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Abstract 17 

Immune responses against neuraminidase (NA) are of great interest for developing more 18 
robust influenza vaccines, but the role of anti-NA antibodies on influenza infectivity has not been 19 
established. We conducted household transmission studies in Managua, Nicaragua to examine 20 
the impact of anti-NA antibodies on influenza A/H3N2 susceptibility and infectivity. Analyzing 21 
these data with mathematical models capturing household transmission dynamics and their 22 
drivers, we estimated that having higher preexisting antibody levels against the hemagglutinin 23 
(HA) head, HA stalk, and NA was associated with reduced susceptibility to infection (relative 24 
susceptibility 0.67, 95% Credible Interval [CrI] 0.50-0.92 for HA head; 0.59, 95% CrI 0.42-0.82 25 
for HA stalk; and 0.56, 95% CrI 0.40-0.77 for NA). Only anti-NA antibodies were associated with 26 
reduced infectivity (relative infectivity 0.36, 95% CrI 0.23-0.55). These benefits from anti-NA 27 
immunity were observed even among individuals with preexisting anti-HA immunity. These 28 
results suggest that influenza vaccines designed to elicit NA immunity in addition to 29 
hemagglutinin immunity may not only contribute to protection against infection but reduce 30 
infectivity of vaccinated individuals upon infection. 31 
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Introduction 42 

Influenza virus infection remains an important cause of human disease burden, 43 

with upwards of one billion infections and up to 650,000 deaths occurring globally every 44 

year from disease caused by the influenza virus1. Vaccination against influenza virus is 45 

one of the most effective approaches for reducing the overall morbidity and mortality of 46 

seasonal influenza in communities, and improving the effectiveness of influenza 47 

vaccines is an important goal2–5. There are two important components of transmission; 48 

susceptibility refers to an individual or group’s propensity to become infected with 49 

influenza, assuming adequate exposure. Infectivity refers to an individual or group’s 50 

propensity to infect others, assuming that they themselves are infected. Conditional on 51 

the first person already being infected, the overall risk of transmission from one person 52 

to another depends on the infectivity of the first person and the susceptibility of the 53 

second. Much of the effort for influenza vaccine improvement has focused on the 54 

induction of immune responses that reduce susceptibility to infection or disease, to 55 

moderate effectiveness; much less attention has been given to the development of 56 

vaccines that reduce individual-level infectivity among the vaccinated; in other words, 57 

vaccines that generate an immune response that decreases the infectivity of vaccinees, 58 

even if they are not fully protected from infection3,4,6–8. Population-level vaccination 59 

efforts clearly reduce overall community transmission, likely because vaccinated 60 

individuals show reduced susceptibility to infection, which breaks transmission chains9–61 

11. However, there is no evidence that current-generation influenza vaccines reduce 62 

individual-level infectivity directly, and little is known about if and how immune 63 

responses that protect against influenza virus infection affect individual infectivity. The 64 

identification of immune responses that both reduce susceptibility to infection and 65 
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reduce infectivity among vaccinated individuals who are infected would allow for the 66 

development of influenza vaccinations that lower overall influenza circulation in 67 

communities and that provide additional indirect protection to individuals who are 68 

unvaccinated or under vaccinated for influenza, including infants and 69 

immunocompromised individuals.  70 

Antibody responses against neuraminidase (NA), an influenza surface 71 

glycoprotein, are thought to protect against severe disease caused by the influenza 72 

virus, and high pre-infection anti-NA antibody levels have been shown to reduce the 73 

overall duration of influenza viral shedding12–19. Additionally, studies in animal models 74 

have demonstrated a reduction in viral shedding occurring in animals immunized 75 

against neuraminidase20,21. However, viral shedding does not always consistently 76 

correlate with infectivity, and direct transmission reduction of anti-NA immunity has not 77 

been demonstrated in human populations22. Additionally, the role of the anti-NA 78 

response on infectivity, relative to other important immune targets such as 79 

hemagglutinin, has not been investigated. This study aims to explore the impact of pre-80 

