperforms many other algorithms, including deep learning models (Grinsztajn et al., 260 

2022). Moreover, the XGBoost algorithm provides an assessment of the relative importance 261 

of individual predictors, which allows us to interpret our findings (Manju et al., n.d.) 262 

XGBoost is an ensemble method that builds a predictive model by combining predictions of 263 

multiple individual decision trees. It uses weak learner trees, these are decision trees with a 264 

single split, called decision stumps. The algorithm works by sequentially adding weak learners 265 

to the ensemble, with each new learner focusing on correcting the errors made by the previous 266 

one.   267 

XGBoost is known for its high accuracy and has been shown to outperform other machine 268 

learning algorithms in many predictive modeling tasks. In addition, it is highly scalable and can 269 

handle large datasets.  270 

 271 

2.5 Statistical Analysis  272 

 273 

Kruskal-Wallis test 274 

 275 

For each connectivity metric taken separately, to identify the most statistically significant 276 

different features among the four groups  (PD, MCI, SLA, MS) to be considered for the 277 
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classification, we used the Kruskal-Wallis test. Since the brain is a non-linear dynamic system, 278 

we relied on a non-parametric statistical test, checking the null hypothesis that two or more 279 

independent groups were drawn from the same underlying distribution. The same approach 280 

was used for both edge and nodal metrics. 281 

 282 

Multiple comparison correction 283 

 284 

Since we have numerous features to be considered for a given FC metric, we used the false 285 

discovery rate to correct for inflated significance. The False Discovery Rate (FDR) is used to 286 

control the expected proportion of false positives. The FDR is the expected ratio of the number 287 

of false positive classifications, or false “discoveries”, to the total number of positive 288 

classifications (rejections of the null hypothesis). The p-values of the Kruskal-Wallis test were 289 

corrected accordingly. Finally, we sorted the features according to the corrected p-values in 290 

ascending order. 291 

 292 

Spearman Correlation 293 

We used Spearman correlation to evaluate the correlation between the features’ ranks. 294 

Spearman’s rank correlation coefficient is a non-parametric measure of statistical dependence 295 

between two variables. This way, we evaluated the relation between the ranks of the nodal or 296 

edge features across different FC metrics (PLV, AEC, ATM).  297 

 298 

Repeated Stratified K-fold splits 299 

 300 

To get valid results and avoid overfitting, we applied Repeated Stratified K-fold cross-301 

validation, which repeats k-folds n times with different randomization for each repetition (J.-H. 302 

Kim, 2009). Then, for each fold, we have pooled our results across multiple randomization. 303 

First, our whole dataset was split into two parts. For the first part, we use Stratified K-folds 304 

cross-validation to tune hyperparameters and find an optimal set that gives the best result. 305 

After tuning the hyperparameters on the first part of the dataset, then we used Stratified K-fold 306 

cross-validation 10 times for the second part. Then, accuracies obtained by each set are 307 

averaged. This way, we prevent data leakage, and it helps to get a more robust estimation of 308 

the accuracy by averaging over all repetitions and all folds. We used 10 repetitions of 10-fold 309 

cross-validations, and therefore we ensure that our evaluation is not affected by the specific 310 

choice of the validation set. 311 

2.7 Evaluation metrics 312 

 313 

Balanced accuracy 314 

 315 

We used balanced accuracy as an evaluation metric for the classification algorithms since our 316 

dataset is imbalanced (NALS=39, NMCI=32, NPD=20, NMS=18) . The balanced accuracy is 317 

calculated by taking the average of the recalls obtained in each class (Thölke et al., 2023). 318 

 319 

 320 

Recall 321 

 322 
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Recall is an evaluation metric that measures how often a classification algorithm correctly 323 

identifies positive instances among all the actual positive samples in the dataset. 324 

 325 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 326 

 327 

Receiver Operating Characteristic (ROC) curve 328 

 329 

ROC curve is a graph that displays the performance of a binary classification algorithm of 330 

predicting a positive class at all possible thresholds. The lower the classification threshold, the 331 

more observations are successfully classified. ROC curve uses False Positive Rate on the x-332 

axis and True Positive Rate on its y-axis. 333 

The area under the ROC curve (AUC) is an evaluation measure that measures the area 334 

underneath the ROC curve, and its maximum possible value equals one. In this manuscript, 335 

we compute the ROC curve for each class separately. 336 

 337 

Confusion Matrix 338 

 339 

A confusion matrix is an N x N matrix, where N is the number of classes. It has  the true labels 340 

on the rows and the predicted labels on the second axis. This way, a confusion matrix shows 341 

how many times each class was classified correctly and also how often it was misclassified 342 

