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Abstract 42 

Background: Biomarkers would greatly assist chronic pain management. The present study 43 

aimed to undertake analytical validation of a sensorimotor cortical biomarker signature for 44 

pain consisting of two measures: sensorimotor peak alpha frequency (PAF) and corticomotor 45 

excitability (CME), using a human model of prolonged temporomandibular pain (masseter 46 

intramuscular injection of nerve growth factor [NGF]). 47 

Methods: 150 participants received an injection of NGF to the right masseter muscle on Days 48 

0 and 2, inducing prolonged pain lasting up to 4 weeks. Electroencephalography (EEG) to 49 

assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on 50 

Days 0, 2 and 5. We determined the predictive accuracy of the PAF/CME biomarker 51 

signature using a nested control-test scheme: machine learning models were run on a training 52 

set (n = 100), where PAF and CME were predictors and pain sensitivity was the outcome. 53 

The winning classifier was assessed on a test set (n = 50) comparing the predicted pain labels 54 

against the true labels. 55 

Results: The winning classifier was logistic regression, with an outstanding area under the 56 

curve (AUC=1.00). The locked model assessed on the test set had excellent performance 57 

(AUC=0.88). Results were reproduced across a range of methodological parameters and 58 

inclusion of covariates in the modelling. PAF and CME biomarkers showed good-excellent 59 

test-retest reliability. 60 

Conclusions: This study provides evidence for a sensorimotor cortical biomarker signature 61 

for an episode of prolonged pain. The combination of accuracy, reproducibility, and 62 

reliability, suggests the PAF/CME biomarker signature has substantial potential for clinical 63 

translation. 64 

 65 
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Several objective pain biomarkers have been proposed, including neuroimaging 70 

markers of mechanistic/structural abnormalities [1-4] and “multi-omics” metrics of micro 71 

RNA [5], proteins [6] , lipids and metabolites [7]. Such biomarkers would greatly assist 72 

decision making in the diagnosis, prevention and treatment of chronic pain [8].  However, 73 

attempts at establishing pain biomarkers have suffered from either insufficient sample sizes to 74 

conduct full-scale analytical validation using machine learning [8-10],  failure to use 75 

clinically relevant pain models [11-13] or lack of assessment of reproducibility or test-retest 76 

reliability [14, 15]. These factors have hindered the clinical translatability of prospective pain 77 

biomarkers.  78 

Recent evidence shows promise for a sensorimotor cortical biomarker signature for 79 

predicting the severity of a prolonged pain episode. The biomarker signature reflects 80 

individual differences in ascending sensory and descending motor processing, comprising 81 

two metrics: 1) sensorimotor peak alpha frequency (PAF), defined as the dominant 82 

sensorimotor cortical oscillation in the alpha (8-12Hz) range [16], and is related to the 83 

efficiency in which the brain can inhibit incoming sensory input [17, 18], and 2) corticomotor 84 

excitability (CME), defined as the efficacy at which signals are relayed from primary motor 85 

cortex (M1) to peripheral muscles [19]. CME is altered during pain as individuals adopt 86 

different movement strategies to cope with pain [20, 21]. Previous work has shown that 87 

slower PAF prior to pain onset and reduced CME during prolonged pain (“depression”) are 88 

associated with more pain, while faster PAF and increased CME (“facilitation”) are 89 

associated with less pain [21-25]). Given individuals who experience higher pain in the early 90 

stages of a prolonged pain episode (e.g. post-surgery) are more likely to develop chronic pain 91 

in the future [26], slow PAF prior to an anticipated prolonged pain episode and/or CME 92 

depression during the acute stages of pain are potential predictors for the transition to chronic 93 

pain.  94 

This paper presents the main outcomes of the PREDICT trial, a pre-registered 95 

(NCT04241562, [27]) full-scale analytical validation of the PAF/CME biomarker signature 96 

using a human model of prolonged myofascial temporomandibular pain (masseter 97 

intramuscular injection of nerve growth factor [NGF]). Repeated NGF injections induce 98 

progressively developing prolonged pain lasting up to 4 weeks [25, 28], and has been shown 99 

to mimic chronic pain characteristics such as time course (gradual development), type of pain 100 