existing antibody levels against the hemagglutinin (HA) head, HA stalk, and NA on 81 

influenza virus A/H3N2 transmission in a household setting, with particular interest in 82 

the role of anti-neuraminidase responses in modulating transmission risk. 83 

 84 

Results 85 

Participant and household characteristics 86 

Over three influenza seasons (2014, 2016, 2017), a total of 171 households (171 87 

index cases and their 664 households contacts) were recruited following the detection 88 

of an infected individual (i.e. the index case) and followed up for an average duration of 89 
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36.7 days. 148 out of 664 (22.3%) household contacts were infected during the follow-90 

up period.  Households were enrolled through identification of an index case at the study 91 

clinic (2014, 2016), or pre-enrolled households were activated after detection of 92 

influenza virus via polymerase chain reaction (PCR) in a member of an enrolled 93 

household (2017). Once activated, index cases and household contacts were tested for 94 

influenza virus every 2-3 days using PCR, and serology was done on blood samples 95 

collected on the first day of household activation (the initial/acute sample) and 30-45 96 

days after household activation (the final/convalescent sample). More information about 97 

the study design and case ascertainment is available in the Online Methods. The 98 

number of infections per household ranged from 1 to 10, with an average of 1.87 total 99 

infections and 0.87 secondary infections per household. The serial interval (i.e. the 100 

average time between index case onset and onset of cases in household contacts) was 101 

3.4 days (SD 2.8 days). A visualization of the intensive monitoring periods by household 102 

is presented in Figure 1.  103 

Less than 10% of individuals had ever been vaccinated against influenza, and 104 

only two individuals had been vaccinated for influenza in the 6 months prior to the start 105 

of the monitoring period. Positive individuals were younger. Overall, a higher proportion 106 

of infected individuals had anti-HA head, HA stalk, and NA pre-existing antibody levels 107 

in the lower quartiles when compared to uninfected individuals (Table 1). There was no 108 

difference in the pre-existing antibody levels between index cases and secondary cases 109 

for hemagglutination inhibition assay titers (HAI) and HA stalk antibody levels; however, 110 

index cases had slightly lower anti-NA antibody levels when compared to secondary 111 

cases (median AUC 29.7 and 45.4, respectively, p = 0.042) (Figure 2a). The secondary 112 
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attack rate in households with an index case with low-to-undetectable anti-NA 113 

antibodies was 23.4%, compared to 17.1% in households with an index case with 114 

higher anti-NA antibodies (p=0.15); there was no difference in secondary attack rates in 115 

households by index case anti-HA head or anti-HA stalk antibodies (Figure 2b). 116 

Effect of pre-existing antibody levels on susceptibility and infectivity 117 

 A mathematical model, calibrated to the data with Bayesian data augmentation 118 

methods, was used to reconstruct the unobserved chains of transmission accounting for 119 

the possibility of community (i.e. household member infected outside the household) 120 

and tertiary (i.e. household member infected by another household member who is not 121 

the index case) infections, estimate household transmission rates and determine factors 122 

affecting individual relative susceptibility and infectivity (see Online Methods)23.  123 

Compared to adults 15+ years of age, children aged 0-14 years had higher relative 124 

susceptibility (relative susceptibility 1.63, 95% CrI 1.22-2.18). High initial antibody levels 125 

against the HA head (0.67, 95% CrI 0.50-0.92), HA stalk (0.59, 95% CrI 0.42-0.82), and 126 

NA (0.56, 95% CrI 0.40-0.77) were associated with reduced susceptibility to influenza 127 

A/H3N2 virus infection (Figure 3a). In infected A/H3N2 individuals, high initial antibody 128 

levels against NA were associated with reduced infectivity (relative infectivity 0.36, 95% 129 

CrI 0.23-0.55). In contrast, high initial antibody levels against the HA head and the HA 130 

stalk were not associated with reduced infectivity (1.33, 95% CrI 0.90-1.90 for the HA 131 

head, 1.08, 95% CrI 0.75-1.59 for the HA stalk)(Figure 3b). The probability of infection 132 

from the community was estimated to be 5.8% per month (95% CrI 2.7%-10.8%).  133 

 134 

 135 
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Necessity of robust antibody responses to reduce susceptibility 136 

