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Abstract 

People with psychosis exhibit thalamo-cortical hyperconnectivity and cortico-cortical 

hypoconnectivity with sensory networks, however, it remains unclear if this applies to all 

sensory networks, whether it arises from other illness factors, or whether such 

differences could form the basis of a viable biomarker. To address the foregoing, we 

harnessed data from the Human Connectome Early Psychosis Project and computed 

resting-state functional connectivity (RSFC) matrices for 54 healthy controls and 105 

psychosis patients.  Primary visual, secondary visual (“visual2”), auditory, and 

somatomotor networks were defined via a recent brain network partition.  RSFC was 

determined for 718 regions via regularized partial correlation.    Psychosis patients—

both affective and non-affective—exhibited cortico-cortical hypoconnectivity and 

thalamo-cortical hyperconnectivity in somatomotor and visual2 networks but not in 

auditory or primary visual networks.  When we averaged the visual2 and somatomotor 

network connections and subtracted the thalamo-cortical and cortico-cortical 

connectivity values, a robust psychosis biomarker emerged (p=2e-10, Hedges’ g=1.05). 

This “somato-visual” biomarker was present in antipsychotic-naive patients and did not 

depend on confounds such as psychiatric comorbidities, substance/nicotine use, stress, 

or anxiety.  It had moderate test-retest reliability (ICC=.61) and could be recovered in 

five-minute scans.  The marker could discriminate groups in leave-one-site-out cross-

validation (AUC=.79) and improve group classification upon being added to a well-

known neurocognition task.  Finally, it could differentiate later-stage psychosis patients 

from healthy or ADHD controls in two independent data sets.  These results introduce a 

simple and robust RSFC biomarker that can distinguish psychosis patients from controls 

by the early illness stages.  
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Introduction   

Psychiatry needs robust, generalizable biomarkers of psychosis.  Such 

biomarkers could help clarify illness pathophysiology, predict illness onset, or stratify 

patients into clinically meaningful subgroups [1].  Here, we consider the possibility that 

functional dysconnectivity of sensory networks might provide such a marker.  Past fMRI 

work has shown that–in later-stage schizophrenia –cortical sensory areas are more 

weakly connected to one another (‘hypoconnectivity’) and more strongly connected to 

the thalamus (‘hyperconnectivity’) [2].  The hyperconnectivity result has been replicated 

[3–6] but the hypoconnectivity result has received comparatively less attention.  

Moreover, these studies estimated connectivity via Pearson correlation, which cannot 

distinguish direct and indirect connections  [7]. In many of these studies, various 

confounds were not ruled out and the specificity of the effect to psychosis remained an 

open question.  Finally, no attempt has been made to coalesce these findings into a 

single marker.   

To be clinically useful, a neuroimaging biomarker should have a number of 

features.  It should: 1) be large in magnitude; 2) be robust to potential confounds 

including motion, medication, and comorbidities; 3) emerge with multiple preprocessing 

strategies [8]; 4) generalize to unseen data [9]; 5) differentiate psychosis patients from a 

clinical control group; 6) be recoverable from a relatively brief scan session; 7) 

complement and improve upon other more standard methods of discriminating groups 

(e.g., neurocognition); 8) have good retest reliability; and, ideally, 9) be biologically 

plausible and easy to interpret [e.g., 10].   We sought to establish such a marker by 

leveraging data from the Human Connectome Early Psychosis project.  We focused on 

early psychosis patients since this population lacks illness chronicity confounds (e.g., 

poor health and diet, prolonged medication exposure).  We restricted the hypothesis 

space in a principled way by conducting our analyses on four atlas-defined sensory 

networks [11] (Fig. 1).  Moreover, our results were computed at the network level so as 

to yield potentially larger and more generalizable group differences [11, 12].  Finally, we 

derived resting-state functional connectivity (RSFC) matrices via regularized partial 

correlation (graphical lasso), which may offer the best strategy for removing spurious 

and indirect connections [13].  
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 Below, we first generate RSFC matrices for each subject and identify the 

sensory networks that most obviously exhibit “dysconnectivity”, that is, abnormal 

cortico-cortical or thalamo-cortical connections [14]. Upon finding that the affective and 

non-affective groups were nearly the same on every RSFC measure and that they 

differed from controls on the somatomotor and secondary visual network, we combined 

these two groups and devised a novel  “somato-visual” biomarker of psychosis. We 

show that this biomarker exemplifies most of the nine features enumerated above.  

 

Materials & Methods 

Participants  

The HCP Early Psychosis Project (release 1.1) furnishes multimodal brain 

imaging data from healthy controls (n=54, 34 males, ageMEAN=24.8), patients with 

nonaffective psychosis (n=81, 56 males, ageMEAN=22.1),  and patients with affective 

psychosis (n=24, 9 males, ageMEAN=24.4; see Table S1 for further clinical and 

demographic details).  This sample does not include 6 subjects (4 non-affective, 2 

affective) who had a missing run, 6 subjects whose preprocessing failed or had 

otherwise low quality (1 control, 3 non-affective, 2 affective), and 3 non-affective 

patients with excessive in-scanner motion.  