(and how).  343 

We used a confusion matrix for 4 classes, therefore we have a 4 x 4 matrix, where 𝑇𝑃𝑖 344 

represents the observations that were correctly classified for class 𝑖 , and 𝐸𝑖𝑗 represents where 345 

true class 𝑗 was misclassified with predicted class 𝑖. After that, we took the  relative 346 

percentages across columns to see the whole picture in percentages, therefore each column’s 347 

values will sum up to 100%. This is done by dividing each element of each column by the sum 348 

of all elements of that column and multiplying by 100. For example, for column 4 and its third 349 

element, it is done as follows: 350 

𝐸43

(𝐸41 + 𝐸42 + 𝐸43 + 𝑇𝑃4)
× 100 351 

 352 

 353 

 354 

 355 

Code availability  356 

 357 

The code used to perform the analysis of this study is publicly available at 358 

https://github.com/dklpp/multiclass_meg_features_analysis 359 

 360 

 361 

2. Results 362 

 363 
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3.1 Kruskal-Wallis Test 364 

 365 

Each adjacency matrix obtained from a given FC metric (namely  PLV, AEC, ATM, or CC) is 366 

a square matrix with the dimension of 𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑠  ×  𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑠, where 𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑠is equal to 116 367 

regions of interest. All matrices are symmetric and contain ones on the main diagonal., Hence, 368 

we take the triangular matrix, excluding the main diagonal elements, leading to 6670 edge-369 

wise features. Given the high dimensionality of the feature space, we identified the most 370 

statistically significant different features among the four groups to be considered for the 371 

classification. 372 

A non-parametric statistical Kruskal-Wallis test was performed for each feature to compare 373 

the four independent groups (PD, SLA, MS, MCI). After applying Kruskal-Wallis Test and False 374 

Discovery Rate correction, we found that there were more than 120 statistically significant 375 

edge features (pFDR < 0.002) for each of the 4 edge-specific FC metrics. The lowest corrected 376 

with FDR p-value p<0.0001 (pFDR = 2,46 × 10−7 ) was obtained with the edge-wise PLV 377 

metric between the right frontal superior gyrus and the right postcentral gyrus (see Fig 2) 378 

 379 

 380 
Figure 2 The most significant features’ (PLV values between the right frontal superior gyrus and the right postcentral 381 
gyrus) boxplots with the observations  for 4 classes with FDR p-value (pFDR = 2,46 x 10-7) 382 

 383 
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3.2 Classification algorithms 384 

  385 

Based on the significant edges, we have then classified the participants. We used a  386 

consecutive iterative search technique, starting with the 15 best features (according to their 387 

corrected p-values), and sequentially added features and compared the accuracies, and this 388 

procedure was repeated until 39 features were fed to the classifier (Table 2). Stability had 389 

been reached at this point, and further increasing the number of features led to a slight 390 

worsening of the performance (not shown). Furthermore, given the relatively small size of our 391 

sample, we kept a lower number of features to reduce overfitting. 392 

 393 

 394 

 395 

Num pred n=15 n=16 n=18 n=22 n=25 n=28 n=30 n=31 n=34 n=36 n=38 n=39 

Metrics 

Edge metrics  

PLV  0.643 0.629 0.639 0.611 0.647 0.653 0.639 0.631 0.671 0.651 0.627 0.635 

AEC  0.568 0.588 0.584 0.605 0.611 0.614 0.613 0.610 0.581 0.604 0.630 0.608 

ATM 0.567 0.554 0.520 0.514 0.470 0.515 0.529 0.500 0.504 0.512 0.514 0.517 

CC 0.466 0.477 0.521 0.511 0.495 0.539 0.565 0.560 0.556 0.545 0.529 0.525 

Nodal metrics  

AEC (eign. centr.) 0.481 0.478 0.491 0.468 0.468 0.459 0.434 0.492 0.454 0.446 0.418 0.399 

AEC (betw. centr.) 0.358 0.345 0.350 0.381 0.362 0.312 0.329 0.334 0.314 0.333 0.341 0.348 

AEC (degree) 0.293 0.286 0.296 0.311 0.366 0.313 0.321 0.315 0.337 0.330 0.356 0.348 

PLV (degree) 0.407 0.389 0.376 0.345 0.377 0.347 0.321 0.312 0.311 0.302 0.323 0.317 

PLV (betw. centr.) 0.436 0.454 0.443 0.392 0.401 0.384 0.371 0.384 0.373 0.372 0.345 0.363 

PLV (eign. centr.) 0.350 0.354 0.346 0.384 0.414 0.408 0.387 0.378 0.436 0.443 0.435 0.432 

ATM (eign. centr.) 0.479 0.475 0.489 0.475 0.460 0.454 0.438 0.480 0.431 0.427 0.409 0.403 

ATM (betw. centr.) 0.358 0.350 0.350 0.381 0.362 0.312 0.329 0.334 0.314 0.333 0.341 0.349 

ATM (degree) 0.251 0.251 0.263 0.289 0.302 0.276 0.279 0.269 0.289 0.274 0.308 0.317 

CC (betw. centr.) 0.506 0.532 0.512 0.530 0.523 0.486 0.468 0.447 0.452 0.468 0.452 0.453 