Because antibodies against all three antigens were associated with reduced 137 

susceptibility, we next explored whether high antibody levels against a single antigen 138 

could significantly impact susceptibility and infectivity, or whether a combination of 139 

immune responses was needed. We therefore compared the A/H3N2 susceptibility and 140 

infectivity of individuals who had high antibody levels for zero antibody measures, one 141 

antibody measure, two antibody measures where none are against NA, and two or more 142 

antibody measures where one is against NA. This model allows us to test the 143 

hypothesis of an additive protective effect of anti-HA head, anti-HA stalk and anti-NA 144 

antibodies made in our baseline model, as well as any dose-response pattern observed 145 

in the relationship between antibody levels and susceptibility/infectivity. Furthermore, by 146 

splitting the high-responder categories by those with anti-NA antibodies and those with 147 

low-to-undetectable anti-NA antibodies, we are able to further test whether anti-NA 148 

immunity is uniquely associated with reduced infectivity in influenza virus A/H3N2. 149 

Individuals with higher antibody levels for one measure did not see their susceptibility or 150 

infectivity modified compared to individuals with low antibody levels for all measures 151 

(relative susceptibility 0.83, 95% CrI 0.49-1.38; relative infectivity 0.95, 95% CrI 0.56-152 

1.52), nor did individuals with higher antibody levels for both the anti-HA measures 153 

(relative susceptibility 0.62, 95% CrI 0.34-1.10; relative infectivity 1.17, 95% CrI 0.62-154 

2.03). However, individuals with high antibody levels for two or more measures, one of 155 

which is a response against NA, demonstrate reduced susceptibility to and infectivity of 156 

influenza virus A/H3N2 (relative susceptibility 0.32, 95% CrI 0.21-0.48; relative 157 

infectivity 0.46, 95% CrI 0.29-0.70)(Figure 4).  158 
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Effect of anti-NA antibodies in individuals with existing anti-HA antibodies 159 

 Finally, we asked whether the benefit of anti-NA immunity was only seen in those 160 

with little-to-no anti-HA immunity, or whether anti-NA immunity was beneficial even in 161 

individuals with high pre-existing antibody levels to HA. To do this, we investigated the 162 

relative contribution of anti-NA antibody levels on influenza virus A/H3N2 infections 163 

among individuals who have existing high anti-HA antibodies to understand what, if any, 164 

benefit that high anti-NA antibodies have on susceptibility and infectivity among 165 

individuals who already have some anti-HA immunity. Among individuals with high anti-166 

HA head and/or anti-HA stalk preexisting antibodies, those who also had higher anti-NA 167 

antibody levels had reduced susceptibility (relative susceptibility 0.43, 95% CrI 0.30-168 

0.61) and infectivity (relative infectivity 0.42, 95% CrI 0.27-0.67) to influenza A/H3N2 169 

virus infection, relative to those with low anti-NA antibody levels. 170 

 171 

Simulation analyses 172 

 Simulating epidemics in households from the model, we found that the 173 

transmission model was able to capture the observed patterns of secondary attack rates 174 

(SARs) by household size, even among large households (Supplemental Figure 1). In 175 

households of size 4, the most common household size in this study, the observed SAR 176 

was 0.18, and the estimated SAR across 100 simulations was 0.19 (95% CrI 0.14-0.26).  177 

When we used our inference framework on data simulated from our model with 178 

known parameter values, parameter values were recovered consistently and with little 179 

directional bias. The simulation value fell within the 95% credible interval in 85%+ of 180 

simulations for all parameters, except for the NA infectivity parameter (70%) (Figure 5). 181 

In sensitivity analyses, we checked that the association between higher anti-NA 182 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.24308936doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.14.24308936


8 
 

antibody levels and reduced infectivity remains under different assumptions about 183 

distribution of the incubation and infectivity periods (Supplemental Table 1). 184 