All patients had an illness onset within five years of testing.  Diagnoses were 

based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and 

were assessed via Structured Clinical Interview for DSM-5 (SCID) [15, 16]. Symptoms 

were assessed with the Positive and Negative Syndrome Scale [PANSS; 17] and a five-

factor scoring system [18].  Medication dose on the day of the scan was recorded as 

chlorpromazine equivalents [19].  There were 22 patients who were antipsychotic-naive 

at the time of scanning.  
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fMRI acquisition 

T1w (MPRAGE) and T2-weighted (SPACE) scans were used for image 

preprocessing (slice thickness = 0.8 mm, 208 slices).  Whole-brain multiband T2*-

weighted echo-planar imaging (EPI) resting-state acquisitions were collected at four 

sites with 32- or 64-channel head coils.  Data were not normalized according to testing 

site (or any other potential confound) at any stage of the analysis. There were four 

resting-state scans per subject (410 measurements; 5 minutes 28 seconds; TR=.8 s; 

voxel=2 mm3); these were acquired with eyes open and in alternating phase encoding 

directions (anterior-to-posterior, posterior-to-anterior; see Supplementary Methods).       

 

fMRI preprocessing and accounting for in-scanner motion 

 Imaging data were minimally preprocessed using fMRIPrep (Supplementary 

Methods).  All subsequent preprocessing steps and analyses were conducted on CIFTI 

91k grayordinate standard space using a parcellated time series (i.e., one BOLD time 

series for each parcel, averaged over grayordinates; see below for a description of the 

brain partition).  We performed nuisance regression on the minimally preprocessed 

functional data using 24 motion parameters (6 motion parameter estimates, their 

derivatives, and the squares of each) and the 4 ventricle and 4 white matter parameters 

(parameter estimates, the derivatives, and the squares of each) (Ciric et al., 2017).  

Results were initially run without whole-brain global signal regression (GSR).  When 

GSR was applied, we additionally included four more regressors (mean signal, its 

derivative, and the quadratic of each) [20].  Each run was also individually demeaned 

and detrended, adding 2 more regressors per run.  To show robustness, a third 

preprocessing strategy–aCompCor–was also used; this incorporated the first five 

principal components of white matter and ventricles for the physiological regressors 

[21]. 

Additionally, we removed the first five frames of each run and applied motion 

scrubbing (Power et al., 2012). That is, whenever the framewise displacement for a 

particular frame exceeded 0.20 mm, we removed that frame, one prior frame, and two 

subsequent frames (Supplementary Methods). To reduce the effect of respiration on the 
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framewise displacement measure, we applied a first-order Butterworth low pass (0.3 

Hz) filter to the framewise displacement values of each run [22].  Unless otherwise 

noted, all subjects were required to have at least four minutes of unscrubbed frames 

[23].    

Groups differed on the mean framewise displacement across scans before 

scrubbing and also on the number of unscrubbed frames (Table S1).  To match groups 

on these two variables in our post-hoc analyses, we removed motion-prone patients 

(framewise displacement greater than 1.5 SD above the control mean; leaving 58 non-

affective and 18 affective psychosis patients).  For certain analyses, as a more austere 

measure, we also removed all subjects (patient or control) whose mean framewise 

displacement exceeded .08 mm so that the groups were again matched on this variable, 

similar to another prior study [24]. 

   

Brain network partition 

We used the Cole-Anticevic Brain Network partition, which divides parcels into 12 

functional networks [11].  Functional networks were constructed from the 360 cortical 

parcels from the Glasser et al. atlas [25] plus an additional 358 subcortical parcels [11]. 

This partition includes four sensory networks: primary visual, secondary visual, 

somatomotor, and auditory (Fig. 1).  There were 38 thalamic parcels, of which 22 were 

assigned to a sensory network (including 2 secondary visual, 2 somatomotor).    
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Fig. 1. The four sensory networks of the brain network partition.  The partition 

comprises four sensory networks, with the somatomotor network encompassing the 

somatosensory cortex.  The thalamus contains parcels of each sensory network. 