(movement-evoked), functional impairments, hyperalgesia (increased pressure pain 101 

thresholds) and mechanism of sensitization [29, 30]. This makes the NGF model a highly 102 
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standardised and clinically relevant prolonged pain model with which to undertake biomarker 103 

validation.  104 

The aim of the PREDICT trial was to determine whether individuals could be 105 

accurately classified as high or low pain sensitive based on baseline PAF and early CME 106 

facilitator/depressor classification. We predicted the area under the curve (AUC) of the 107 

receiver operator characteristic (ROC) curve for distinguishing high and low pain sensitive 108 

individuals would be at least 70% (which represents an acceptable AUC) [31]. 109 

 110 

Methods 111 

Participants 112 

The PREDICT trial enrolled 159 healthy participants (70 females, 89 males, mean age 113 

25.1 ± 6.1), with 150 participants remaining after participant dropouts. Ethical approval was 114 

obtained from the University of New South Wales (HC190206) and the University of 115 

Maryland Baltimore (HP-00085371). Written, informed consent was obtained. The 116 

supplementary appendix contains all additional details regarding participant characteristics 117 

and methodology.   118 

Experimental Protocol 119 

 Outcomes were collected over a period of 30 days. Participants attended the laboratory 120 

on Day 0, 2, and 5. Baseline questionnaire data were collected on Day 0. Pressure pain 121 

thresholds, PAF and CME were measured on Day 0, 2 and 5. PAF was obtained via a 5-minute 122 

eyes-closed resting-state EEG recording from 63 scalp electrodes. Sensorimotor PAF was 123 

computed by identifying the component in the signal (transformed by independent component 124 

analysis) that had a clear alpha peak (8-12Hz) upon frequency decomposition and a scalp 125 

topography suggestive of a sensorimotor source.  CME was obtained using transcranial 126 

magnetic stimulation (TMS) mapping; single pulses of TMS delivered to the left primary motor 127 

cortex (M1), and motor evoked potentials (MEPs) recorded from the right masseter muscle 128 

using electromyography (EMG) electrodes. TMS was delivered at each site on a 1cm-spaced 129 

grid superimposed over the scalp, and a map of the corticomotor representation of the masseter 130 

muscle was generated. Corticomotor excitability was indexed as map volume, which is 131 

calculated by summing MEP amplitudes from all “active sites” on the grid. NGF was injected 132 

into the right masseter muscle at the end of the Day 0 and 2 laboratory sessions. Electronic pain 133 
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diaries were collected from Days 1 to 30 at 10am and 7pm each day, where participant rated 134 

their pain (0-10) during various activities. Pain upon functional jaw movement is a key criterion 135 

for the diagnosis of TMD [32]. Moreover, previous research has shown that, after an NGF 136 

injection to the masseter muscle, pain during chewing and yawning are higher compared to 137 

other activities [30, 33]. As such, the primary outcomes were pain upon chewing and yawning. 138 

The protocol and methodology are shown in Figure 1A and 1B.  139 

Analytical Validation Plan 140 

 Division of the Data. Analysis was conducted in R, MATLAB and Python, with code 141 

publicly available https://github.com/DrNahianC/PREDICT_Scripts. Figure 1C details the 142 

analysis plan. We adopted a nested-control-testing scheme by partitioning 150 participants into 143 

a training and test set of 100 and 50 participants respectively. 144 

 Growth Mixture Modelling. We used growth mixture modelling (GMM) in R [34-36] 145 

to form two participant classes: high and low pain sensitive. For this categorization, we used 146 

the sum of pain upon chewing and yawning data, and pain diary trajectories from Days 1-7 for 147 

the classification, as this was the timeframe when pain was most prominent (Supplementary 148 

Figure 3). As such, participants would more reliably fall into high and low pain sensitive classes 149 

during this timeframe. The first and last 40 participants (80 in total) in the training set, based 150 

on the ordering of probabilities of the pain intensity trajectory belonging to one of the classes, 151 

were then labelled as high and low pain sensitive. The trained GMM model, once established, 152 

was locked and utilized to label the test set. Consequently, 38 out of 50 test set participants (24 153 

high and 14 low pain) were labelled. These labels were recorded for subsequent comparison 154 

with the predicted labels produced by the trained machine learning model. 155 

Machine Learning Model Selection and Fine Tuning. We utilized five machine 156 

learning models on the labelled training set —logistic regression, random forest, gradient 157 

boosting, support vector machine, and neural network. The dependent variable was pain 158 