Discussion 185 

Through intensive monitoring of households with known influenza A/H3N2 virus 186 

infection in combination with statistical transmission modeling, this study was able to 187 

reconstruct household transmission chains and assess the impact of individual-level 188 

factors, such as pre-existing antibody levels, on the susceptibility and infectivity of 189 

influenza A/H3N2 virus in a household setting.  190 

 Individuals who were infected with influenza A/H3N2 virus and who had high pre-191 

existing antibodies against NA demonstrated reduced infectivity relative to infected 192 

individuals with low preexisting antibodies against NA. The magnitude of this difference 193 

is substantial, with high-anti-NA individuals having 64% (95% CrI 40-79%) reduced 194 

infectivity compared to low-anti-NA individuals. Importantly, preexisting antibodies 195 

against the HA head and HA stalk were not associated with reduced infectivity, 196 

indicating that a reduction in influenza infectivity may depend on anti-NA responses 197 

alone. This specificity is biologically plausible, as NA, not HA, is responsible for viral 198 

egress, and thus it is reasonable that anti-NA responses alone contribute to a reduction 199 

in overall viral load, viral shedding, and subsequent transmission16.  200 

 We found that all the factors of interest included in the transmission model, 201 

namely age and pre-existing antibody levels against the HA head, HA stalk, and NA, 202 

were associated with influenza susceptibility. Specifically, children aged 14 years and 203 

younger were 63% more susceptible to infection than adults aged 15 years and older. 204 

This is in line with a large body of work indicating that children are more susceptible to 205 

influenza virus infection but suggests that this susceptibility is not entirely due to a lack 206 
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of influenza exposure history and immune response, as we observe a large association 207 

between age and susceptibility even when accounting for anti-HA head, anti-HA stalk, 208 

and anti-NA antibody levels22,24–28. Individuals with high preexisting antibodies 209 

demonstrated reduced susceptibility to influenza A/H3N2 virus infection, with reductions 210 

of 33%, 41%, and 44%, respectively, for antibodies against the HA head, HA stalk, and 211 

NA, which is in line with previous work on the correlates of protection against influenza 212 

viruses, including influenza A/H3N212,13,29,30.  213 

We found that susceptibility to and the infectivity of influenza A/H3N2 virus was 214 

not reduced when individuals had higher antibodies for only one target (HA head, HA 215 

stalk, or NA), nor were they reduced when individuals had higher antibodies for multiple 216 

HA targets but not NA. However, having higher antibodies for two or more targets, with 217 

one being NA, was associated with a 68% (52%-79%) reduction in susceptibility and 218 

54% (30%-71%) reduction in infectivity, respectively, compared to individuals with low-219 

to-undetectable antibodies against all targets. These findings emphasize the importance 220 

of generating robust, multi-epitope immune responses in vaccine-development efforts to 221 

generate vaccinations that protect adequately against infection and transmission. They 222 

also suggest that the induction of robust anti-NA immunity may be especially important. 223 

Among individuals with existing immunity to HA, high anti-NA antibody levels are 224 

associated with a reduction in influenza A/H3N2 virus infectivity and susceptibility, 225 

indicating that the induction of better anti-NA response may be beneficial even in 226 

individuals with strong anti-HA immunity. Though current-generation influenza vaccines 227 

typically include a neuraminidase component, the immunogenicity of the NA component 228 

of vaccines is inconsistent, and anti-NA responses are often not utilized as an endpoint 229 
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in the projection of vaccine efficacy against seasonal influenza5,31. These results 230 

suggest that, to generate next-generation influenza vaccines that are effective at 231 

reducing susceptibility as well as infectivity, the anti-NA response generated by vaccine 232 

candidates needs to be emphasized, measured, and assessed.  233 

The secondary attack rate (the proportion of household contacts that become 234 

infected) in the study population was 22.3%, which is consistent with that found from 235 

other studies, especially given that there is a large proportion of children who have been 236 

associated with higher influenza SARs, in this population relative to that of other 237 