 

Resting-state functional connectivity (RSFC) derivation   

 For each subject, we derived RSFC matrices via regularized partial correlation 

[26] and assessed each possible hyperparameter value via 10-fold cross-validation 

(range = 0-0.5 with increments of 0.001 from 0 to 0.1 and increments of .01 thereafter; 

see Supplementary Methods).  Specifically, on each fold, a 718x718 regularized partial 

correlation matrix was formed from 90% of the time series.  We then predicted the held-

out portion of a time series of each parcel using this matrix along with the held-out time 

series of the remaining parcels (see Supplementary Methods).   A hyperparameter 

value was considered optimal for a subject if it yielded a matrix that could most 

accurately predict the held-out time series across parcels and folds, where accuracy 

was assessed with the coefficient of determination (R2). An advantage to this method is 

that it yields FC estimates that are more accurate and more reliable than other 

multivariate approaches [13].   
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Comparing groups on functional connectivity results 

To determine each participant’s thalamo-cortical connectivity for a sensory 

network, we averaged all Fisher-z transformed connection weights between all 38 

thalamic parcels and all cortical parcels of that network (yielding one value per subject).  

To determine each participant’s cortico-cortical connectivity value, we averaged Fisher-

Z transformed connectivity weights between all cortical parcels of a network (again, 

yielding one value per subject).  These averaged connectivity values were compared 

between groups using one-way ANOVAs, once for cortico-cortical and once for 

thalamo-cortical (Fig. 2).  For pairwise comparisons of continuous quantities (including 

the cortico-cortical values, the thalamo-cortical values, and the proposed biomarker), we 

used Welch’s t-tests and Cohen’s d with Hedges’ correction (Hedges’ g) to account for 

sample size imbalances or potentially smaller sample sizes [27].  Statistical correction, 

when applied, was performed via Benjamini and Hochberg’s false discovery method 

(q<.05) [28].  Corrected p values were denoted with an “FDR” subscript.   

 

Comparing groups using other data sets 

We considered whether our proposed biomarker could be found in two 

independent data sets, each of which incorporated eyes-open resting-state data.  The 

first was collected at Rutgers University and comprised 19 healthy controls and 22 

chronically ill psychosis patients (14 schizophrenia, 1 schizoaffective disorder, 7 bipolar 

disorder); these data were collected on an older scanner (Tim Trio) with a different 

pulse sequence (e.g., MB 6, iPAT=2), a different scan duration (10 minutes; 765 TRs), 

and a different scrubbing threshold (0.3 mm) [29]  The preprocessing has been 

described (ibid), with the only differences being that we also included subcortex (358 

parcels), applied GSR, and derived the RSFC via graphical lasso, as above. The 

second independent data set was from the UCLA Consortium for Neuropsychiatric 

Phenomics–and compared people with ADHD (n=35) or schizophrenia (n=36), and 

healthy controls (n=93) [30].  The preprocessing steps for this single-band, legacy data 

set (with no T2-weighted structural image) have been described, but involved excluding 

GSR (using a variant of aCompCor instead), removing high motion scans and subjects, 
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analyzing the whole brain in grayordinate space, and deriving the functional 

connectome via principal components multiple regression [for details see 31].  

 

Establishing the somato-visual marker via cross-validation and out-of-sample 

validation 

To determine the predictive value of the somato-visual biomarker and to assign 

risk scores for each subject, we employed binary logistic regression and leave-one-site-

out cross-validation (LOSOCV; four sites).  Logistic regression was chosen because it is 

parsimonious, robust, and yields interpretable results [32, 33].  Sample size imbalances 

were minimized by using weighted logistic regression (so that sensitivity and specificity 

were given equal priority).  LOSOCV was chosen because our goal was to determine if 

results could generalize to different populations and scanners, and since it has been 

used successfully in past studies  [34, 35].   Note that, to prevent data leakage, the 

normalization terms (mean/SD) for the RSFC variable were derived from the training 

data only for each fold.  We report key classification statistics from the LOSOCV, 

namely, sensitivity, specificity, positive predictive value, negative predictive value, 

balanced accuracy, and area under the ROC curve (AUC) (Table S2). AUC confidence 

intervals were provided via bootstrapping (1000 repetitions).  Model performance was 

evaluated using all data with a 1-df Likelihood Ratio Test (LRT).   

We also determined if the model built from the HCP data could predict the 

presence or absence of a psychotic disorder in the Rutgers and UCLA data sets 

described above.  As before, the normalization terms were based on the training data 

only.  We reported the same classification statistics as before (Table S3), and compared 

patients and controls on the risk scores in each held-out data set by using a one-sided 

Mann-Whitney U test.    

 

Determining the predictive value of RSFC by comparing it with neurocognition 

 We also examined whether the RSFC variable could improve upon 

neurocognition for classifying patients and controls.  We utilized the “Q3A Memory” 

version of an auditory continuous performance task (ACPT) [36], in which participants 

heard two blocks of 90 pre-recorded letter sequences and were asked to indicate 
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whenever they heard a “Q” followed by “A” four letters later.  In a longitudinal study of 

clinical high risk patients, this task yielded one of the largest group differences (Cohen’s 

d=.7) between healthy controls and patients who went on to develop a psychotic 

disorder (n=264, n=89, respectively) [36].  Therefore, it was expected to provide a valid 

benchmark comparison.   To consider whether the RSFC variable could improve upon 

this variable, we ran the weighted binary logistic regression on all subjects–once with 

the neurocognition variable by itself and once again with both variables included.  We 

used a 1-df likelihood ratio test (LRT) to determine if the model improved by adding the 

RSFC variable.  