CC (degree) 0.396 0.389 0.396 0.447 0.446 0.478 0.455 0.443 0.421 0.399 0.421 0.417 

  396 

Table 2:Balanced accuracy for the number of features which contain the best accuracy across different 397 

metrics (PLV, AEC, ATM, CC). For visual purposes, it is demonstrated only with the LDA algorithm. The 398 

accuracies obtained with the XGBoost and the SVM algorithms are in the supplementary material (see 399 

S4 and S5). 400 
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 401 

We decided to display the balanced accuracies for each FC metric taken separately (both 402 

edge-based and node-based metrics) to see a clearer picture of different sets’ performances 403 

(Fig 3). 404 

 405 

406 
Figure 3 The balanced accuracies for all feature sets with LDA classifier. Each bar plot displays the averaged 407 
accuracy with its standard errors. The boxplots for other algorithms are available in the supplementary material 408 
(Fig S1-S2). 409 

 410 

As shown in Fig3, we observed that all edge metrics consistently outperformed nodal metrics. 411 

Consistently, we observed that the standard deviations (over different repetitions of the K-412 

folds) were higher for nodal metrics. Note that the results refer to the best-performing feature 413 

selection (i.e. the number of features is not fixed across different metrics). 414 

Finally, we identified the optimal number of features (i.e. the features that showed the lowest 415 

corrected p-values and which led to the highest balanced accuracy) for each of the 3 different 416 

Machine Learning classification algorithms considered (namely XGBoost, SVM, LDA)(Fig. 3). 417 

The exhaustive search algorithm yielded the feature sets (which nodes/ edges) with the best-418 

balanced accuracies for each algorithm across different FC metrics.  419 

For the sake of simplicity, we discuss here the two best-performing FC metrics per 420 

classification algorithm (Fig. 4). In the case of the SVM algorithm, the AEC showed a balanced 421 

accuracy of 67.8% with a total of 31 top features, the PLV presented a balanced accuracy of 422 

66.5 % with 36 top features. With the XBoost classifier, the CC showed a balanced accuracy 423 

of  63.8%  with 35 top features), and the PLV presented a balanced accuracy of 62.8%, with 424 

15 top features. Finally, in the case of the LDA classifier, the PLV showed a balanced accuracy 425 
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of 67.1%, with 34 top features and the AEC presented a performance of 63.0% with 38 top 426 

features. 427 

Given the lower performance obtained with the nodal metrics, we shall proceed with the 428 

analyses exclusively on the edges.  429 

 430 
Figure 4 Balanced accuracies for different metrics across 3 Machine Learning algorithms with its standard errors. 431 
We observe consistent higher performance of PLV and AEC, in comparison to ATM and CC. The chance level for 432 
our dataset equals 35%. 433 

 434 

The chance level for the balanced problem with 4 classes is equal to 25%.  However, since 435 

we have a dataset with unbalanced classes, in such tasks the chance level is usually assumed 436 

to be the probability of predicting the most frequent class label in the target.In our case, SLA, 437 

which contains 38 patients out of 108, is the most numerous class. Therefore, the chance level 438 

is calculated as follows: 439 

 440 

𝑝 = 38 / 108 ≃  0,35 𝑜𝑟 35%     (1) 441 

 442 

In this task, a more objective evaluation metric is the balanced accuracy. Nevertheless, it is 443 

also useful to compare and evaluate overall accuracies. The trend remains the same – i.e. the 444 

same edge-specific metrics stay as the top features sets. Still, the accuracies are slightly 445 

higher: AEC (73.3%, 28 features), PLV (72.7%, 36 features), ATM (67.5%, 32 features), CC 446 

(69.1%, 36 features) for SVM classifier; AEC (68.2%, 38 features), PLV (69.5%, 34 features), 447 

ATM (63.2%, 15 features), CC (60.4%, 30 features) for LDA classifier; AEC (68.5%, 26 448 

features), PLV (68.7%, 15 features), ATM (64.2%, 39 features), CC (70.5%, 35 features) for 449 

XGBoost classifier.  450 

 451 
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Since the PLV is the most performant metric, we now focus on the PLV for sensitivity analyses.  452 

 453 

3.3 ROC curves 454 

 455 

After repetitive stratified K-folds, we can estimate probabilities for each class to be correctly 456 

predicted (i.e. the probabilities sum up to 1) with different classification algorithms (LDA, SVM, 457 

XGB). We applied the One-vs-All technique, where we fix one desired class and all other 458 

classes are treated as one class. This way, we can replace our multi classification task to a 459 

binary class, and it enables us to build the ROC curves. 460 

We calculated the average ROC curve for each repetition of the 10 folds, and the red curve 461 

displays the overall average ROC curve across 10 repetitions. The ROC curves were built for 462 

each class separately (Fig 5) which display the trade-off between False Positive Rate on x 463 

axis, and True Positive Rate on y axis.  464 

ALS patients display the best results in terms of classification accuracy,  and PD patients the 465 

worst results. Accordingly, it is worth mentioning that deviations of the ROC curves for PD 466 

patients are also much higher in comparison to other classes. 467 

 468 

 469 
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 470 

 471 
Figure 5 ROC curves for 4 classes (MS, SLA, PD, MCI) for LDA machine learning classifier with overall mean 472 
curve and mean curves for each repetition of Stratified K-folds. ROC curves are built with PLV edge-based features 473 
with 10 repetitions over 10 k-folds. 474 
 475 