studies28,32. As expected, individuals who remained negative for influenza A/H3N2 virus 238 

throughout the monitoring period had higher initial levels for antibodies against the HA 239 

head, HA stalk, and NA when compared to individuals who became positive. Index 240 

cases had a similar distribution of pre-existing antibody levels compared to secondary 241 

cases for anti-HA head and stalk antibodies, indicating that there is likely not a large bias 242 

in the ascertainment of index cases vs. secondary cases relative to preexisting antibody 243 

levels. The small difference in distribution observed for NA may be due to differing age 244 

and symptom distributions between index cases and secondary cases. 245 

This study is strengthened by the relatively large sample size, robust 246 

immunologic characterization of participants before and after infection, and methods 247 

that allow for probabilistic chains of transmission to be reconstructed to assess 248 

individual-level risk factors for infectivity and susceptibility, rather than assuming all 249 

secondary cases arise from the index case. Furthermore, the unvaccinated nature of 250 

the population allows us to specifically examine infection-induced immunity.  251 
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This study is limited by the low number of vaccinated participants, which makes 252 

stratification by vaccination status impossible; the relative contribution of anti-NA 253 

antibodies on A/H3N2 transmission may differ between vaccine-induced and infection-254 

induced immunity in ways that we cannot assess. Furthermore, even though our 255 

modelling accounts for the possibility of community infections, we cannot rule out the 256 

possibility that some household contacts infected in the community might have been 257 

misattributed to in-household transmission; however, we would not expect this to be 258 

specific to higher or low-to-undetectable antibody levels for any of the targets and would 259 

not expect a directional bias in these estimates. 260 

Conclusions 261 

Using data from two large household transmission studies, we found that, though 262 

pre-existing anti-HA head, stalk, and anti-NA antibodies are important for reduced 263 

susceptibility to influenza A/H3N2 virus infection, only anti-NA antibodies are associated 264 

with reduced infectivity in a household transmission setting. Our results suggest that the 265 

induction of a better humoral immune response against NA may improve next-266 

generation vaccines’ effectiveness at preventing infection and disease and may reduce 267 

individual infectivity even in the event of a breakthrough infection. These findings 268 

reinforce the need for continued development of influenza vaccinations that target NA in 269 

addition to HA in order to develop next-generation influenza vaccines that protect 270 

against influenza virus infection and reduce influenza infectivity.  271 

 272 

 273 

 274 

 275 
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Online Methods 276 

Study Population and Design 277 

This study uses data from two household influenza transmission studies based in 278 

Managua, Nicaragua: the Household Influenza Transmission Study (HITS) and the 279 

Household Influenza Cohort Study (HICS). HITS is a case-ascertained study, meaning 280 

that influenza-positive individuals are identified, and other members of their household 281 

recruited for enrollment, that ran from 2012 to 2017, and HICS is a prospective 282 

household-based cohort study that began in 2017 and is currently ongoing. In both 283 

studies, influenza A/H3N2 virus-positive individuals, the index cases, are initially 284 

detected at a health center, where household members are enrolled (HITS) or activated 285 

(HICS) into intensive monitoring for a period of ~14 days. During this period, household 286 

members are tested repeatedly for influenza virus, allowing for a reconstruction of likely 287 

transmission chains within each household. Blood samples are collected both at the 288 

beginning of the monitoring period and 30-45 days after33. These studies were approved 289 

by the institutional review boards at the Nicaraguan Ministry of Health and the University 290 

of Michigan and are in accordance with the Helsinki Declaration of the World Medical 291 

Association. Written consent to participate or parental permission was obtained for all 292 

participants; in children older than 6 years, verbal assent was obtained. 293 

Laboratory Methods 294 

Nasal/oropharyngeal swabs collected from household members were tested for 295 

influenza virus with real-time reverse-transcription polymerase chain reaction (RT-PCR) 296 

using validated Centers for Disease Control and Prevention (CDC) protocols. If positive 297 

for influenza virus, subtype or lineage determination was performed using additional RT-298 

PCR assays34–36. Several serological assays were conducted on each blood sample to 299 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.24308936doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.14.24308936