 

Test-retest reliability 

To consider test-retest reliability, we: i) removed motion-prone patients as above; 

ii) computed the RSFC biomarker value separately for runs 1 and 2 (concatenated) and 

runs 3 and 4 (concatenated); and iii) calculated risk scores (across all subjects) at each 

time point by using weighted binary logistic regression.  Finally, we probed whether the 

risk scores were correlated across the two time points and whether the RSFC biomarker 

was consistent across time points by using intraclass correlation (ICC(2,1); 

Supplementary Methods).  Note that this ICC variant treats time point as a random 

factor to better generalize to longer retest intervals.  

 

Results 

Dysconnectivity of the somatomotor and secondary visual networks  

With respect to cortico-cortical connectivity, the groups differed on the visual2 

network (F(2,156)=5.9, p=0.003, η²=0.07; Fig. 2). Follow-up tests showed reduced 

connectivity in nonaffective patients relative to controls (t(123.1)=3.2, pFDR=0.006, 

g=0.54) and in affective patients relative to controls (t(44.5)=2.9, pFDR=0.01, g=0.69) but 

not between the two patient groups (p=.64, g=.10).  There was also a group difference 

on cortico-cortical connectivity in the somatomotor network (F(2,156)=10.0, p=0.0001, 

η²=0.11). Follow-up tests showed reduced connectivity in each patient group relative to 

controls (non-affective: t(131.5)=4.7, pFDR<.0001, g=0.76; affective: t(38.8)=2.5, 

pFDR=0.02, g=0.66), but not between the two patient groups (g=.2, p=.38).   Groups did 
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not differ on cortico-cortical connectivity of the primary visual network (η²=.01, p=.55) or 

auditory network (η²=.01, p=.52).   

With respect to thalamo-cortical connectivity, the groups differed on the visual2 

network (F(2,156)=6.2, p=0.003, η²=0.07).  Follow-up tests showed increased 

connectivity in nonaffective patients relative to controls (t(120.7)=3.4, pFDR=0.0025, 

g=0.58) and in affective patients relative to controls (t(40.6)=2.5, pFDR=0.023, g=0.64) 

but not between the two patient groups (p=.85).  Groups also differed on thalamo-

cortical connectivity in the somatomotor network (F(2,156)=13.3, p=5e-06, η²=0.15)), 

with thalamic hyperconnectivity in nonaffective patients and affective patients relative to 

controls (t(131.5)=5.1, pFDR<.0001, g=0.83); t(37.5)=4.1, pFDR=.0003, g=1.07) but no 

patient group differences (p=.66, g=.04).   There was some suggestion of patient 

thalamo-cortical hypoconnectivity in the primary visual network (F(2,156)=3.3, p=.04, 

η²=0.04) and auditory network (F(2,156)=2.7, p=.07, η²=0.03), however, follow-up t-tests 

would not survive FDR correction.     A split-half validation approach–which involved 

running these analyses on two equally split samples of controls and non-affective 

patients–yielded similar results (Supplementary Methods/Results), demonstrating 

robustness.  When patient groups were combined, the prominent role of the 

somatomotor and visual2 networks in sensory dysconnectivity became even clearer 

(Fig. 3). 
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Fig. 2. Group comparisons in cortico-cortical and thalamo-cortical connectivity for each 

sensory network. (Top) Cortico-cortical hypoconnectivity was found equally in non-

affective and affective psychosis patients for both the somatomotor and visual2 

networks. (Bottom) Thalamic hyperconnectivity was found equally in non-affective and 

affective psychosis patients for both the somatomotor and visual2 networks.  Dotted 

lines indicate median and interquartile range of each distribution.  Significant results are 

shown only for significant one-way ANOVAs and include FDR statistical correction. 

*pFDR<.05, **pFDR<.01, ***pFDR<.001 

 

In-scanner motion cannot explain sensory dysconnectivity results  

Patients in our sample exhibited more framewise displacement and had fewer 

usable frames after scrubbing (Table S1).  This is a concern since increased motion can 

spuriously increase the observed connectivity between nearby regions and decrease 

the observed connectivity between distant regions [37, 38].  To better consider the 

effect of motion, we first examined whether motion correlated with each of the two 

variables (cortico-cortical connectivity, thalamo-cortical connectivity) for each of the two 

significant networks for each of the three groups.  Across these 12 correlations, there 

was no significant effects after FDR correction (all |r|<.30), except for a negative 

correlation between framewise displacement and cortico-cortical visual2 connectivity in 

patients (r=-.35, pFDR=.02).   To further consider the role of motion, we excluded all 

patients whose mean framewise displacement value before scrubbing was greater than 