3.4 Confusion Matrix 476 

 477 

The confusion matrix was built to depict the whole picture of the classifier’s performance: it 478 

allows seeing what percentage of each class was classified correctly, and where mistakes 479 

were made (Fig 6).  480 
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 481 
Figure 6 Confusion Matrix with relative percentage representation for 4 classes (SLA, PD, MS, MCI) with true 482 
values on y axis and predicted values on x axis for PLV features with LDA machine learning classifier. 483 
 484 

Again, one  can observe that the accuracy for PD patients is the worst, while the results for 485 

ALS subjects are the best. While these results might be affected by imbalanced classes, the 486 

results for all classes are well above chance level (which is equal to 35%). 487 

 488 

3.5 Feature importance 489 

  490 

The XGBoost classification algorithm allows us to quantify and compare the relative 491 

importance of the features during the classification process. To get valid results, we have 492 

defined 10 cross-validations with stratified KFolds. That is, the balance of the classes in the 493 

train and test splits are preserved. We run 40 times these stratified cross-validation iterations 494 

to reach convergence and then validate our results. After these steps, we obtained the feature 495 

importance for each of the features obtained from each FC metric taken separately (we focus 496 

here on the PLV, AEC, and ATM).  Then, we evaluated and compared the features that 497 

showed the highest importance values for each of the sets considered (Fig. 7A) 498 

 499 

 500 

 501 
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 502 

 503 
 504 
Figure 7. A. Feature importance for XGBoost across FC metrics along with these features on the brain plots. 505 
B. Connectome of overlapping features and its brain plot. The list of the edges is reported in the supplementary 506 
materials (see S6-S7-S8).  507 

  508 

There are 9 overlapping features (i.e. edges) across 3 FC metrics (PLV, ATM, AEC), where 509 

we focused on the first 20 features with the largest feature importance according to XGBoost 510 

evaluation.  511 

As an example of the consistency of our results across different metrics, the edge between 512 

the left supplementary motor area and the left paracentral lobule is the most important in all 3 513 

feature sets. At the same time, the edge between the right frontal superior gyrus and right post 514 

central gyrus is also among the top 3 features across three feature sets.  515 

Another interesting observation is that the left cuneus appears three times among the top pairs 516 

of edges (pairs of edges  left cuneus and right lingual, left cuneus  and Occipital middle gyrus, 517 

the left cuneus  and  the right calcarine cortex), meanwhile the left supplementary motor area, 518 

the right frontal superior gyrus and the right postcentral gyrus appear twice (for the exhaustive 519 

list of the region of interest see the supplementary material S3) . 520 

 521 

 522 

We selected 20 of the most significant features, according to their corrected pFDR values, and 523 

ranked them across feature sets (where rank 1 means the most significant, and rank 20 524 

indicates the least significant feature). This way, we identified that edge features for the next 525 

pairs of ROIs: left supplementary motor area and left paracentral lobule, right frontal superior 526 

gyrus and right postcentral gyrus, right paracentral lobule and right middle cingulum are 527 

ranked as the top features (ranks 1 and 2) for three edge-specific FC metrics (AEC, PLV, 528 

ATM), therefore we see a strong overlap of features across metrics. 529 
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We noticed that 9 edges out of 20 selected were the same for 3 different metrics – AEC, PLV 530 

and ATM (Fig 7B) 531 

To systematically test these findings, we applied pairwise Spearman correlation for the ranks 532 

of three metrics (Fig 8). This revealed that, indeed, PLV and AEC features’ ranks are highly  533 

positively correlated with a correlation coefficient equal to 0.89. 534 

We observed that AEC, PLV and ATM have 9 overlapping features out of the 20 best features 535 

according to the p-values, including the Cross Correlations leaves only one overlapping 536 

feature.   537 

 538 

 539 

   540 
Figure 8. Feature importance for XGBoost across metrics 541 

 542 

 543 

 544 

 545 

 546 

 547 

  548 
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3. Discussion 549 

 550 

In this study, we set out to identify a set of functional biomarkers to perform automated 551 

differential diagnosis (among MS, MCI, PD, and ALS) from MEG data.  Our work focuses on 552 

the interpretability of the biomarkers, which is why we compared multiple connectivity metrics 553 