13 
 

measure the initial and final antibody levels against various influenza antigens; 300 

hemagglutination inhibition assays (HAIs), and enzyme-linked immunosorbent assays 301 

(ELISAs) against full-length HA, the HA stalk, and NA. Details about the specific 302 

antigens used for each assay are available in the supplement (Supplemental Table 2). 303 

Statistical Methods 304 

Preexisting antibody levels were divided into quartiles, with the lowest quartile 305 

corresponding to low antibody levels and the remaining quartiles corresponding to high 306 

antibody levels. The distribution of initial antibody levels for index cases, secondary 307 

infections within the household of the index case, and uninfected household members 308 

were compared using two-sided Wilcoxon rank-sum tests.  309 

We used a mathematical model to assess the impact of individual-level age and 310 

immune characteristics and contact structure on the person-to-person probability of 311 

transmission. The model estimated the risk of transmission between all household 312 

members including the risk from secondary cases. The risk of transmission from an 313 

infected individual depended on time after infection with by lognormal distribution23,37,38. 314 

This risk was modulated by infectivity factors, namely individual pre-existing anti-HA 315 

head, anti-HA stalk, and anti-NA antibody levels of the infector. It was also modulated 316 

by the susceptibility factors being the individual characteristics of the susceptible 317 

contact, namely individual age and pre-existing anti-HA head, anti-HA stalk, and anti-NA 318 

levels. Finaly the risk depended on the household size. We also estimated the risk of 319 

infection from the community. This transmission model accounts for chains of 320 

transmission within households, namely that additional household infections beyond the 321 

index case may occur due to community transmission or due to infection from a non-322 

index household member, which is advantageous relative to other common statistical 323 
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approaches to transmission, approaches including logistic models23,24,39,40. Additional 324 

information about the transmission model, including the functional forms and 325 

mathematical formalism, are included in the Supplement. 326 

Model parameters were estimated using Bayesian Markov chain Monte Carlo 327 

(MCMC)23,41. The statistical model has a hierarchical structure with three levels23: i) the 328 

observation level ensures consistency between observed and augmented data (based 329 

on the probabilistic distribution assumed for the incubation period23,41–43), ii) the 330 

transmission model (described above), characterizes within household transmission 331 

dynamics, iii) the prior model describe prior distribution for model parameters. 332 

Transmission parameters and augmented times of infection were iteratively updated 333 

using a Metropolis-Hastings algorithm23,41–45. Each MCMC chain was iterated 50,000 334 

times, and the first 500 iterations were burned out. We report the median of the 335 

posterior distribution with the 95 credible interval (Crl) for each estimated transmission 336 

parameter.  337 

Additionally, 100 datasets of simulated infection events were generated by an 338 

agent-based model by retaining household structure, index case assignment, and 339 

individual characteristics such as age and antibody levels. Infection events at each time 340 

step were drawn randomly from the probability of transmission derived from the 341 

transmission model. Transmission parameters used were the posterior medians. We 342 

assessed model adequacy by comparing secondary attack rates at each household size 343 

generated by the model to those generated by the observed data, and examined the 344 

bias of estimated parameters, including the proportion of the 95% credible interval from 345 

the original posterior distributions that covered the median simulation values. Analyses 346 
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were conducted using SAS 9.4, R version 4.3.1-4.3.2, and Visual Studio Code version 347 

1.87.2 348 

 349 
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Tables 375 

Table 1. Description of Study Population 376 

 A/H3N2 positive 
(n=319) 

n (%) 

A/H3N2 negative 
(n=516) 

n (%) 

Total (n=835) 

n (%) 

Gender    

  Female 176 (55.2) 342 (66.3) 518 (62.0) 

  Male 143 (44.8) 174 (33.7) 317 (38.0) 

Age  (mean, SD) 14.7 (14.9) 27.1 (19.0) 22.3 (18.6) 

  0-1 year 27 (8.5) 9 (1.7) 36 (4.3) 

  2-4 years 66 (20.7) 32 (6.2) 98 (11.7) 