1.5 SD above the control mean (resulting in 58 non-affective, and 18 affective patients), 

so that groups were almost exactly matched on this variable and also on the number of 

unscrubbed frames (mean framewise displacement =.08 mm in each group; mean 

number of frames =1522-1548; both p>.3).   The four previously-significant one-way 

ANOVAs (two for visual2 and two for somatomotor) continued being significant (all 

η²>.05; all p <.03), with the control and nonaffective group showing the same 

differences as before (all p<.02; all g>.47).  
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Fig. 3. Network-wise group differences in connectivity across the four sensory networks 

using the combined patient sample (threshold FDR q<.05).  Hedges’ g  is shown in the 

legend.  (Left) Across patients, cortico-cortical hypoconnectivity (in blue) was found in 

the visual2 and somatomotor networks but not in the other sensory networks. (Right) 

Across patients, thalamo-cortical hyperconnectivity (in yellow/red) was found with 

medium-large effect sizes in the visual2 and somatomotor network and hypoconnectivity 

was found with small effect sizes in the auditory and primary visual networks.  Note that 

the two patient groups were combined because they did not differ for any network 

before correction for multiple comparisons. 

 

Medication cannot explain sensory dysconnectivity results 

To consider the influence of medication, we first combined affective and non-

affective patients since they did not differ in any of the connectivity measures described 

above.  We then compared controls to the 22 psychosis patients (12 non-affective) who 

were naive to antipsychotics.  The never-medicated patients had increased thalamo-

cortical connectivity with the somatomotor and visual2 networks (t(32.5)=3.3, p=3e-03, 

g=0.90; t(51.0)=3.5, p=1e-03, g=0.78) and decreased cortico-cortical connectivity within 

the somatomotor and visual2 networks, although the last effect was only marginally 

significant (t(41.1)=2.4, p=.02, g=.59; t(45.5)=1.9, p=.06, g=0.45).  We also directly 

compared patient groups with and without medication on these same connectivity 

measures.  No differences emerged (all p>.33).   Finally, to more fully consider 

antipsychotic effects, we probed for correlations between medication dose and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.24308836doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.14.24308836
http://creativecommons.org/licenses/by-nc-nd/4.0/


connectivity values (cortico-cortical, thalamo-cortical) for these two networks.   None of 

the four correlations reached significance ( all |r|<.14, all p>.18, before correction). Thus 

neuroleptics cannot explain the results.  

 

Combining across networks reveals larger group differences and reveals a new 

somato-visual biomarker for psychosis 

 Given the similar results for the visual2 and somatomotor networks, we averaged 

the two together to reduce noise and to potentially provide a stronger, overarching 

marker for psychosis.  We combined patient groups, as above, and found larger effects 

than before (cortico-cortical: t(124.9)=5.0, p=1.5e-06, g=0.80; thalamo-cortical: 

t(141.3)=6.0, p=1.5e-08, g=0.90).   Capitalizing on the fact that these two connectivity 

differences were approximately equal and opposite, we strove to generate an even 

stronger psychosis biomarker by normalizing these two values across all subjects, and 

subtracting the second from the first (thalamo-cortical - cortico-cortical). We found that 

the resulting “somato-visual” marker was elevated in patients compared to controls 

(t(134.7)=6.9, p=2e-10, g=1.06). A similar result would also arise if we were to use 

controls and only medication-naive patients (Fig. 4B).   If we were to exclude motion-

prone patients (58 non-affective and 18 affective in the combined sample), the effect 

strengthened (t(119.8)=7.1, p=1e-10, g=1.24).   If we were to use an even more 

stringent threshold for all subjects (all having a mean framewise displacement <=.08 

mm; 35 patients and 27 controls; similar to some prior studies [24]), the result was again 

strong (t(57.9)=4.7, p=2e-05, g=1.17). 
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Fig. 4. Demonstrating robustness of the somato-visual RSFC biomarker. (A-E) The 

biomarker could emerge when patients were evenly matched to controls on in-scanner 

motion, when they were medication-naive, when they had no comorbid conditions or 

substance/nicotine use, when they had no detectable levels of depression/anxiety in the 

two weeks prior to the scan, and when they had stress levels that were below the mean 

of the control group.   (F, G) Groups differed on the biomarker in two additional data 

sets. Graphs A-F depict data with GSR and graphical lasso applied, except for the 

UCLA data set, which used aCompCor and principal components regression (see 

Methods).  