(AEC, PLV, Pearson’s correlation coefficient, and ATM) that are different in terms of 554 

interpretation. We tested the robustness of our analyses by feeding the data features to 555 

multiple classification algorithms (i.e., XGBoost, SVM, LDA). In particular, we used a vast 556 

amount of MEG data from a total number of 109 subjects affected by four different neurological 557 

diseases: ALS, PD, MCI, and MS. Firstly, from each cohort, we extracted different feature sets 558 

from four different FC metrics (PLV, ATM, AEC, and CC), each of which was obtained starting 559 

from a symmetric matrix, leading to a total number of 6670 edge-wise features. Due to the 560 

high dimensionality of our sample, we performed a Kruskal-Wallis test to reduce the 561 

dimensionality and to consider only the most discriminative features. 562 

 563 

Firstly, our results showed more than 120 significant edge features among the four different 564 

feature sets (PLV, AEC, ATM, CC) for all the diseases. In particular, the Kruskal-Wallis test 565 

showed statistical significance (pFDR<0.0001) of edge-wise PLV values between the right 566 

frontal superior gyrus and the right postcentral gyrus. This finding might be related to the fact 567 

that the frontal lobe is involved in physiological processes related to motor function (which are 568 

notably impaired in SLA, PD, and MS) as well as to cognitive function, such as long-term 569 

memory (which is often impaired in MCI).  570 

 571 

We then move on to estimate the accuracy of the selected features by adding the features in 572 

an iterative manner according to their p values. Such an approach enabled us to determine 573 

the optimal number of top features for each FC metric taken separately. The AEC reached a 574 

balanced accuracy of 63.07% with 38 features added, while the edge-wise PLV displayed the 575 

best-balanced accuracy (67,14%) with a total number of 34 added features. To our knowledge, 576 

no previous research has combined MEG data from patients with MCI, MS, PD, and ALS. 577 

However, some research has focused on these conditions individually. As an example, López 578 

ME et al. (López et al., 2014a) examined 105 subjects (36 controls and 69 MCI cases). They 579 

identified spectral bio-marked changes in the theta, alpha, and beta frequency bands in MEG 580 

data in MCI. Kim MJ et al.  (M.-J. Kim et al., 2023) utilized a large EEG dataset including 417 581 

MCI cases and applied a neural network that detected dementia with 81.1% accuracy. In the 582 

closely related work, Giovannetti A. et al. (Giovannetti et al., 2021) presented the Deep-MEG 583 

neural network, which was tested on 54 Alzheimer’s patients, each undergoing a five-minute 584 

resting state task. Similarly to our study, they used functional connectivity indices, phase 585 

locking values for classification. They reported an 87.4% AUC-ROC in identifying early MCI 586 

symptoms. For multiple sclerosis disease, using EEG, Kiiski H. et al. (Kiiski et al., 2018) 587 

assessed the responses of 35 subjects with multiple sclerosis during event-related potential 588 

cognitive tasks over three years. They found significant correlations between ERP visual 589 

components and cognitive function, identified using machine learning techniques. In related 590 

research, Karaca et al. employed a continuous wavelet transform to differentiate nine multiple 591 

sclerosis patients from 11 controls, achieving accuracy rates between 80%-88% in their best-592 

performing models (Karaca et al., 2021). Furthermore, Ahmadi A. et al.  analyzed five MS 593 

patients, developing a detection model using phase locking values and an online sequential 594 
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extreme learning classifier, with performance scores ranging from 82% to 96% across different 595 

tasks (Ahmadi et al., 2019). 596 

 597 

Our results are consistent across the three different ML algorithms (see Fig 3) with PLV and 598 

AEC showing the best accuracy with respect to ATM and CC. These results are in agreement 599 

with Chaturvedi et al., who showed that features extracted from the Phase lagIndex (PLI) were 600 

able to better discriminate between PD patients with and without MCI as compared to spectral 601 

features (Chaturvedi et al., 2019). These results might suggest that phase-based metrics 602 

might be more suitable in classification performance analysis as compared to amplitude-based 603 

metrics (i.e., power spectra). Phase-based metrics specifically capture synchronization among 604 

brain signals (defined as a bounded average phase difference). Synchronization is typically 605 

measured in the framework of the communication-through-coherence hypothesis (Fries, 606 

2015), whereby communication among brain regions might be captured by the coherent 607 

activities of the corresponding brain signals. On the other hand, non-periodic activities, as well 608 

as simple correlation coefficients, seem to perform less well in this context. Regardless of the 609 

chosen FC metric, we see a consistent trend where the estimates at the edge level outperform 610 

those at the nodal level in terms of disease classification. On the one hand, nodal metrics 611 

capture the local activities and are predominantly sensitive to the dynamics of the local 612 

activations. On the other hand, edge metrics focus primarily on how brain regions interact 613 

among themselves. Therefore, our results might be interpreted as evidence that 614 

neurodegenerative diseases primarily alter how regions interact with each other at the large-615 

scale level. In particular, since the PLV is the best-performing metric, this might be interpreted 616 

as the neurodegenerative diseases altering the ability of brain regions that are far apart to 617 

synchronize their activities. 618 

While the PLV is sensitive to volume conduction, volume conduction does not offer a 619 

reasonable explanation for the ability to classify different subjects according to diagnosis. 620 