sensitivity label (high or low) identified from the GMM and independent variables were 159 

sensorimotor PAF and CME: the latter was typified as facilitator and depressor, depending on 160 

whether they showed an increase or decrease in map volume on Day 5 relative to Day 0, 161 

respectively. For each model, we identified optimized parameters through 5-fold cross-162 

validation: we randomly divided the 80 participants into an internal training set of 64 163 

participants (consisting of four equal folds of 16) and a validation set of 16. The optimized 164 

models in the internal training set were then employed to predict labels in the validation set to 165 
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facilitate model selection. The model with the best performance (area under the curve) on the 166 

validation set was then locked in. 167 

Test Set Prediction. The locked machine learning model was assessed on the test set. 168 

The participant IDs in this set did not coincide with those in the pain diary data, thereby 169 

preserving the double-blind nature of the analysis. By using the ground truth labels 170 

(shuffled), predicted labels (unshuffled), and the shuffling order for the test set, we were able 171 

to evaluate the model's performance by comparing the reordered predicted labels against the 172 

ground truth labels established by the GMM. Performance was assessed via receiver 173 

operating characteristic (ROC) area under the curve (AUC), with 95% confidence intervals 174 

reported. AUC values between 0.7-0.8, 0.8-0.9 and 0.9-1 were considered “acceptable”, 175 

“excellent”, and “outstanding” respectively [31]. 176 

  177 

Results 178 

PAF/CME demonstrated good-excellent test-retest reliability  179 

PAF and ΔCME showed good to excellent test-retest reliability across sessions 180 

(Supplementary Figures 5 and 7).  181 

Outstanding performance on the training validation set 182 

Figure 2A shows the pain scores for participants in the training and test set classified 183 

as high and low pain sensitive based on GMM. Figure 2B (upper) shows the performances of 184 

the machine learning models across the internal training and validation sets. Logistic 185 

regression was chosen as the optimal classifier based on its outstanding performance 186 

(AUC=1.00[1.00-1.00]) when applied to the validation set (Figure 2B lower), with slower 187 

PAF and CME depression predicting higher pain.  188 

Excellent performance on the test set 189 

 When the locked logistic regression model was applied to the test set, performance 190 

(Figure 2C upper) was excellent (AUC=0.88[0.78-0.99]). Figure 2C (lower) shows the 191 

differences in pain scores between participants predicted to have high or low pain. Visually 192 

one can observe slower peak alpha frequency in those predicted to have high vs. low pain 193 

sensitivity (Figure 2D), which was further confirmed with a two-sample t-test (t(48)=5.8,  194 

p<.001). Moreover, one can observe a decrease in CME within the masseter motor maps in 195 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24309005doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24309005
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

those predicted to have high pain (Figure 2E), whereas those predicted to have low pain 196 

exhibit an increase in CME. The differences in the change in CME relative to Day 0 between 197 

these groups was further confirmed with a two-sample t-test (t(48)=2.81, p=.007). 198 

A benefit for a combined signature 199 

We reran the models to determine whether the combined PAF/CME signature out-200 

performed each measure individually (Supplementary Figure 9). For PAF alone, the 201 

performance of the logistic regression model on the training validation and test set were 202 

respectively excellent (AUC=0.95[0.84-1.00]) and outstanding (AUC=0.83[0.70-0.96]). For 203 

CME alone, the performance of the logistic regression model for the training validation and 204 

test set were respectively excellent (AUC=0.88[0.69-1.00]) and acceptable (AUC=0.75[0.60-205 

0.91]).  206 

Results were reproducible when including covariates  207 

We evaluated the performance of the biomarker combined with demographic and 208 

clinical attributes. As we collected a large amount of this data, we applied feature selection, 209 

i.e. filtering features by inspecting p-values when associating predictors and labels, and using 210 

parameter tuning to optimize the coefficients associated with the filtered features. Five 211 

features were subsequently selected and optimized – Sensorimotor PAF, CME, Sex, Pain 212 

Catastrophizing Scale (PCS) Total and PCS Helplessness. The associations between labels 213 

and biomarkers/covariates in the training vs. test set, and performance of the models are 214 

shown in Figure 3A and 3B. When including these five features, the performance of the 215 

logistic regression model was for the training validation and test set were respectively 216 

outstanding (AUC=1.00[1.00-1.00]) and excellent (AUC=0.81[0.67-0.95]).  217 

Results were reproducible across methodological choices  218 

 To determine whether our results were robust across different methodological 219 

choices, we repeated the analysis using PAF calculated using component level data (with the 220 

sensorimotor component chosen manually or using an automated script) vs. sensor level data 221 