 

The somato-visual biomarker is robust to preprocessing strategy  

 To be credible, neuroimaging results should be robust to differences in 

preprocessing strategy [8].  This is important because patient/control RSFC differences 

have been shown to depend on preprocessing [23].   To this end, we re-ran the 

analyses with global signal regression (GSR; see Methods).  The central results were 

qualitatively the same as before for the somato-visual biomarker (t(134.4)=6.9, p=2e-10, 

g=1.06; Supplementary Results; Fig. S2).  Similar results also arose for a third 

preprocessing strategy, aCompCor, which uses the first five principal components from 

the white matter and ventricles (t(133.0)=6.8, p=3e-10, g=1.05) [21, 39].  Hereafter, we 
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apply GSR since it did not qualitatively alter our findings and since others have argued 

that it offers the best strategy for denoising [23, 34, 39] and for revealing brain-behavior 

relationships [40].   

 

The somato-visual biomarker can be found with short scan durations 

Although all subjects in our data sets were instructed to keep their eyes open, 

patients may more easily become drowsy in the scanner (e.g., due to sleep 

disturbances or medication), which can lead to RSFC nonstationarity [41] and create 

possible confounds in group comparisons, as noted by others [2].  Patients may also 

become more anxious in the bore, leading to drop-out bias for longer scan sessions.   

To consider whether the proposed biomarker can be recovered in a shorter duration, we 

re-ran the above analyses using only the first 5.5 minute scan and easily detected the 

biomarker (t(102.5)=5.9, p=5e-08, g=1.04; see Fig. S3).  If we were to run only the very 

last run, the results would be weaker but still highly significant  (t(126.5)=4.0, p=9e-05, 

g=0.67).  Note that initial scans may be more accurate since sleepiness can worsen 

data quality and reliability, as demonstrated by others [33].   In either case, the data 

suggest that group differences can clearly emerge with a single run but may be more 

variable across runs (see also the test-retest reliability results below). 

 

The somato-visual biomarker cannot be explained by common confounds 

Comorbidities and substance use pose a common confound in psychosis 

studies.  Restricting our sample to patients who did not have a comorbid 

anxiety/mood/substance disorder, past mild concussion, or current nicotine use (n=40), 

we found that the biomarker value was higher in patients (t(76.0)=4.9, p=6e-06, g=1.03; 

Fig. 4C). Higher stress levels among patients may also be driving the results. However, 

if we include patients (n=17) with a stress level at or below the mean stress level of the 

controls using the Perceived Stress Scale raw scores [42], the biomarker value was 

again detectable (t(23.3)=3.3, p=3e-03, g=0.99; Fig. 4D).  Heightened symptoms of 

depression/anxiety near the time of the scan might also explain why psychosis patients 

differ from healthy controls–a point made by others [43].  To rule out this possibility, we 

considered only patients who scored at the lowest possible level on all three items of 
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this PANSS factor.  The RSFC biomarker was once again elevated (t(55.7)=4.9, p=9e-

06, g=1.13; Fig. 4E).    The somato-visual biomarker did not differ between males and 

females in either patients or controls (both p>.11) and there was no correlation with IQ 

or parental educational attainment in either group (both p>.21, both |r|<.13).   A patient’s 

race (black/white) can occasionally impact neuroimaging models of psychopathology 

[44] but we found no biomarker differences between black/white patients (p=.75; see 

Table S1) (Note that there were too few black controls (n=4) to meaningfully test this 

assertion in that group.) Finally, the magnitude of the patient/control differences did not 

depend on testing site, as determined by a 2 (group) x 4 (site) ANOVA (interaction: 

F(6,147)=1.1, p=.28).     

 

The somato-visual biomarker can be found in other data sets and with a clinical 

control group 

 If the aforementioned RSFC biomarker is robust and specific to psychosis, then it 

should be recoverable in different data sets and relative to a clinical control group.   

Using GSR and normalizing relative to that control sample, we found that patients in the 

Rutgers sample (22 psychosis, 19 healthy controls) again could be differentiated 

(t(39.0)=3.7, p=6e-04, g=1.14; Fig. 4F).   To consider whether these results were a 

result of general psychopathology, we analyzed a third data set–the UCLA data set, 

which also contained ADHD participants (see Methods).  The RSFC biomarker once 

again generated effects in the expected direction: Schizophrenia subjects (SZ) had 

higher values than healthy controls and ADHD patients (SZ vs Ctrl: t(65.8)=2.9, p=.006, 

g=.55; SZ vs. ADHD: t(69.0)=2.8, p=.005, g=.67; Fig. 4G).  ADHD patients did not differ 

from controls (t(64.4)=0.5, p=6e-01, g=0.10).   