Furthermore, the edges of the ATM (that are more robust to volume conduction artifacts) also 621 

confirm the ability to correctly diagnose patients well above chance level. 622 

Furthermore, the set of edges that contributed more to the classification were FC metric-623 

independent. In general, it is interesting to note that the edges that are relevant to classification 624 

irrespective of the metrics are typically longer range connections, either in the antero-posterior 625 

direction of cross-hemispheric. Again, these results are representative of significant 626 

involvement and, as a consequence, impairment, of the frontal lobe in PD, ALS, MS and MCI 627 

respectively (Foong et al., 1997; Kendi et al., 2008; Trojsi et al., 2012; Wang et al., 2012).  628 

 629 

Not many studies explain the rationale behind the feature extraction and selection method 630 

choice. It usually consists in a trade-off between enriching the information of interest and the 631 

risk of adding irrelevant inputs that could reduce the classification performance. Two types of 632 

approaches have been proposed. The first one consists in considering that fusing features will 633 

result in an improvement of the classification performance. For instance, Geraedts et al fused 634 

features obtained from the estimation of the power spectra in seven frequency bands (resulting 635 

in 16 674 features per EEG) before selecting them to discriminate cognitive functions in 636 

patients with Parkinson’s Disease during Deep Brain Stimulation (Geraedts et al., 2021). 637 

Similarly, López et al extracted spectral and non-linear metrics before fusing them and 638 

selecting them via their fast correlation-based filter to discriminate early Alzheimer’s disease 639 

and its prodromal form from healthy subjects (López et al., 2014b).  640 
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Another approach consists in fusing the classifiers’ output rather than the different types of 641 

features. Fusing the classifiers’ outputs confers a higher reliability and robustness through 642 

redundancy and facilitates the integration of heterogeneous data without 643 

normalizing them (Roli, 2009; Roli & Fumera, 2002; Ruta & Gabrys, 2000). In a recent work, 644 

we proposed a framework that was based on Riemannian geometry extended to functional 645 

connectivity measures through an ensemble learning method. We validated it on numerous 646 

publicly available datasets (Corsi et al., 2022) . Such an approach notably ranked 1st in a 647 

clinical challenge that consisted in discriminating mental states from data obtained from stroke 648 

patients (Corsi et al., 2021). Future work will consist in considering this type of approach to 649 

enrich the information of interest used to discriminate diseases. 650 

In conclusion, our is the first study investigating automated differential diagnosis in several 651 

neurological diseases, based on different connectivity metrics as well as on different 652 

classification algorithms. Our results demonstrate the existence of a common set of edges 653 

that drive the classification performance, irrespective of the particular metric chosen or the 654 

algorithm. These results demonstrate the existence of a robust set of long-range connections 655 

that are altered in neurodegeneration, across multiple diseases, and valid in terms of 656 

distinguishing specific diseases. Future studies will have to confirm the external validity of our 657 

results to different datasets and extend our analyses to more neurodegenerative diseases. 658 
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Supplementary materials  

 
Supplementary materials 1: The balanced accuracies for all feature sets with SVM classifier. Each bar plot displays 

the averaged accuracy with its standard errors. 

 

 

Supplementary materials 2: The balanced accuracies for all feature sets with XGBoost classifier. Each bar plot 

displays the averaged accuracy with its standard errors. 
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Supplementary materials 3: Exhaustive list of regions of interest 
 

N° 
ROIS 

Anatomical 

correspondance  

N° 
ROIS 

Anatomical 

correspondance  

N° 
ROI
S 

Anatomical 

correspondance  

1 Rectus L 40 Rectus R 79 Hippocampus L 

2 Olfactory L 41 Olfactory R 80 Hippocampus R 

3 Frontal Superior Orbital L 42 Frontal Superior Orbital R 81 Amygdala L 

4 Frontal Medial Orbital L 43 Frontal Medial Orbital R 82 Amygdala R 

5 Frontal Medial Orbital L 44 Frontal Medial Orbital R 83 Caudate L 

6 Frontal Inferior Orbital L 45 Frontal Inferior Orbital R 84 Caudate R 

7 Frontal Superior L 46 Frontal Superior R 85 Putamen L 

8 Frontal Medial L 47 Frontal Medial R 86 Putamen R 

9 
Frontal Inferior Opercolum 

L 
48 

Frontal Inferior 

Opercolum R 
87 Pallidum L 

10 
Frontal Inferior Triangular 

L 
49 

Frontal Inferior Triangular 

R 
88 Pallidum R 

11 Frontal Superior Medial L 50 Frontal Superior Medial R 89 Thalamus L 

12 
Supplementary Motor area 

L 
51 

Supplementary Motor area 

R 
90 Thalamus R 

13 Paracentral Lobule L 52 Paracentral Lobule R 91 Cerebellum Crus1 L 

14 Precentral L 53 Precentral R 92 Cerebelum Crus1 R 

15 Rolandic Opercolum L 54 Rolandic Opercolum R 93 Cerebelum Crus2 L 

16 Postcentral L 55 Postcentral R 94 Cerebelum Crus2 R 
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17 Parietal Superior L 56 Parietal Superior R 95 Cerebellum 3 L 