(with a sensorimotor region of interest), using different frequency windows (8-12Hz vs. 9-222 

11Hz) and using different CME calculation methods (map volume vs. map area). We found 223 

that, regardless of the choices, logistic regression was the best or equal-best performing 224 

model when applied to the validation set (Figure 3C), with AUCs varying from acceptable 225 

(0.77) to outstanding (1.00). When the locked models were applied to the test set, 226 
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performance varied from acceptable (AUC=0.73) to excellent (AUC=0.88) (Figure 3D). 227 

Lastly, excellent performance was demonstrated when the data was analysed two other ways 228 

(Supplementary Figure 10 and 11): where GMM pain labels were established using the whole 229 

30 days rather than the first 7 days (training validation AUC=0.84[0.64-1], test AUC 230 

=0.89[0.79-0.99]), and when missing pain diary data was not imputed (training validation 231 

AUC=0.81[0.6-1], test AUC=0.89[0.79-0.99]).  232 

 233 

Discussion 234 

A full-scale analytical validation of the PAF and CME biomarker signature was 235 

conducted using a clinically relevant prolonged pain model. In an initial training set (n=100), 236 

we found that a logistic regression was the optimal classifier based on its outstanding 237 

performance (AUC=100%), with slower PAF and CME depression predicting higher pain. 238 

When this model was applied to an independent test set, the AUC was excellent (88%). 239 

PAF/CME showed good-excellent test-retest reliability, and results were reproduced across a 240 

range of methodological parameters and consideration of covariates. Overall, the combination 241 

of sample size, pain model validity, and biomarker accuracy, reproducibility and reliability 242 

suggest the PAF/CME biomarker signature has substantial potential for clinical translation. 243 

Our results suggest that individuals who have slow PAF prior to an anticipated 244 

prolonged pain episode and show corticomotor depression during a prolonged pain episode, 245 

are more likely to experience higher pain. Model performance was higher combining the two, 246 

suggesting consideration of both ascending sensory and descending motor pain processing 247 

mechanisms provides more information regarding pain sensitivity. Overall, we believe this 248 

biomarker could be particularly useful in contexts such as predicting post-operative pain. For 249 

example, a recent study showed that individuals with slower PAF experienced more pain 250 

following a thoracotomy [25]. Given that higher acute pain post-surgery predicts the 251 

development of chronic pain [26], our findings suggest individuals with slow PAF/reduced 252 

CME could be more likely transition to chronic pain.  Indeed, individuals who show lower 253 

CME during the acute stages of low back pain were more likely to develop chronic pain at 6-254 

months follow-up [37]. These preliminary findings, along with our analytical validation 255 

study, suggest PAF and CME could be susceptibility biomarkers for the transition from acute 256 

to chronic pain.  257 
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There are several aspects of our study which stand out within the field. The first is 258 

sample size: with recent advancements in machine learning, it has become possible to 259 

conduct analytical validation of pain biomarkers. However, deep learning requires a large 260 

amount of labelled samples to conduct rigorous training on validation and test sets [8]. 261 

Unfortunately, many pain susceptibility biomarker studies have not been sufficiently sampled  262 

to adopt such approaches [9, 10], and the ones that have used machine learning failed to reach 263 

the sample sizes similar to that of the present study [1, 2].   264 

Another strength of our findings is reproducibility. The majority of work has shown 265 

similar associations between higher pain and slower PAF [16, 22] and CME depression [21, 266 

25] in models of upper limb pain. The present study replicated these results in a model of 267 

prolonged jaw pain, suggesting these associations hold across pain locations. It is important 268 

to note that some studies have not shown a negative relationship between PAF and pain 269 

sensitivity [38, 39] or a positive relationship between CME depression and pain sensitivity 270 

[33]. However, these studies were not sufficiently sampled to conduct analytical validation of 271 

the kind presented in this study. Nonetheless, the mixed findings could also arise from 272 

differences in methodological choices in the estimation of PAF e.g. frequency windows  [39] 273 

and use of sensor vs. component space data [40] and estimation of CME e.g. map volume 274 