 

Four thalamic parcels undergird somato-visual functional dysconnectivity  

 If our results are specific to the somatomotor and visual2 networks, then we 

should be able to replicate the aforementioned findings using the four thalamic parcels 

of just those networks.  We found such a result (t(115.8)=5.6, p=1e-07, g=0.91).   If we 

were to require that patients exhibit less than .08 mm of average framewise 

displacement (similar to some prior studies [24]), to better isolate the signal from these 
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four regions, the biomarker became even more apparent (four parcels: t(55.0)=4.5, 

p=3e-05, g=1.15).   Thus even though we excluded 34 (89%) of the thalamic parcels, 

the biomarker could still be identified, though longer resting-state sessions or more 

reliable methods may be needed to establish the important role of these four parcels 

more definitively [45]. 

 

The somato-visual biomarker can predict diagnostic status across sites and 

studies   

Does the somato-visual biomarker have predictive value? Upon removing 

motion-prone patients (as above) and applying weighted binary logistic regression and 

leave-one-site-out cross-validation, we found that the RSFC biomarker could predict 

diagnostic status (sensitivity=.74, specificity=.70, AUC= 0.79, 95% CI=.75-81; 

LRT=42.7, df=1, p= 6.4e-11; Fig. 5A; see Table S2 for classification statistics).  The 

results were nearly the same when motion-prone patients were included (Table S2).    

As an additional test, we considered whether a model constructed from the HCP 

data could classify subjects in the Rutgers and UCLA data sets (Fig. 5B; see Table S3 

for classification statistics).  We found that the model could indeed predict membership 

(psychosis or not) in each case (Rutgers: sensitivity=.68, specificity=.68, AUC=.80; 

Mann-Whitney test, U=3.3, p=5e-04; UCLA: sensitivity=.72, specificity=.48, AUC=.66, 

Mann-Whitney test, U=2.8, p=.002).  The latter results were about the same if the 

ADHD controls were excluded (Table S3).   

 

The somato-visual biomarker can improve upon a well-established 

neurocognitive predictor 

We next compared the predictive ability of the RSFC variable to the auditory CPT 

variable (ACPT-Q3A hit rate; Table S1; Fig. 5C).  Using the same leave-one-site-out 

procedure as above, the CPT task by itself could discriminate the samples 

(sensitivity=.63, specificity=.80, AUC= .73, 95% CI=71-77; LRT=44.8, df=1, p=2e-11).  

Importantly, when the fMRI measure was added (three regressors total, including 

intercept), the discrimination accuracy numerically improved (sensitivity=.76, 

specificity=.75, AUC= .82, 95% CI=75-85).   Direct model comparison using the full 
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sample confirmed that the RSFC measure improved group classification upon being 

added to the auditory CPT variable (LRT = 25.5, df=1, p=4e-07).  

 

Fig. 5. ROC curves.  (A) The RSFC biomarker could distinguish 76 psychosis patients 

from 54 healthy controls using leave-one-site out cross-validation (LOSOCV).  (B) A 

model constructed from the somato-visual biomarker variable in the HCP data could 

predict whether a participant had a psychotic disorder in two independent data sets 

(Rutgers: 19 controls, 22 psychosis patients; UCLA: 36 patients, 128 controls, including 

ADHD patients). (C) Using LOSOCV on the HCP data, the RSFC biomarker could boost 

group discrimination when added to the ACPT task (51 controls, 71 patients). 

 

Eleven minutes of resting-state can generate a moderately reliable somato-visual 

biomarker 

We next considered whether the first pair of resting-state scans generated results 

resembling the second pair (test/retest interval =34.7 minutes).  Incorporating only low-

motion patients (using the same threshold as above; 54 controls, 74 patients), logistic 

regression risk scores were correlated across time points (r=.61, p=2e-13), and the 

biomarker had “moderate” intraclass correlation (ICC=.61, 95% CI=.48-.71, p=1e-13) 

using published benchmarks [46].  Supplementary results show that the ICC was 

hampered by the less-reliable thalamo-cortical connectivity values, especially at shorter 

scan durations. 

 

Discussion 

We found that early psychosis patients exhibited thalamo-cortical 

hyperconnectivity and cortico-cortical hypoconnectivity with the visual2 and the 
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somatomotor networks, but not with the auditory or primary visual networks.  These 

results arose to a similar degree in affective and non-affective psychosis and did not 

depend on antipsychotic medication or in-scanner motion.  Moreover, patient hypo- and 

hyperconnectivity patterns could be combined into a single overarching “somato-visual” 

biomarker.  The marker could emerge within a single 5.5 minute scan, could not be 

explained by various common confounders, and could be revealed with two other data 

sets, one of which involved an ADHD control group. The marker could predict group 

membership across sites and studies, and could improve upon an auditory CPT task.      

  

Reassessing the granularity of “sensory dysconnectivity” 

An implication is that it is painting with too broad a brush to say that there is 

“sensory dysconnectivity” or “visual dysconnectivity” in psychosis.  The somatomotor 

and the visual2 networks were the primary driving factors; the auditory and primary 

visual networks issued forth much smaller group differences in cortico-cortical 

connectivity and potentially opposite group differences in thalamic connectivity 

(hypoconnectivity; see Fig. 3).    Treating all visual regions or all sensory regions as the 

same will lead to an underestimation of the role of vision and sensation, respectively.   