18 Parietal Inferior L 57 Parietal Inferior R 96 Cerebellum 3 R 

19 Supra Marginal L 58 Supra Marginal R 97 Cerebellum 4 5 L 

20 Angular L 59 Angular R 98 Cerebellum 4 5 R 

21 Precuneus L 60 Precuneus R 99 Cerebellum 6 L 

22 Occipital Superior L 61 Occipital Superior R 100 Cerebellum 6 R 

23 Occipital Medial L 62 Occipital Medial R 101 Cerebellum 7b L 

24 Occipital Inferior L 63 Occipital Inferior R 102 Cerebellum 7b R 

25 Calcarine L 64 Calcarine R 103 Cerebellum 8 L 

26 Cuneus L 65 Cuneus R 104 Cerebellum 8 R 

27 Lingual gyrus L 66 Lingual gyrus R 105 Cerebellum 9 L 

28 Fusiform gyrus L 67 Fusiform gyrus R 106 Cerebellum 9 R 

29 Heschl L 68 Heschl R 107 Cerebellum 10 L 

30 Temporal Superior L 69 Temporal Superior R 108 Cerebellum 10 R 

31 Temporal Medial L 70 Temporal Medial R 109 Vermis 1 2 

32 Temporal Inferior L 71 Temporal Inferior R 110 Vermis 3 

33 Temporal Pole Superior L 72 Temporal Pole Superior R  111 Vermis 4 5 

34 Temporal Pole Medial L 73 Temporal Pole Medial R 112 Vermis 6 

35 ParaHippocampal L 74 ParaHippocampal R 113 Vermis 7 

36 Cingulum Anterior L 75 Cingulum Anterior R 114 Vermis 8 

37 Cingulum Medial L 76 Cingulum Medial R 115 Vermis 9 

38 Cingulum Posterior L  77 Cingulum Posterior R  116 Vermis 10 

39 Insula L 78 Insula R   
 
 

Supplementary materials 4: Balanced accuracy for the number of features which contain the best 

accuracy across different metrics (PLV, AEC, ATM, CC) with XGBoost. 

 

 n=15 n=17 n=18 n=19 n=24 n=25 n=26 n=27 n=28 n=35 n=38 n=39 

Edge metrics             

PLV 0.628 0.606 0.597 0.618 0.575 0.577 0.573 0.563 0.572 0.544 0.559 0.557 

AEC 0.554 0.606 0.597 0.601 0.594 0.611 0.626 0.622 0.617 0.602 0.602 0.622 

ATM 0.513 0.533 0.533 0.551 0.55 0.535 0.524 0.519 0.531 0.561 0.554 0.575 

CC 0.529 0.565 0.559 0.574 0.591 0.586 0.595 0.594 0.591 0.638 0.612 0.608 

Nodal metrics             

CC (betw.) 0.496 0.489 0.504 0.483 0.468 0.482 0.48 0.467 0.476 0.47 0.459 0.448 

PLV (betw.) 0.379 0.385 0.388 0.384 0.376 0.364 0.357 0.356 0.374 0.354 0.341 0.341 

PLV (eign.) 0.378 0.372 0.372 0.373 0.378 0.376 0.401 0.405 0.402 0.383 0.399 0.4 

AEC (eign.) 0.414 0.421 0.435 0.404 0.401 0.407 0.401 0.403 0.413 0.405 0.399 0.403 

AEC (betw.) 0.374 0.359 0.358 0.356 0.334 0.323 0.327 0.321 0.332 0.342 0.35 0.352 
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ATM (betw.) 0.374 0.359 0.358 0.356 0.334 0.323 0.327 0.321 0.332 0.342 0.35 0.352 

ATM (eign.) 0.422 0.427 0.423 0.415 0.424 0.414 0.418 0.419 0.434 0.41 0.408 0.412 

PLV (degree) 0.333 0.343 0.328 0.327 0.341 0.371 0.363 0.364 0.348 0.361 0.335 0.339 

AEC (degree) 0.298 0.308 0.289 0.289 0.297 0.299 0.31 0.298 0.32 0.284 0.27 0.262 

ATM (degree) 0.373 0.377 0.372 0.378 0.397 0.376 0.368 0.375 0.376 0.346 0.373 0.368 

CC (degree) 0.537 0.557 0.548 0.539 0.522 0.529 0.535 0.533 0.534 0.531 0.528 0.544 

 

 

Supplementary materials 5: Balanced accuracy for the number of features which contain the best 

accuracy across different metrics (PLV, AEC, ATM, CC) with SVM. 