[21] vs. area [33]. For this reason, we repeated the main analysis using different 275 

methodological choices and found at least acceptable AUCs. In addition, we found that the 276 

inclusion of covariates such as pain catastrophizing and sex did not alter our results, further 277 

supporting the reproducibility of our results.  278 

The PAF/CME measures demonstrated good-excellent reliability. Reliability is a 279 

highly desirable characteristic which assists in the widespread application of pain biomarkers 280 

[8]. We found in the present analysis, and previously [14], that participants exhibit stable 281 

PAF across days despite the presence of pain, and even when considering different 282 

methodological factors that may influence the reliability of PAF such as pre-processing 283 

pipeline, recording length and frequency window. Indeed, we found reliable PAF with a 284 

recording length as short as 2 minutes and minimal data pre-processing. We also showed that 285 

those who show CME depression on Day 2 are also likely to show CME depression on Day 5 286 

(and vice versa for those who show CME facilitation). This finding was shown even when an 287 

automated method of determining MEP amplitude on each trial was applied. Thus, our work 288 

not only shows that PAF and CME can predict pain, but the relative ease with which reliable 289 

PAF/CME data can be obtained is promising for subsequent clinical translation.  290 
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Another strength of this study is the clinical relevance of our pain model, making 291 

clinical translation of the current findings highly feasible.  While other pain biomarker studies 292 

have shown promising results, these studies were restricted to pain models utilizing transient 293 

painful stimuli lasting seconds to minutes [11-13]. The brief nature of the painful stimuli 294 

questions the external validity of these findings and limits generalizability to clinical 295 

populations. In contrast, the present study used a prolonged pain model lasting weeks. 296 

Several other studies have shown that injections of NGF to the neck, elbow or masseter 297 

muscles can mimic symptoms of clinical neck pain [41], chronic lateral epicondylalgia [29] 298 

and TMD [30] respectively. Thus, the observed relationships between PAF/CME and pain in 299 

the present study show promise in terms of clinical applicability.  300 

Lastly, the PAF/CME biomarker demonstrated high performance. A previous study 301 

found that connectivity between medial prefrontal cortex and nucleus accumbens in 39 sub-302 

acute low back pain patients (pain duration 6-12 weeks) could predict future pain persistence 303 

at ~7, 29 and 54 weeks, with AUCs of 67-83% [1]. Another study on 24 sub-acute low back 304 

pain patients showed that white matter fractional anisotropy measures in the superior 305 

longitudinal fasciculus and internal capsule predicted pain persistence over the next year, 306 

with an AUC of 81% [2].  Though the present did not directly assess the transition to chronic 307 

pain, our AUCs of 100% (validation set) and 88% (test set) appear comparatively high. We 308 

therefore encourage future clinical studies to determine whether PAF/CME can predict the 309 

transition from acute to chronic pain. 310 

Conclusions 311 

A novel biomarker signature comprised of PAF and CME accurately and reliably 312 

distinguishes high and low pain sensitive individuals during prolonged jaw pain with an 313 

excellent AUC of 88% in an independent test set. No other pain biomarker study has shown 314 

this combination of biomarker accuracy, reproducibility, reliability and pain model validity, 315 

suggesting high potential for clinical translation.  316 

 317 

 318 

 319 

 320 
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Figure Captions 422 

Figure 1. (A) Experimental protocol showing timeline of data collection procedures. On Day 423 

0, we measured peak alpha frequency (PAF) and corticomotor excitability (CME). At the end 424 

of the session, an injection of nerve growth factor (NGF) was administered to the right 425 

masseter muscle. On Day 2, PAF and CME were measured, followed by a second NGF 426 

injection. On Day 5, PAF and CME were measured. From Days 1-30, electronic diaries 427 

measuring jaw pain were sent to participants at 10AM and 7PM each day. (B) Details of the 428 

methodology. Sensorimotor PAF was measured using a 5 minutes eyes closed resting state 429 

EEG recording.  Sensorimotor PAF was computed by identifying the component in the signal 430 

(transformed by independent component analysis) that had a clear alpha peak in the 8–12 Hz 431 

range upon frequency decomposition and a scalp topography suggestive of a source 432 

predominately over the sensorimotor cortex. TMS mapping was conducted by stimulating the 433 

scalp area over left M1 to obtain a map of the representation of the right masseter muscle. 434 