  5-14 years 120 (37.6) 147 (28.5) 267 (32.0) 

  15+ years 106 (33.2) 328 (63.6) 434 (52.0) 

Vaccination    

  Ever vaccinated 40 (12.5) 36 (7.0) 76 (9.1) 

  Recently  

  Vaccinated* 

2 (0.6) 0 (0.0) 2 (0.2) 

Season    

  2014-2015 44 (13.8) 90 (17.4) 134 (16.0) 

  2016-2017 122 (38.2) 164 (31.8) 286 (34.3) 

  2017-2018 153 (48.0) 262 (50.8) 415 (49.7) 

HAI    

Quartile 1 122 (38.2) 143 (27.7) 265 (31.7) 
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 377 

Quartile 2 74 (23.2) 107 (20.7) 181 (21.7) 

Quartile 3 92 (28.8) 171 (33.1) 263 (31.5) 

Quartile 4 31 (9.7) 95 (18.4) 126 (15.1) 

HA stalk    

Quartile 1 117 (36.7) 91 (17.6) 208 (24.9) 

Quartile 2  89 (27.9) 123 (23.8) 212 (25.4) 

Quartile 3 61 (19.1) 142 (27.5) 203 (24.3) 

Quartile 4 52 (16.3) 160 (31.0) 212 (25.4) 

NA    

Quartile 1 128 (40.1) 83 (16.1) 211 (25.3) 

Quartile 2 79 (24.8) 130 (25.2) 209 (25.0) 

Quartile 3 64 (20.1) 144 (27.9) 208 (24.9) 

Quartile 4 48 (15.1) 159 (30.8) 207 (24.8) 

*Vaccinated within 6 months of the start of the intensive monitoring period. 378 

 379 

 380 

 381 

 382 
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Figures 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

Figure 1. Intensive monitoring periods by household. Infected individuals represented with red dots; uninfected 
individuals are represented in blue dots. The blue bars represent the duration of the influenza intensive monitoring 
period within the household. 
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 392 

 393 

 394 

 395 

 396 

  397 

 398 

Figure 2. Antibody levels by PCR status and household SAR. (a) Distribution of pre-infection antibody titers by PCR-
negative individuals, probable index cases, and probable secondary/tertiary cases (chevrons representing mean 
antibody level). (b) Mean and 95% confidence intervals for the secondary attack rates by household, stratified by the 
antibody levels of the household index case. P-values are calculated from generalized estimating equations (GEEs) with 
weighting by household size. 
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 399 

 400 

 401 

 402 

 403 

Figure 3. Relative susceptibility and infectivity of A/H3N2 by age and antibody levels (a) Point estimate and 95% 
credible interval for relative susceptibility to A/H3N2 as a function of age and high versus low initial antibody levels 
against the HA head, HA stalk, and NA. (b) ) Point estimate and 95% credible interval for relative infectivity of A/H3N2 as 
a function of high versus low initial antibody levels against the HA head, HA stalk, and NA. 
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 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

Figure 4. Effect of cumulative antibody levels on susceptibility and infectivity Point estimate and 95% credible 
interval for (a) relative susceptibility to A/H3N2 as a function of age and categorical higher-versus-low antibody levels 
for zero (reference), one, two or more (not including NA), or two or more (including NA) antibody targets, and (b) relative 
infectivity of A/H3N2 as a function of categorical, higher-versus-low antibody levels for zero (reference), one, two or 
more (not including NA), or two or more (including NA) antibody targets. 
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 413 

 414 

 415 

 416 

 417 

 418 

Figure 5. Parameter estimates in simulated datasets. (a) Point estimate and 95% credible interval for each parameter 
from the actual data, compared to the parameter point estimates recovered from running the MCMC on each simulated 
dataset. (b) proportion of simulations where the parameter point estimates recovered from the simulated dataset falls 
within the 95% credible interval of the parameters run on the actual data. Alpha is the community transmission 
parameter, beta is the household transmission parameter, and delta is a parameter for relating beta to household size. 
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