 

 n=16 n=19 n=20 n=21 n=22 n=25 n=28 n=30 n=31 n=32 n=34 n=35 n=36 n=37 n=39 

Edge metrics                

PLV 0.61

4 

0.64 0.63

5 

0.63

6 

0.62

8 

0.63

4 

0.63

3 

0.60

1 

0.63

1 

0.64 0.65

1 

0.60

7 

0.66

5 

0.64

8 

0.61 

AEC 0.54

1 

0.57

4 

0.61

1 

0.60

1 

0.61

3 

0.64

8 

0.65

2 

0.66

1 

0.67

9 

0.66

5 

0.66

5 

0.64

4 

0.63

2 

0.65

4 

0.64

7 

ATM 0.53

6 

0.54

4 

0.54

1 

0.53

5 

0.53

2 

0.45

4 

0.54

4 

0.58

6 

0.59

7 

0.60

5 
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2 

0.59

6 
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7 
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9 

0.58 

CC 0.50

5 
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3 
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3 

0.53

7 

0.50

1 

0.55
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7 
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5 
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8 
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4 
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4 
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7 
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7 
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2 
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5 
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3 
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2 
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6 
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6 
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9 
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5 
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4 
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7 
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2 

0.42
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0.40

1 

0.39
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4 
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Supplementary materials 6: Features importance. List of associated edges for PLV.  

 

12-13 Supplementary Motor area L and Paracentral Lobule L 

46-55 Frontal Superior R and Postcentral R 

52-76 Paracentral Lobule R and Cingulum Medial R 

12-48 Supplementary Motor area L and Frontal Inferior Opercolum R 

26-66 Cuneus L and Lingual gyrus R 

37-54  Cingulum Medial L and Rolandic Opercolum R 

38-77 Cingulum Posterior L and Cingulum Posterior R 

26-62 Cuneus L and  Occipital Medial R 

46-57 Frontal Superior R and Parietal Inferior R 

46-53 Frontal Superior R and Precentral R 

56-76 Parietal Superior R and Cingulum Medial R 

21-37 Precuneus L and Cingulum Medial L 

54-58 Rolandic Opercolum R and Supra Marginal R 

37-90 Cingulum Medial and L Thalamus R 

26-64 Cuneus L and  Calcarine R 

7-46 Frontal Superior L and Frontal Superior R 

53-55 Precentral R and  Postcentral R 

5-85 Frontal Medial Orbital L and Putamen L 

12-83 Supplementary Motor area L and Caudate L 

58-86 Supra Marginal R and  Putamen R 
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Supplementary materials 7: Features importance. List of associated edges for AEC. 

12-13 Supplementary Motor area L and Paracentral Lobule L 

51-52 Paracentral Lobule R  and  Paracentral Lobule R 

46-55 Frontal Superior R and  Postcentral R 

26-66 Cuneus L and Lingual gyrus R 

52-76 Paracentral Lobule R and Cingulum Medial R 

5-85 Frontal Medial Orbital  L and Putamen L 

46-53 Frontal Superior R and Precentral R 

53-55 Precentral R and  Postcentral R 

38-77 Cingulum Posterior L and Cingulum Posterior R 

54-58 Rolandic Opercolum R and Supra Marginal R 

37-54 Cingulum Medial L and Rolandic Opercolum R 

58-90 Supra Marginal R and Thalamus R 

26-62 Cuneus L and  Occipital Medial R 

53-84 Precentral R and Caudate R 

26-64 Cuneus L and  Calcarine R 

7-46 Frontal Superior L and Frontal Superior R 

63-111 Occipital Inferior R and Vermis 4 5 

54-88 Rolandic Opercolum R Pallidum R 

13-83 Paracentral Lobule L and Caudate L 

53-57 Precentral R and Parietal Inferior R 
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Supplementary materials 8: Features importance. List of associated edges for ATM. 

12-13 Supplementary Motor area L and Paracentral Lobule L 

46-55 Frontal Superior R and  Postcentral R 

67-99 Fusiform gyrus R and Cerebelum 6 L 

52-76 Paracentral Lobule R and Cingulum Medial R 

97-108 Cerebelum 4 5 L and Cerebelum 10 R 

53-55 Precentral R and  Postcentral R 

51-52 Paracentral Lobule R  and  Paracentral Lobule R 

46-53 Frontal Superior R and Precentral R 

55-90 Postcentral R and Thalamus R 

9-16 Frontal Inferior Opercolum L and Postcentral L 

26-63 Cuneus L and  Occipital Inferior R 

15-16 Rolandic Opercolum L and Postcentral L 

21-37 Precuneus L and Cingulum Medial L 

26-66 Cuneus L and Lingual gyrus R 

58-90 Supra Marginal R and Thalamus R 

7-46  Frontal Superior L and Frontal Superior R 
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12-83 Supplementary Motor area L and Caudate L 

26-62 Cuneus L and  Occipital Medial R 

54-88 Rolandic Opercolum R Pallidum R 

26-64 Cuneus L and  Calcarine R 
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