At the same time, our results suggest that sensory dysconnectivity may be 

minimally apparent at any one connection but may be clearly observed at the level of 

the network, when subtle local differences can be averaged over larger swaths of cortex 

[12]. This conclusion may explain why a recent machine-learning study of over 800 

psychosis patients had difficulty in reliably discriminating psychosis patients and 

controls by using individual connection weights [47].    

 

What is the biological basis of a somato-visual biomarker? 

Patients’ dysconnectivity patterns may be arising from NMDA glutamate receptor 

hypofunctioning [48, 49].  For example, in a double-blind, placebo controlled study, 

healthy participants who were administered ketamine–an NMDA receptor antagonist–

exhibited thalamic hyperconnectivity with sensorimotor and higher-order visual cortex 

(e.g., postcentral gyrus, lingual gyrus) and this activity pattern more resembled early-

stage psychosis patients than healthy controls [50]. Structural connectivity differences 
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may also play a role.  Thalamo-cortical white matter tracts are more numerous for both 

somatosensory cortex (encompassed by the somatomotor network) and occipital cortex 

[51], presumably resulting from either novel white matter connections formed over the 

course of development or inadequate pruning during adolescence.   The cortico-cortical 

white matter hypoconnectivity of somatomotor and visual cortical regions has been 

observed in anti-NMDA receptor encephalitis, an autoimmune condition that produces 

symptoms resembling schizophrenia [52].  Our results set the stage for more focused 

pathophysiological and pharmacological investigations. 

 

Somato-visual dysconnectivity as a biomarker for psychosis: Where do we go 

from here? 

 We already know how to diagnose psychosis, so why develop a biomarker 

based on current diagnosis?  The biomarker’s simplicity–coupled with its large effect 

size, robustness, and generalizability–suggest that it may hold promise for predicting a 

future onset of psychosis among individuals at clinical high risk [53].   Adding 

neuroimaging to cognitive measures may offer an especially promising combination 

given how our biomarker could improve upon the ACPT (AUC=.73→.82).  Moreover, 

while it remains unclear whether our biomarker is a cause or consequence of psychosis, 

it is at least conceivable that reversing hypo- or hyperconnectivity–either through 

neurostimulation, biofeedback, or pharmacological approaches–could reduce the 

likelihood or severity of illness [for a related example, see 54]. Finally, just as 

neuroimaging biomarkers of major depression have stratified patients into subgroups 

that respond to specific treatments [55], so too might the somato-visual biomarker in 

psychosis, although this will need to be tested on larger samples.       

 

Limitations and additional future directions 

A limitation is that 11 minutes of resting-state yielded only a moderately reliable 

biomarker (ICC=.61).  While this result is much better than what has been obtained with 

single edges from a FC matrix [mean ICC=.29, 56], future studies might consider using 

multi-echo fMRI or more advanced denoising strategies for image reconstruction [45, 

57, 58].  Although the analyzed studies involved an eyes-open protocol, it is possible 
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that patients more often fell asleep, which could explain their weaker cortico-cortical 

visual or somatomotor connectivity [59].  We consider this scenario unlikely since the 

strongest group differences occurred in the first resting-state scan, which began within 

the first few minutes of scanning.  Nevertheless, future psychosis studies should more 

directly monitor wakefulness through measures such as eye-tracking. Another limitation 

is that we do not yet know the clinical or behavioral correlates of somato-visual 

dysconnectivity.   We found no correlations with symptoms or functioning but the 

sample overall was extremely asymptomatic (see Table S1 and Supplementary results), 

necessitating future studies with more diverse patient types.   In terms of behavioral 

performance, numerous visual abilities are abnormal in early-stage psychosis [60] 

including perceptual organization, which depends on the secondary visual network [61, 

62]; visually guided reaching and grasping are also severely impaired independent of 

medication [63, 64]. A promising line of research would be to relate these behavioral 

impairments to connectivity patterns of the visual2 network [62, e.g., 65] or 

somatomotor network [66].   

 

Supplementary Information is available at MP’s website. 
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Data and code availability 

The HCP data are public (https://nda.nih.gov/edit_collection.html?id=2914).  The UCLA 

data are located on OpenNeuro.org (accession number: ds000030), and so too are the 

Rutgers patient and control data (ds005073, ds003404, respectively).  Preprocessing 

was done with fmriprep v.21.0.1 (www.fmriprep.org).  Code for estimating RSFC and 

applying the Brain Network partition are on GitHub 

(https://github.com/ColeLab/ActflowToolbox/; 

https://github.com/ColeLab/ColeAnticevicNetPartition). 
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