The map consists of the motor-evoked potential (MEP) amplitude at each stimulated location, 435 

with CME corresponding to the map volume (sum of all MEPs from active sites). (C) Details 436 

of the analysis plan. We adopted a nested-control-test scheme by partitioning the 150 subjects 437 

into a training set consisting of 100 subjects and an independent test set of 50 subjects. We 438 

labelled a subset of participants in the training (n = 80) and test set (n = 38) as high or low 439 

pain sensitive using growth mixture modelling (GMM) to establish “ground-truth” labels. We 440 

then ran various machine learning models on the labelled training set (with PAF/CME as 441 

predictors, and pain severity labels as outcome), and determined optimized parameters 442 

through 5-fold cross-validation i.e. randomly dividing the 80 subjects into an internal training 443 

set of 64 subjects (with 4 equal folds of 16) and a validation set of 16. The optimized models 444 

in the internal training set were employed to predict labels in the validation set to facilitate 445 

model selection. The model with the best performance on the validation set was then locked 446 

in, and applied to the labelled test set, comparing the predicted labels of high/low pain 447 

sensitive with the ground-truth labels of high/low pain sensitive. 448 

Figure 2. (A) Results of the growth mixture modelling which categorized 80 participants in 449 

the training set (left) and 38 participants in the test (right) as high or low pain sensitive. Data 450 

shows mean pain score (chew + yawn pain rating) for each timepoint, while the shaded area 451 

shows 95% confidence intervals.  (B) The upper panel shows performances (AUC [95% 452 

confidence intervals]) of various machine learning models for the internal training set and 453 

validation set. Logistic regression (LR) was chosen as the optimal classifier based on 454 

outstanding AUC of 100% as shown in the lower panel. (C) The upper panel shows the 455 

performance of the locked logistic regression model when applied to the test set, which was 456 

in the excellent range (AUC of 88%). The lower panel shows the pain trajectories (mean 457 

chew + yawn pain and 95% confidence intervals) of participants predicted to have high or 458 

low pain sensitivity based on the locked logistic regression model. (D) Individual and mean 459 

z-transformed spectral plots and topography of the sensorimotor alpha component on Day 0 460 

for participants predicted to have high or pain sensitivity based on the locked logistic 461 

regression model. (E) The mean motor cortex maps on Day 0 and Day 5 showing normalized 462 

motor evoked potential (MEP) amplitude (expressed as a proportion of the maximal MEP 463 

amplitude) for participants predicted to have high or low pain sensitivity based on the locked 464 

logistic regression model. 465 
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 466 

Figure 3. (A) Visualisation of biomarkers and covariates for the training and test sets across 467 

high (red) and low (blue) pain labels identified from the GMM. Data on PAF, PCS total and 468 

PCS helplessness are plotted as boxplots, while data on CME and Sex are plotted according 469 

facilitator: depressor (Fac: dep) and female: male (fem: mal) split respectively, including odd 470 

ratios. A lower odds ratio means a lower probability of high pain sensitive individuals 471 

belonging to the facilitator or female categories. For PAF and CME, low pain was associated 472 

with fast PAF and CME facilitation for both training and test sets. In contrast, the relationship 473 

between covariates and labels were in the opposite direction for the training and test set, 474 

suggesting the relationship between biomarkers and labels was consistent. (B) The left panel 475 

shows the performance of the locked logistic regression model on the test set when including 476 

covariates in the model. The right panel shows pain trajectories (mean chew + yawn score 477 

and 95% confidence intervals) of participants predicted to have high or low pain sensitivity 478 

based on the locked logistic regression model including covariates. (C) The performance of 479 

each machine learning model (AUC [95% confidence intervals]) on the training validation set 480 

across different PAF/CME calculation methods. This includes the sensorimotor component 481 

chosen manually after an independent component analysis, component identified using an 482 

automated script after an independent component analysis, or using a sensorimotor region of 483 

interest (ROI, mean of Cz, C3 and C4) in electrode space, to calculate PAF. We also looked 484 

at different frequency windows for computing PAF (8-12Hz vs. 9-11Hz) or CME calculated 485 

using map area or map volume. (D) The performance of the locked logistic regression model 486 

(AUC [95% confidence intervals]) when applied to the test set, across different PAF/CME 487 

calculation methods.  488 
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